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Poland

Summary. We introduce length-preserving linear transformations of Euc-
lidean topological spaces. We also introduce rotation which preserves orientation
(proper rotation) and reverses orientation (improper rotation). We show that
every rotation that preserves orientation can be represented as a composition
of base proper rotations. And finally, we show that every rotation that rever-
ses orientation can be represented as a composition of proper rotations and one
improper rotation.

MML identifier: MATRTOP3, version: 7.12.01 4.167.1133

The papers [11], [35], [36], [8], [10], [9], [3], [7], [14], [2], [30], [4], [19], [12], [31],
[24], [34], [13], [22], [17], [1], [20], [15], [16], [40], [38], [33], [25], [28], [37], [23], [6],
[39], [18], [21], [32], [5], [26], [29], and [27] provide the terminology and notation
for this paper.

1. Preliminaries

We adopt the following rules: x, X are sets, α, α1, α2, r, s are real numbers,
and i, j, k, m, n are natural numbers.

We now state three propositions:

(1) Let K be a field, M be a square matrix over K of dimension n, and P be
a permutation of Seg n. Then Det(((M ·P )T ·P )T) = DetM and for all i,
j such that 〈〈i, j〉〉 ∈ the indices of M holds ((M · P )T · P )Ti,j = MP (i),P (j).

(2) For every field K and for every diagonal square matrix M over K of
dimension n holds MT = M.
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(3) For every real-valued finite sequence f and for every i such that i ∈ dom f

holds
∑2(f +· (i, r)) = (

∑2f − f(i)2) + r2.

Let us consider X and let F be a function yielding function. We say that F
is X-support-yielding if and only if:

(Def. 1) For every function f and for every x such that f ∈ domF and F (f)(x) 6=
f(x) holds x ∈ X.

Let us consider X. One can check that there exists a function yielding func-
tion which is X-support-yielding.

Let us consider X and let Y be a subset of X. One can check that every func-
tion yielding function which is Y -support-yielding is also X-support-yielding.

Let X, Y be sets. Note that every function yielding function which is X-
support-yielding and Y -support-yielding is also X ∩ Y -support-yielding. Let f
be an X-support-yielding function yielding function and let g be a Y -support-
yielding function yielding function. Note that f · g is X ∪ Y -support-yielding.

Let us consider n. Observe that there exists a function from EnT into EnT which
is homogeneous.

Let us consider n, m. Observe that every function from EnT into EmT is finite
sequence-yielding.

Let us consider n, m and let A be a matrix over RF of dimension n × m.
One can check that Mx2TranA is additive.

Let us consider n and let A be a square matrix over RF of dimension n. Note
that Mx2TranA is homogeneous.

Let us consider n and let f , g be homogeneous functions from EnT into EnT.
Note that f · g is homogeneous.

2. Improper Rotation

In the sequel p, q are points of EnT.
Let us consider n, i. Let us assume that i ∈ Seg n. The axial symmetry of i

and n yields an invertible square matrix over RF of dimension n and is defined
by the conditions (Def. 2).

(Def. 2)(i) (The axial symmetry of i and n)i,i = −1RF , and
(ii) for all k, m such that 〈〈k, m〉〉 ∈ the indices of the axial symmetry of

i and n holds if k = m and k 6= i, then (the axial symmetry of i and
n)k,k = 1RF and if k 6= m, then (the axial symmetry of i and n)k,m = 0RF .

The following propositions are true:

(4) If i ∈ Seg n, then Det (the axial symmetry of i and n) = −1RF .

(5) If i, j ∈ Seg n and i 6= j, then (@p) · (the axial symmetry of i and
n)�,j = p(j).

(6) If i ∈ Seg n, then (@p) · (the axial symmetry of i and n)�,i = −p(i).
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(7) Suppose i ∈ Seg n. Then
(i) the axial symmetry of i and n is diagonal, and
(ii) (the axial symmetry of i and n)` = the axial symmetry of i and n.

(8) If i ∈ Seg n and i 6= j, then (Mx2Tran (the axial symmetry of i and
n))(p)(j) = p(j).

