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Summary. The Borsuk-Ulam theorem about antipodals is proven, [18,
pp. 32–33].
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The notation and terminology used here have been introduced in the following
papers: [33], [36], [15], [16], [2], [5], [28], [35], [13], [26], [20], [30], [4], [34], [6],
[7], [8], [38], [27], [1], [3], [9], [29], [31], [19], [41], [42], [39], [11], [43], [37], [40],
[25], [32], [14], [23], [24], [22], [12], [21], [17], and [10].

1. Preliminaries

For simplicity, we adopt the following rules: a, b, x, y, z, X, Y , Z denote
sets, n denotes a natural number, i denotes an integer, r, r1, r2, r3, s denote
real numbers, c, c1, c2 denote complex numbers, and p denotes a point of EnT.

Let us observe that every element of IQ is irrational.
Next we state a number of propositions:

(1) If 0 ≤ r and 0 ≤ s and r2 = s2, then r = s.

(2) If frac r ≥ frac s, then frac(r − s) = frac r − frac s.

(3) If frac r < frac s, then frac(r − s) = (frac r − frac s) + 1.

1This work has been supported by the Polish Ministry of Science and Higher Education pro-
ject “Managing a Large Repository of Computer-verified Mathematical Knowledge” (N N519
385136).
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(4) There exists i such that frac(r − s) = (frac r − frac s) + i but i = 0 or
i = 1.

(5) If sin r = 0, then r = 2 · π · b r
2·π c or r = π + 2 · π · b r

2·π c.
(6) If cos r = 0, then r = π

2 + 2 · π · b r
2·π c or r = 3·π

2 + 2 · π · b r
2·π c.

(7) If sin r = 0, then there exists i such that r = π · i.
(8) If cos r = 0, then there exists i such that r = π

2 + π · i.
(9) If sin r = sin s, then there exists i such that r = s + 2 · π · i or r =

(π − s) + 2 · π · i.
(10) If cos r = cos s, then there exists i such that r = s+2·π·i or r = −s+2·π·i.
(11) If sin r = sin s and cos r = cos s, then there exists i such that r = s+2·π·i.
(12) If |c1| = |c2| and Arg c1 = Arg c2 + 2 · π · i, then c1 = c2.

Let f be a one-to-one complex-valued function and let us consider c. One
can verify that f + c is one-to-one.

Let f be a one-to-one complex-valued function and let us consider c. Note
that f − c is one-to-one.

One can prove the following propositions:

(13) For every complex-valued finite sequence f holds len(−f) = len f.

(14) −〈0, . . . , 0︸ ︷︷ ︸
n

〉 = 〈0, . . . , 0︸ ︷︷ ︸
n

〉.

(15) For every complex-valued function f such that f 6= 〈0, . . . , 0︸ ︷︷ ︸
n

〉 holds −f 6=

〈0, . . . , 0︸ ︷︷ ︸
n

〉.

(16) 2〈r1, r2, r3〉 = 〈r12, r22, r32〉.
(17)

∑2〈r1, r2, r3〉 = r1
2 + r2

2 + r3
2.

(18) For every complex-valued finite sequence f holds (c · f)2 = c2 · f2.
(19) For every complex-valued finite sequence f holds (f/c)2 = f2/c2.

(20) For every real-valued finite sequence f such that
∑
f 6= 0 holds∑

(f/
∑
f) = 1.

Let a, b, c, x, y, z be sets. The functor [a 7→ x, b 7→ y, c 7→ z] is defined by:

(Def. 1) [a 7→ x, b 7→ y, c 7→ z] = [a 7−→ x, b 7−→ y]+·(c 7−→. z).

Let a, b, c, x, y, z be sets. One can check that [a 7→ x, b 7→ y, c 7→ z] is
function-like and relation-like.

The following propositions are true:

(21) dom([a 7→ x, b 7→ y, c 7→ z]) = {a, b, c}.
(22) rng([a 7→ x, b 7→ y, c 7→ z]) ⊆ {x, y, z}.
(23) [a 7→ x, a 7→ y, a 7→ z] = a 7−→. z.

