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Summary. The Borsuk-Ulam theorem about antipodals is proven, [18,
pp- 32-33].
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The notation and terminology used here have been introduced in the following
papers: [33]7 [36]7 [15]’ [16]7 [2]7 [5]7 [28]’ [35]7 [13]7 [26]7 [20]7 [30]7 [4]7 [34]7 [6}7
(7], [8], [38], [27], [1], [3], [9], [29], [31], [19], [41], [42], [39], [11], [43], [37], [40],
[25], [32], [14], [23], [24], [22], [12], [21], [17], and [10].

1. PRELIMINARIES

For simplicity, we adopt the following rules: a, b, x, y, 2z, X, Y, Z denote
sets, n denotes a natural number, 7 denotes an integer, r, r1, 72, r3, s denote
real numbers, ¢, ¢, co denote complex numbers, and p denotes a point of £F.

Let us observe that every element of IQ is irrational.

Next we state a number of propositions:

(1) f0<rand0<sandr?=s2 thenr =s.
(2) If fracr > frac s, then frac(
(3) If fracr < fracs, then frac(

r —s) = fracr — fracs.

r —s) = (fracr — fracs) + 1.

!This work has been supported by the Polish Ministry of Science and Higher Education pro-
ject “Managing a Large Repository of Computer-verified Mathematical Knowledge” (N N519
385136).

@ 2012 University of Bialystok
CC-BY-SA License ver. 3.0 or later
105 ISSN 1426-2630(p), 1898-9934(e)


http://ftp.mizar.org/
http://fm.mizar.org/miz/borsuk_7.miz

106 ARTUR KORNILOWICZ AND MARCO RICCARDI

(4) There exists ¢ such that frac(r — s) = (fracr — fracs) +¢ but ¢ = 0 or
1= 1.

If sinr =0, thenr =2-7-[5~]orr=7m+2-m- 5]

If cosr =0,thenr =2 427 [;=]orr=3F+2-7- ||

2.

If cosr = 0, then there exists ¢ such that r = 5 + 7 - .

If sinr = sins, then there exists ¢ such that r = s+ 2 -7 -7 or r =
(m—38)+2-7-1i.

(10) Ifcosr = cos s, then there exists i such that r = s+2-7m-ior r = —s+2-7-4.

(5)
(6)
(7) If sinr = 0, then there exists ¢ such that r = 7 - .
(8)
(9)

(11) Ifsinr = sinsand cosr = cos s, then there exists ¢ such that r = s+2-7-i.
(12) If |c1]| = |eo| and Argey = Argea +2 - 7 - i, then ¢ = co.
Let f be a one-to-one complex-valued function and let us consider c¢. One
can verify that f + c is one-to-one.
Let f be a one-to-one complex-valued function and let us consider c. Note
that f — ¢ is one-to-one.
One can prove the following propositions:
(13) For every complex-valued finite sequence f holds len(—f) = len f.
(14) —(0,...,0) =(0,...,0).
——— ——

n n

(15) For every complex-valued function f such that f # (0,...,0) holds — f #
——

n

2 2 2
, 27,713 >

(16)  2(ri,ro,73) = (11

(17) 2{(ri,ro,73) = 112 + 192 + 1r32.

(18) For every complex-valued finite sequence f holds (c- f)? = ¢% - f2.
(19)

(20)

20

For every complex-valued finite sequence f holds (f/c)? = f2/c2.
For every real-valued finite sequence f such that Y f # 0 holds
Y/ =1
Let a, b, ¢, z, y, z be sets. The functor [a +— z,b — y, c — z]| is defined by:
(Def. 1) [a— z,b—y,c— 2] =[ar— z,b— y|+-(c— 2).
Let a, b, ¢, x, y, z be sets. One can check that [a — z,b — y,c — 2] is
function-like and relation-like.
The following propositions are true:

(21) dom([a — x,b— y,c— z]) = {a,b,c}.

(22) rmg(la— z,b—y,c— z]) C{x,y,z}.

(23) [ar z,a—y,a— z] =a—— 2.

(24) Ja—z,a—y,b— 2zl =la— y,br— z].

(25) Ifa #b, then [a — x,b— y,a+— z] = [a— 2z,b—> y].
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(26) [ar— z,b—y,br— 2| =[a+— z,br— z].

(27) If a # b and a # ¢, then (ja — z,b— y,c— z])(a) = x.

(28) 1If a, b, c are mutually different, then ([a — z,b — y,c — z])(a) = z and
([a — z,b—y,c— 2])(b) =y and ([a — x,b+— y,c— z])(c) = z.

(29) For every function f such that dom f = {a,b,c} and f(a) = z and
f(b) =y and f(c) =z holds f =[a— z,b+— y,c+— z].

(30) {a,b,c) =[1+ a,2+— b,3+— cl.

(31) If a, b, ¢ are mutually different, then []([a — {z},b— {y},c— {2}]) =
{la — z,b—y,c— z]}.

(32) For all sets A, B, C, D, E, F such that AC Band C C D and EC F
holds []([a — A,b— C,c— E]) CIl(la— B,b+ D,c+ FJ).