(9) If i ∈ Seg n, then (Mx2Tran (the axial symmetry of i and n))(p)(i) =
−p(i).

(10) If i ∈ Seg n, then (Mx2Tran (the axial symmetry of i and n))(p) =
p+· (i,−p(i)).

(11) If i ∈ Seg n, then Mx2Tran (the axial symmetry of i and n) is {i}-
support-yielding.

(12) For all elements a, b of RF such that a = cos r and b = sin r holds

Det (the 0RF-block diagonal of 〈
(

a b

−b a

)
, In×nRF 〉) = 1RF .

3. Proper Rotation

Let us consider n, α and let us consider i, j. Let us assume that 1 ≤ i < j ≤
n. The functor Rotation(i, j, n, α) yielding an invertible square matrix over RF
of dimension n is defined by the conditions (Def. 3).

(Def. 3)(i) (Rotation(i, j, n, α))i,i = cosα,
(ii) (Rotation(i, j, n, α))j,j = cosα,
(iii) (Rotation(i, j, n, α))i,j = sinα,
(iv) (Rotation(i, j, n, α))j,i = −sinα, and
(v) for all k, m such that 〈〈k, m〉〉 ∈ the indices of Rotation(i, j, n, α) holds

if k = m and k 6= i and k 6= j, then (Rotation(i, j, n, α))k,k = 1RF and if
k 6= m and {k,m} 6= {i, j}, then (Rotation(i, j, n, α))k,m = 0RF .

We now state a number of propositions:

(13) If 1 ≤ i < j ≤ n, then Det Rotation(i, j, n, α) = 1RF .

(14) If 1 ≤ i < j ≤ n and k ∈ Seg n and k 6= i and k 6= j, then (@p) ·
(Rotation(i, j, n, α))�,k = p(k).

(15) If 1 ≤ i < j ≤ n, then (@p) · (Rotation(i, j, n, α))�,i = p(i) · cosα+ p(j) ·
−sinα.

(16) If 1 ≤ i < j ≤ n, then (@p) · (Rotation(i, j, n, α))�,j = p(i) · sinα+ p(j) ·
cosα.

(17) If 1 ≤ i < j ≤ n, then Rotation(i, j, n, α1) · Rotation(i, j, n, α2) =
Rotation(i, j, n, α1 + α2).

(18) If 1 ≤ i < j ≤ n, then Rotation(i, j, n, 0) = In×nRF .

(19) If 1 ≤ i < j ≤ n, then Rotation(i, j, n, α) is orthogonal and
(Rotation(i, j, n, α))` = Rotation(i, j, n,−α).
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(20) If 1 ≤ i < j ≤ n and k 6= i and k 6= j, then
(Mx2Tran Rotation(i, j, n, α))(p)(k) = p(k).

(21) If 1 ≤ i < j ≤ n, then (Mx2Tran Rotation(i, j, n, α))(p)(i) = p(i)·cosα+
p(j) · −sinα.

(22) If 1 ≤ i < j ≤ n, then (Mx2Tran Rotation(i, j, n, α))(p)(j) = p(i)·sinα+
p(j) · cosα.

(23) If 1 ≤ i < j ≤ n, then (Mx2Tran Rotation(i, j, n, α))(p) = (p�(i−′ 1)) a

〈p(i)·cosα+p(j)·−sinα〉a(p�i�(j−′i−′1))a〈p(i)·sinα+p(j)·cosα〉a(p�j).

(24) If 1 ≤ i < j ≤ n and s2 ≤ p(i)2 + p(j)2, then there exists α such that
(Mx2Tran Rotation(i, j, n, α))(p)(i) = s.

(25) If 1 ≤ i < j ≤ n and s2 ≤ p(i)2 + p(j)2, then there exists α such that
(Mx2Tran Rotation(i, j, n, α))(p)(j) = s.

(26) If 1 ≤ i < j ≤ n, then Mx2Tran Rotation(i, j, n, α) is {i, j}-support-
yielding.