(24) [a 7→ x, a 7→ y, b 7→ z] = [a 7−→ y, b 7−→ z].

(25) If a 6= b, then [a 7→ x, b 7→ y, a 7→ z] = [a 7−→ z, b 7−→ y].
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(26) [a 7→ x, b 7→ y, b 7→ z] = [a 7−→ x, b 7−→ z].

(27) If a 6= b and a 6= c, then ([a 7→ x, b 7→ y, c 7→ z])(a) = x.

(28) If a, b, c are mutually different, then ([a 7→ x, b 7→ y, c 7→ z])(a) = x and
([a 7→ x, b 7→ y, c 7→ z])(b) = y and ([a 7→ x, b 7→ y, c 7→ z])(c) = z.

(29) For every function f such that dom f = {a, b, c} and f(a) = x and
f(b) = y and f(c) = z holds f = [a 7→ x, b 7→ y, c 7→ z].

(30) 〈a, b, c〉 = [1 7→ a, 2 7→ b, 3 7→ c].

(31) If a, b, c are mutually different, then
∏

([a 7→ {x}, b 7→ {y}, c 7→ {z}]) =
{[a 7→ x, b 7→ y, c 7→ z]}.

(32) For all sets A, B, C, D, E, F such that A ⊆ B and C ⊆ D and E ⊆ F

holds
∏

([a 7→ A, b 7→ C, c 7→ E]) ⊆
∏

([a 7→ B, b 7→ D, c 7→ F ]).

(33) If a, b, c are mutually different and x ∈ X and y ∈ Y and z ∈ Z, then
[a 7→ x, b 7→ y, c 7→ z] ∈

∏
([a 7→ X, b 7→ Y, c 7→ Z]).

Let f be a function. We say that f is odd if and only if:

(Def. 2) For all complex-valued functions x, y such that x, −x ∈ dom f and
y = f(x) holds f(−x) = −y.

Let us mention that ∅ is odd.
Let us observe that there exists a function which is odd and complex-

functions-valued.
The following propositions are true:

(34) For every point p of E3T holds 2p = 〈(p1)2, (p2)2, (p3)2〉.
(35) For every point p of E3T holds

∑2p = (p1)2 + (p2)2 + (p3)2.

The following two propositions are true:

(36) For every subset S of R1 such that S = Q holds Q ∩ ]−∞, r[ is an open
subset of R1�S.

(37) For every subset S of R1 such that S = Q holds Q ∩ ]r,+∞[ is an open
subset of R1�S.

Let X be a connected non empty topological space, let Y be a non empty
topological space, and let f be a continuous function from X into Y . Note that
Im f is connected.

Next we state two propositions:

(38) Let S be a subset of R1. Suppose S = Q. Let T be a connected topological
space and f be a function from T into R1�S. If f is continuous, then f is
constant.

(39) Let a, b be real numbers, f be a continuous function from [a, b]T into
R1, and g be a partial function from R to R. If a ≤ b and f = g, then g is
continuous.

Let s be a point of R1 and let r be a real number. Then s + r is a point
of R1.
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Let s be a point of R1 and let r be a real number. Then s − r is a point
of R1.

Let X be a set, let f be a function from X into R1, and let us consider r.
Then f + r is a function from X into R1.

Let X be a set, let f be a function from X into R1, and let us consider r.
Then f − r is a function from X into R1.

Let s, t be points of R1, let f be a path from s to t, and let r be a real
number. Then f + r is a path from s + r to t + r. Then f − r is a path from
s− r to t− r.

The point c[100] of TopUnitCircle 3 is defined by:

(Def. 3) c[100] = [1, 0, 0].

The point c[−100] of TopUnitCircle 3 is defined by:

(Def. 4) c[−100] = [−1, 0, 0].

Next we state several propositions:

(40) −c[100] = c[−100].

(41) −c[−100] = c[100].

(42) c[100]− c[−100] = [2, 0, 0].

(43) For every point p of E2T holds p1 = |p| · cos Arg p and p2 = |p| · sin Arg p.

