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Summary. We introduce length-preserving linear transformations of Euc-
lidean topological spaces. We also introduce rotation which preserves orientation
(proper rotation) and reverses orientation (improper rotation). We show that
every rotation that preserves orientation can be represented as a composition
of base proper rotations. And finally, we show that every rotation that rever-
ses orientation can be represented as a composition of proper rotations and one
improper rotation.
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The papers [11], [35], [36], [8], [10], [9], [3], [7], [14], [2], [30], [4], [19], [12], [31],
[24], [34], [13], [22], [17], [1], [20], [15], [16], [40], [38], [33], [25], [28], [37], [23], [6],
[39], [18], [21], [32], [5], [26], [29], and [27] provide the terminology and notation
for this paper.

1. PRELIMINARIES

We adopt the following rules: x, X are sets, «, a1, ag, r, s are real numbers,
and 7, j, k, m, n are natural numbers.
We now state three propositions:

(1) Let K be a field, M be a square matrix over K of dimension n, and P be
a permutation of Segn. Then Det(((M - P)T - P)T) = Det M and for all 4,
j such that (i, j) € the indices of M holds ((M - P)* - P){; = Mp;) p(j)-

(2) For every field K and for every diagonal square matrix M over K of
dimension n holds M™* = M.
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(3) For every real-valued finite sequence f and for every i such that i € dom f
holds 3=2(f +- (i,r)) = (X2 — f(i)?) + 2.
Let us consider X and let F' be a function yielding function. We say that F'
is X-support-yielding if and only if:
(Def. 1) For every function f and for every x such that f € dom F and F'(f)(x) #
f(z) holds =z € X.

Let us consider X. One can check that there exists a function yielding func-
tion which is X-support-yielding.

Let us consider X and let Y be a subset of X. One can check that every func-
tion yielding function which is Y-support-yielding is also X-support-yielding.

Let X, Y be sets. Note that every function yielding function which is X-
support-yielding and Y-support-yielding is also X N Y-support-yielding. Let f
be an X-support-yielding function yielding function and let g be a Y-support-
yielding function yielding function. Note that f - ¢ is X U Y-support-yielding.

Let us consider n. Observe that there exists a function from £} into £F which
is homogeneous.

Let us consider n, m. Observe that every function from £F into £F' is finite
sequence-yielding.

Let us consider n, m and let A be a matrix over Ry of dimension n x m.
One can check that Mx2Tran A is additive.

Let us consider n and let A be a square matrix over Rp of dimension n. Note
that Mx2Tran A is homogeneous.

Let us consider n and let f, g be homogeneous functions from E% into EF.
Note that f - g is homogeneous.

2. IMPROPER ROTATION

In the sequel p, ¢ are points of £F.

Let us consider n, i. Let us assume that ¢ € Segn. The axial symmetry of ¢
and n yields an invertible square matrix over Rg of dimension n and is defined
by the conditions (Def. 2).

(Def. 2)(i)  (The axial symmetry of ¢ and n);; = —1g,, and
(ii)  for all k, m such that (k, m) € the indices of the axial symmetry of
i and n holds if kK = m and k # 4, then (the axial symmetry of i and
n)ik = lrp and if £ # m, then (the axial symmetry of ¢ and n)g », = Ory.

The following propositions are true:

(4) If i € Segn, then Det (the axial symmetry of ¢ and n) = —1g,.

(5) If i, j € Segn and i # j, then (®p) - (the axial symmetry of i and
n)o; = p(Jj)-

(6) Ifi € Segn, then (®p) - (the axial symmetry of i and n)g,; = —p(i).
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(7) Suppose i € Segn. Then
(i)  the axial symmetry of i and n is diagonal, and
(ii)  (the axial symmetry of ¢ and n)~ = the axial symmetry of ¢ and n.
(8) If i € Segn and i # j, then (Mx2Tran (the axial symmetry of i and
n))(p)(7) = p(j)-
(9) If i € Segn, then (Mx2Tran (the axial symmetry of ¢ and n))(p)(i) =

—p(i).
(10) If i € Segn, then (Mx2Tran (the axial symmetry of i and n))(p) =

(11) If i € Segn, then Mx2Tran (the axial symmetry of i and n) is {i}-
support-yielding.
(12) For all elements a, b of Rp such that a = cosr and b = sinr holds

Det (the Or,-block diagonal of << —ab Z > ™) = g,

3. PROPER ROTATION

Let us consider n, o and let us consider ¢, j. Let us assume that 1 <7 < j <
n. The functor Rotation(i, j, n, ) yielding an invertible square matrix over Rp
of dimension n is defined by the conditions (Def. 3).
(Def. 3)i) (Rotation(s, j,n,))i; = cosc,
(ii)  (Rotation(i,j,n,®));; = cosa,
(i)  (Rotation(i, j,n, ));; = sincy,
(iv)  (Rotation(i, j,n,a));; = —sinc, and
(v)  for all k, m such that (k, m) € the indices of Rotation(s, j,n, ) holds
if k =m and k # i and k # j, then (Rotation(s, j,n, ®))rr = 1, and if
k # m and {k,m} # {i, j}, then (Rotation(s, j,n, @))km = Or-
We now state a number of propositions:
(13) If 1 <i< j <mn, then Det Rotation(s, j,n,a) = 1g,.
(14) If1 <i < j <nandk € Segn and k # i and k # j, then (9p) -
(Rotation(i, j, n, o))g i = p(k).
(15) If1<i<j<nmn,then (®p)- (Rotation(i,j,n,a))n; = p(i) - cos a+ p(j) -
—sin a.
(16) If1<i< j<n,then (®p)- (Rotation(i,j,n,a))q,; = p(i) -sina + p(j) -
COS Q.
(17) If 1 < i < j < n, then Rotation(i,j,n,a;) - Rotation(s, j,n,as) =
Rotation(i, j, n, a1 + ag).
(18) 1If 1 <i < j < n, then Rotation(s, j,n,0) = I[EFX“.
(19) If 1 < i < j < n, then Rotation(i,j,n,a) is orthogonal and
(Rotation(i, j,n, o))~ = Rotation(, j, n, —«).
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(20) If1<i<j<nandk+#iandk # j, then
(Mx2Tran Rotation(i, j,n, a))(p) (k) = p(k).