(33) 1If a, b, ¢ are mutually different and x € X and y € Y and z € Z, then
[a— z,b—y,c—z] €][(la— X,b— Y, c— Z]).

Let f be a function. We say that f is odd if and only if:

(Def. 2) For all complex-valued functions x, y such that z, —x € dom f and
y = f(z) holds f(—x) = —v.
Let us mention that () is odd.
Let us observe that there exists a function which is odd and complex-
functions-valued.
The following propositions are true:
(34) For every point p of £ holds ?p = ((p1)?, (p2)?, (ps)?).
(35) For every point p of & holds >2%p = (p1)? + (p2)2 + (p3)?.
The following two propositions are true:
(36) For every subset S of R! such that S = Q holds Q N]—o0, 7| is an open
subset of R1[S.

(37) For every subset S of R! such that S = Q holds Q N ]r, +oo] is an open
subset of R1[S.

Let X be a connected non empty topological space, let Y be a non empty
topological space, and let f be a continuous function from X into Y. Note that
Im f is connected.

Next we state two propositions:

(38) Let S be asubset of R'. Suppose S = Q. Let T be a connected topological
space and f be a function from T into R![S. If f is continuous, then f is
constant.

(39) Let a, b be real numbers, f be a continuous function from [a, b1 into
R, and ¢ be a partial function from R to R. If ¢ < b and f = g, then ¢ is
continuous.

Let s be a point of R and let r be a real number. Then s + r is a point
of RY.
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Let s be a point of R and let r be a real number. Then s — r is a point
of R1.

Let X be a set, let f be a function from X into R, and let us consider r.
Then f + r is a function from X into RY.

Let X be a set, let f be a function from X into R, and let us consider r.
Then f — r is a function from X into RY.

Let s, t be points of R, let f be a path from s to t, and let  be a real
number. Then f + r is a path from s +r to ¢t + r. Then f — r is a path from
s—rtot—r.

The point ¢[100] of TopUnitCircle 3 is defined by:

(Def. 3) ¢[100] = [1,0,0].
The point ¢[—100] of TopUnitCircle 3 is defined by:

(Def. 4) ¢[—100] = [-1,0,0].
Next we state several propositions:
40) —c[100] = c[—100].
41) —c[—100] = c[100].
42) ¢c[100] — ¢[—100] = [2,0,0].

For every point p of £2 holds p1 = |p| - cos Argp and pa = |p| - sin Arg p.

~— — ~— ~— ~— ~—

(
(
(
(43
(
(

44)  For every point p of 2 holds p = cpx2euc(|p|-cos Arg p+|p|-sin Argp-i).
45) For all points p1, ps of E% such that [p;| = |pe| and Argp; = Argpa+2-m-i
holds p1 = po.

One can prove the following propositions:

(46) For every point p of £ such that p = CircleMap(r) holds Argp =
2. m-fracr.

(47) Let pi1, p2 be points of 5% and u1, up be points of 3. If u; = p; and
ug = pa, then p*(uy,ug) =
V(1)1 = (p2)1)% + ((p1)2 — (p2)2)* + ((p1)3 — (p2)3)*-

(48) Let p be a point of £ and e be a point of £3. If p = e and p3 = 0, then
T = Ip1 — S5opa + 2512 — Ipa — 2, pa + 25,3 — {0}) € Ball(e, ).

(49) For every real number s holds c O s=cOs+2-7-i.

(50) For every real number s holds Rotate s = Rotate(s + 2 - 7 - ).

(51) For every real number s and for every point p of &2 holds
|(Rotate 5)(p)] = |pl.

(52) For every real number s and for every point p of &2 holds
Arg(Rotate s)(p) = Arg(euc2epx(p) O s).

(53) For every real number s and for every point p of £% such that p # OggF
there exists 7 such that Arg(Rotates)(p) =s+ Argp+2-7-14.

(54) For every real number s holds (Rotate s)(OggF) = Og2.
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(55) TFor every real number s and for every point p of €2 such that
(Rotate s)(p) = Ogz holds p = Ogz.

(56) For every real number s and for every point p of &% holds
(Rotate s)((Rotate(—s))(p)) = p.

(57) For every real number s holds Rotate s - Rotate(—s) = idgz.

(58) TFor every real number s and for every point p of £% holds p €
Sphere((Og%), r) iff (Rotate s)(p) € Sphere((()g%), r).

(59) For every non negative real number r and for every real number s holds
(Rotate s)° Sphere((()g%), r) = Sphere((Og%), T).

Let r be a non negative real number and let s be a real number. The functor

RotateCircle(r, s) yields a function from Tcircle(Ogz, r) into Tcircle(0gz,7) and
is defined by:
(Def. 5) RotateCircle(r, s) = Rotates[Tcircle(Og%,r).
Let r be a non negative real number and let s be a real number. Note that

RotateCircle(r, s) is homeomorphism.
One can prove the following proposition

(60) For every point p of €2 such that p = CircleMap(rz) holds
(RotateCircle(1, (—Argp)))(CircleMap(ry)) = CircleMap(rqy — r2).