(44) For every point p of E2T holds p = cpx2euc(|p| ·cos Arg p+ |p| ·sin Arg p ·i).
(45) For all points p1, p2 of E2T such that |p1| = |p2| and Arg p1 = Arg p2+2·π·i

holds p1 = p2.

One can prove the following propositions:

(46) For every point p of E2T such that p = CircleMap(r) holds Arg p =
2 · π · frac r.

(47) Let p1, p2 be points of E3T and u1, u2 be points of E3. If u1 = p1 and
u2 = p2, then ρ3(u1, u2) =√

((p1)1 − (p2)1)2 + ((p1)2 − (p2)2)2 + ((p1)3 − (p2)3)2.

(48) Let p be a point of E3T and e be a point of E3. If p = e and p3 = 0, then∏
([1 7→ ]p1 − r√

2
, p1 + r√

2
[, 2 7→ ]p2 − r√

2
, p2 + r√

2
[, 3 7→ {0}]) ⊆ Ball(e, r).

(49) For every real number s holds c 	 s = c 	 s+ 2 · π · i.
(50) For every real number s holds Rotate s = Rotate(s+ 2 · π · i).
(51) For every real number s and for every point p of E2T holds
|(Rotate s)(p)| = |p|.

(52) For every real number s and for every point p of E2T holds
Arg(Rotate s)(p) = Arg(euc2cpx(p) 	 s).

(53) For every real number s and for every point p of E2T such that p 6= 0E2T
there exists i such that Arg(Rotate s)(p) = s+ Arg p+ 2 · π · i.

(54) For every real number s holds (Rotate s)(0E2T) = 0E2T .
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(55) For every real number s and for every point p of E2T such that
(Rotate s)(p) = 0E2T holds p = 0E2T .

(56) For every real number s and for every point p of E2T holds
(Rotate s)((Rotate(−s))(p)) = p.

(57) For every real number s holds Rotate s · Rotate(−s) = idE2T .

(58) For every real number s and for every point p of E2T holds p ∈
Sphere((0E2T), r) iff (Rotate s)(p) ∈ Sphere((0E2T), r).

(59) For every non negative real number r and for every real number s holds
(Rotate s)◦ Sphere((0E2T), r) = Sphere((0E2T), r).

Let r be a non negative real number and let s be a real number. The functor
RotateCircle(r, s) yields a function from Tcircle(0E2T , r) into Tcircle(0E2T , r) and
is defined by:

(Def. 5) RotateCircle(r, s) = Rotate s�Tcircle(0E2T , r).

Let r be a non negative real number and let s be a real number. Note that
RotateCircle(r, s) is homeomorphism.

One can prove the following proposition

(60) For every point p of E2T such that p = CircleMap(r2) holds
(RotateCircle(1, (−Arg p)))(CircleMap(r1)) = CircleMap(r1 − r2).

2. On the Antipodals

Let n be a non empty natural number, let p be a point of EnT, and let r be
a non negative real number. The functor CircleIso(p, r) yields a function from
TopUnitCirclen into Tcircle(p, r) and is defined as follows:

(Def. 6) For every point a of TopUnitCirclen and for every point b of EnT such
that a = b holds (CircleIso(p, r))(a) = r · b+ p.

Let n be a non empty natural number, let p be a point of EnT, and let r be
a positive real number. Note that CircleIso(p, r) is homeomorphism.

The function SphereMap from R1 into TopUnitCircle 3 is defined by:

(Def. 7) For every real number x holds (SphereMap)(x) = [cos(2 ·π ·x), sin(2 ·π ·
x), 0].

We now state the proposition

(61) (SphereMap)(i) = c[100].

Let us note that SphereMap is continuous.
Let r be a real number. The functor eLoop r yields a function from I into

TopUnitCircle 3 and is defined as follows:

(Def. 8) For every point x of I holds (eLoop r)(x) = [cos(2·π·r·x), sin(2·π·r·x), 0].