4. Length-Preserving Linear Transformations

Let us consider n and let f be a function from EnT into EnT. We say that f is
rotation if and only if:

(Def. 4) |p| = |f(p)|.
One can prove the following proposition

(27) If i ∈ Seg n, then Mx2Tran (the axial symmetry of i and n) is rotation.

Let us consider n and let f be a function from EnT into EnT. We say that f is
base rotation if and only if the condition (Def. 5) is satisfied.

(Def. 5) There exists a finite sequence F of elements of the semigroup of functions
onto the carrier of EnT such that f =

∏
F and for every k such that

k ∈ domF there exist i, j, r such that 1 ≤ i < j ≤ n and F (k) =
Mx2Tran Rotation(i, j, n, r).

Let us consider n. One can check that idEnT is base rotation.
Let us consider n. One can check that there exists a function from EnT into

EnT which is base rotation.
Let us consider n and let f , g be base rotation functions from EnT into EnT.

One can check that f · g is base rotation.
Next we state the proposition

(28) If 1 ≤ i < j ≤ n, then Mx2Tran Rotation(i, j, n, r) is base rotation.

Let us consider n. Observe that every function from EnT into EnT which is base
rotation is also homogeneous, additive, rotation, and homeomorphism.

Let us consider n and let f be a base rotation function from EnT into EnT.
Note that f−1 is base rotation.
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Let us consider n and let f , g be rotation functions from EnT into EnT. One
can check that f · g is rotation.

In the sequel f , f1, f2 are homogeneous additive functions from EnT into EnT.
Let us consider n and let us consider f . The functor AutMt f yields a square

matrix over RF of dimension n and is defined as follows:

(Def. 6) f = Mx2Tran AutMt f.

Next we state several propositions:

(29) AutMt(f1 · f2) = AutMt f2 ·AutMt f1.

(30) Suppose k ∈ X and k ∈ Seg n. Then there exists f such that
(i) f is X-support-yielding and base rotation,

(ii) if X ∩ Seg n > 1, then f(p)(k) ≥ 0, and
(iii) for every i such that i ∈ X ∩ Seg n and i 6= k holds f(p)(i) = 0.

(31) For every subset A of EnT such that f�A = idA holds f�Lin(A) = idLin(A).

(32) Let A be a subset of EnT. Suppose f is rotation and f�A = idA. Let given
i. Suppose i ∈ Seg n and the base finite sequence of n and i ∈ Lin(A).
Then f(p)(i) = p(i).

(33) Let f be a rotation function from EnT into EnT. Suppose f is X-support-
yielding and for every i such that i ∈ X ∩ Seg n holds p(i) = 0. Then
f(p) = p.

(34) If i ∈ Seg n and n ≥ 2, then there exists f such that f is base rotation
and f(p) = p+· (i,−p(i)).

(35) If f is {i}-support-yielding and rotation, then AutMt f = the axial sym-
metry of i and n or AutMt f = In×nRF .

(36) If f1 is rotation, then there exists f2 such that f2 is base rotation and
f2 · f1 is {n}-support-yielding.

5. Rotation Matrix Classification

The following three propositions are true:

(37) If f is rotation, then Det AutMt f = 1RF iff f is base rotation.

(38) If f is rotation, then Det AutMt f = 1RF or Det AutMt f = −1RF .

(39) If f1 is rotation and Det AutMt f1 = −1RF and i ∈ Seg n and AutMt f2 =
the axial symmetry of i and n, then f1 · f2 is base rotation.

Let us consider n and let f be a rotation homogeneous additive function
from EnT into EnT. One can check that AutMt f is orthogonal.

Let us consider n. One can verify that every function from EnT into EnT which
is homogeneous, additive, and rotation is also homeomorphism.
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6. The Rotation Mapping a Given Point to Another Point

One can prove the following propositions:

(40) Suppose n = 1 and |p| = |q|. Then there exists f such that f is rota-
tion and f(p) = q either AutMt f = the axial symmetry of n and n or
AutMt f = In×nRF .

(41) If n 6= 1 and |p| = |q|, then there exists f such that f is base rotation
and f(p) = q.
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