2. ON THE ANTIPODALS

Let n be a non empty natural number, let p be a point of £, and let r be
a non negative real number. The functor Circlelso(p, r) yields a function from
TopUnitCircle n into Tcircle(p,r) and is defined as follows:
(Def. 6) For every point a of TopUnitCirclen and for every point b of £F such
that a = b holds (Circlelso(p,7))(a) =r - b+ p.
Let n be a non empty natural number, let p be a point of £, and let r be
a positive real number. Note that Circlelso(p, r) is homeomorphism.
The function SphereMap from R! into TopUnitCircle 3 is defined by:
(Def. 7)  For every real number z holds (SphereMap)(x) = [cos(2- 7 - x),sin(2- 7 -
x),0].
We now state the proposition
(61) (SphereMap)(i) = c[100].
Let us note that SphereMap is continuous.
Let r be a real number. The functor eLoopr yields a function from I into
TopUnitCircle 3 and is defined as follows:
(Def. 8) For every point  of I holds (eLoopr)(x) = [cos(2-m-7-x),sin(2-7-r-x), 0].
We now state the proposition
(62) eLoopr = SphereMap - ExtendInt r.
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Let us consider ¢. Then eLoopi is a loop of ¢[100].

One can check that eLoopi is null-homotopic as a loop of ¢[100].

One can prove the following proposition

(63) 1f p# Ogy, then [p/[p|| = 1.

Let n be a natural number and let p be a point of £F. Let us assume that
p # Ogn. The functor (R" — S1) p yields a point of Teircle(Ogy, 1) and is defined
by:

(Def. 9) (R" — SY)p=p/Ipl.

Let n be a non zero natural number and let f be a function

from Tcircle(05¥+1, 1) into EX. The functor (S™*1 — S™) f yielding a func-
tion from TopUnitCircle(n + 1) into TopUnitCirclen is defined as follows:

(Def. 10) For all points x, y of Tcircle(08¥+1, 1) such that y = —z holds

(5" — 8™) (@) = (B" — SN (f(z) = f(y)).

Let zg, yo be points of TopUnitCircle2, let z; be a set, and let f be a
path from g to yo. Let us assume that x; € CircleMap ~!({x¢}). The functor
liftPath(f, z1) yielding a function from I into R! is defined by the conditions
(Def. 11).

(Def. 11)(1)  (liftPath(f,z1))(0) = 1,
(ii)  f = CircleMap - liftPath(f, z1),
(iii)  liftPath(f,z1) is continuous, and
) for every function fi; from I into R! such that f; is continuous and
f = CircleMap - f; and f1(0) = 1 holds liftPath(f, z1) = fi.

Let n be a natural number, let p, x, y be points of £, and let r be a real

(iv

number. We say that x and y are antipodals of p and r if and only if:

(Def. 12) z is a point of Tcircle(p,r) and y is a point of Tcircle(p,r) and p €
L(z,y).

Let n be a natural number, let p, z, y be points of £, let r be a real number,
and let f be a function. We say that x and y are antipodals of p, » and f if and
only if:

(Def. 13) z and y are antipodals of p and r and z, y € dom f and f(z) = f(y).

Let m, n be natural numbers, let p be a point of £, let 7 be a real number,
and let f be a function from Tcircle(p, ) into £F. We say that f has antipodals
if and only if:

(Def. 14) There exist points x, y of & such that z and y are antipodals of p, r
and f.

Let m, n be natural numbers, let p be a point of £, let 7 be a real number,
and let f be a function from Tcircle(p,r) into EF. We introduce f is without
antipodals as an antonym of f has antipodals.

One can prove the following propositions:
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(64) Let n be a non empty natural number, r be a non negative real number,
and z be a point of £F. Suppose z is a point of Tcircle(Og%r,r). Then x
and —z are antipodals of Ogn and r.

(65) Let n be a non empty natural number, p, z, y, x2, y1 be points of £F,
and r be a positive real number. Suppose x and y are antipodals of Ogn
and 1 and xz9 = (Circlelso(p,r))(z) and y; = (CircleIso(p,r))(y). Then x2
and y; are antipodals of p and r.

(66) Let f be a function from Tcircle(05¥+1, 1) into £} and z be a point of
Tcircle(05¥+1, 1). If f is without antipodals, then f(z) — f(—z) # Ogn.
(67) For every function f from Tcircle(()ggﬂ, 1) into £F such that f is without
antipodals holds (S"*! — S™) f is odd.

(68) Let f be a function from Tcircle(()ggg, 1) into &F and g, By be functions
from TCirCle(0€%+1, 1) into EF. If g = fo—and By = f—g and f is without
antipodals, then (S"*! — S") f = By/(nNormF -By).

Let us consider n, let r be a negative real number, and let p be a point of
E%H. Observe that every function from Tcircle(p, ) into £} is without antipo-
dals.

Let r be a non negative real number and let p be a point of 5%. Note that

every function from Tcircle(p,r) into €% which is continuous also has antipo-
dals.?
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