We now state the proposition

(62) eLoop r = SphereMap ·ExtendInt r.
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Let us consider i. Then eLoop i is a loop of c[100].
One can check that eLoop i is null-homotopic as a loop of c[100].
One can prove the following proposition

(63) If p 6= 0EnT , then |p/|p|| = 1.

Let n be a natural number and let p be a point of EnT. Let us assume that
p 6= 0EnT . The functor (Rn → S1) p yields a point of Tcircle(0EnT , 1) and is defined
by:

(Def. 9) (Rn → S1) p = p/|p|.
Let n be a non zero natural number and let f be a function
from Tcircle(0En+1T

, 1) into EnT. The functor (Sn+1 → Sn) f yielding a func-
tion from TopUnitCircle(n+ 1) into TopUnitCirclen is defined as follows:

(Def. 10) For all points x, y of Tcircle(0En+1T
, 1) such that y = −x holds

((Sn+1 → Sn) f)(x) = (Rn → S1)(f(x)− f(y)).

Let x0, y0 be points of TopUnitCircle 2, let x1 be a set, and let f be a
path from x0 to y0. Let us assume that x1 ∈ CircleMap−1({x0}). The functor
liftPath(f, x1) yielding a function from I into R1 is defined by the conditions
(Def. 11).

(Def. 11)(i) (liftPath(f, x1))(0) = x1,

(ii) f = CircleMap · liftPath(f, x1),
(iii) liftPath(f, x1) is continuous, and
(iv) for every function f1 from I into R1 such that f1 is continuous and

f = CircleMap ·f1 and f1(0) = x1 holds liftPath(f, x1) = f1.

Let n be a natural number, let p, x, y be points of EnT, and let r be a real
number. We say that x and y are antipodals of p and r if and only if:

(Def. 12) x is a point of Tcircle(p, r) and y is a point of Tcircle(p, r) and p ∈
L(x, y).

Let n be a natural number, let p, x, y be points of EnT, let r be a real number,
and let f be a function. We say that x and y are antipodals of p, r and f if and
only if:

(Def. 13) x and y are antipodals of p and r and x, y ∈ dom f and f(x) = f(y).

Let m, n be natural numbers, let p be a point of EmT , let r be a real number,
and let f be a function from Tcircle(p, r) into EnT. We say that f has antipodals
if and only if:

(Def. 14) There exist points x, y of EmT such that x and y are antipodals of p, r
and f .

Let m, n be natural numbers, let p be a point of EmT , let r be a real number,
and let f be a function from Tcircle(p, r) into EnT. We introduce f is without
antipodals as an antonym of f has antipodals.

One can prove the following propositions:
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(64) Let n be a non empty natural number, r be a non negative real number,
and x be a point of EnT. Suppose x is a point of Tcircle(0EnT , r). Then x

and −x are antipodals of 0EnT and r.

(65) Let n be a non empty natural number, p, x, y, x2, y1 be points of EnT,
and r be a positive real number. Suppose x and y are antipodals of 0EnT
and 1 and x2 = (CircleIso(p, r))(x) and y1 = (CircleIso(p, r))(y). Then x2
and y1 are antipodals of p and r.

(66) Let f be a function from Tcircle(0En+1T
, 1) into EnT and x be a point of

Tcircle(0En+1T
, 1). If f is without antipodals, then f(x)− f(−x) 6= 0EnT .

(67) For every function f from Tcircle(0En+1T
, 1) into EnT such that f is without

antipodals holds (Sn+1 → Sn) f is odd.

(68) Let f be a function from Tcircle(0En+1T
, 1) into EnT and g, B1 be functions

from Tcircle(0En+1T
, 1) into EnT. If g = f ◦− and B1 = f−g and f is without

antipodals, then (Sn+1 → Sn) f = B1/(nNormF ·B1).
Let us consider n, let r be a negative real number, and let p be a point of

En+1T . Observe that every function from Tcircle(p, r) into EnT is without antipo-
dals.

Let r be a non negative real number and let p be a point of E3T. Note that
every function from Tcircle(p, r) into E2T which is continuous also has antipo-
dals.2
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