(21) If1 <i < j < n,then (Mx2Tran Rotation(i, j,n, a))(p)(¢) = p(i)-cos a+
p(j) - —sina.

(22) If1 <i< j <mn,then (Mx2Tran Rotation(i, j,n,«))(p)(j) = p(i)-sin a+
p(j) - cosa.

(23) If1<i<j<mn,then (Mx2Tran Rotation(i,j,n,«))(p) = (pl(i =" 1)) °
(p(i)-cos a+p(j)-—sin )~ (p1i[(j="i="1)) " (p(i) -sin a+p(j)-cos @)~ (p|;)-

(24) If1<i<j<nands?<p(i)?+p(j)?, then there exists o such that
(Mx2Tran Rotation(i, 7, n, «))(p)(i) = s.

(25) If1 <i<j<nands?<p(i)?+p(j)? then there exists a such that
(Mx2Tran Rotation(i, j,n, «))(p)(j) = s.

(26) If 1 < i < j < n, then Mx2Tran Rotation(i, j,n,a) is {4, j}-support-
yielding.

4. LENGTH-PRESERVING LINEAR TRANSFORMATIONS

Let us consider n and let f be a function from &% into £F. We say that f is
rotation if and only if:

(Def. 4)  |p| = |f(p)]-
One can prove the following proposition

(27) If i € Segn, then Mx2Tran (the axial symmetry of i and n) is rotation.

Let us consider n and let f be a function from &% into £F. We say that f is
base rotation if and only if the condition (Def. 5) is satisfied.
(Def. 5) There exists a finite sequence F' of elements of the semigroup of functions
onto the carrier of £F such that f = [[F and for every k such that
k € dom F there exist i, j, r such that 1 < ¢ < j < n and F(k) =
Mx2Tran Rotation(s, j, n, r).
Let us consider n. One can check that idg% is base rotation.
Let us consider n. One can check that there exists a function from £} into
ET which is base rotation.
Let us consider n and let f, g be base rotation functions from &} into &F.
One can check that f - g is base rotation.
Next we state the proposition
(28) If 1 <i < j < n, then Mx2Tran Rotation(i, j,n,r) is base rotation.
Let us consider n. Observe that every function from £} into £F which is base
rotation is also homogeneous, additive, rotation, and homeomorphism.

Let us consider n and let f be a base rotation function from &% into &F.
Note that f~! is base rotation.
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Let us consider n and let f, g be rotation functions from £} into £F. One
can check that f - g is rotation.
In the sequel f, fi, fo are homogeneous additive functions from &% into EF.
Let us consider n and let us consider f. The functor AutMt f yields a square
matrix over Rp of dimension n and is defined as follows:
(Def. 6) f = Mx2Tran AutMt f.
Next we state several propositions:
(29) AutMt(f1 . f2) = AutMt fo - AutMt fi.
(30) Suppose k € X and k € Segn. Then there exists f such that
(i)  f is X-support-yielding and base rotation,
(ii) if X NSegn > 1, then f(p)(k) > 0, and
(ili)  for every ¢ such that i € X NSegn and i # k holds f(p)(:) = 0.
(31) For every subset A of &F such that f[A =ida holds f[Lin(A) = idp(a)-
(32) Let A be a subset of £F. Suppose f is rotation and f[A =id4. Let given
i. Suppose i € Segn and the base finite sequence of n and i € Lin(A).
Then f(p)(i) = p(i)-
(33) Let f be a rotation function from &£ into £F. Suppose f is X-support-
yielding and for every i such that i € X N Segn holds p(i) = 0. Then

fp) =p

(34) If i € Segn and n > 2, then there exists f such that f is base rotation
and f(p) =p+ (i, —p(i)).

(35) If f is {i}-support-yielding and rotation, then AutMt f = the axial sym-
metry of i and n or AutMt f = Ig*".

(36) If fy is rotation, then there exists fo such that fy is base rotation and
fa - f1 is {n}-support-yielding.

5. ROTATION MATRIX CLASSIFICATION

The following three propositions are true:
(37) If f is rotation, then Det AutMt f = 1g, iff f is base rotation.
(38) If f is rotation, then Det AutMt f = 1g, or Det AutMt f = —1g,.
(39) If f; is rotation and Det AutMt f; = —1r, and i € Segn and AutMt fo =
the axial symmetry of ¢ and n, then f; - fs is base rotation.

Let us consider n and let f be a rotation homogeneous additive function
from £F into £F. One can check that AutMt f is orthogonal.

Let us consider n. One can verify that every function from £F into £ which
is homogeneous, additive, and rotation is also homeomorphism.
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6. THE ROTATION MAPPING A GIVEN POINT TO ANOTHER POINT

One can prove the following propositions:

(40) Suppose n = 1 and |p| = |q|. Then there exists f such that f is rota-

tion and f(p) = ¢ either AutMt f = the axial symmetry of n and n or
AutMt f = Ip~".

(41) If n # 1 and |p| = |q|, then there exists f such that f is base rotation
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and f(p) = .
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