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Summary. In the article we introduce a valuation function over a field [1].

Ring of non negative elements and its ideal of positive elements have been also
defined.
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papers: [11], [19], [4], [15], [20], [8], [21], [10], [9], [16], [3], [5], [7]. (18], [17], [13],
[14], [6], [2], and [12].

1. EXTENDED REALS

We use the following convention: z, ¥, z, s are extended real numbers, ¢ is
an integer, and n, m are natural numbers.
The following propositions are true:
(1) If z = —=x, then z = 0.
(2) Ifx+x=0,then z=0.
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fo<z<yand0<s<z thenz-s<y-z.
Ify;é—i—ooand0<xand0<y,then0<%.
Ify;é+ooandx<0<y,then%<0.

Ify;é—ooand0<a:andy<0,then§<O.
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Ifw,yGRorzER,then%ﬂ’:§+%.
Ify7é+ooandy7é—ooandy7é0,then%-y:x.
9 Ify;é—ooandy;«é—i—ooandx;éOandy;éO,then%#().

Let = be a number. We say that x is extended integer if and only if:
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(Def. 1) =z is integer or z = 400.
Let us mention that every number which is extended integer is also extended
real.
One can verify the following observations:
* 400 is extended integer,
% —o00 is non extended integer,
* 1 is extended integer, positive, and real,
* every number which is integer is also extended integer, and
* every number which is real and extended integer is also integer.
Let us observe that there exists an element of R which is real, extended inte-
ger, and positive and there exists an extended integer number which is positive.
An extended integer is an extended integer number.
In the sequel z, y, v denote extended integers.
One can prove the following propositions:
(10) Ifzx <y, thenz+1<y.
(11) —oo < z.
Let X be an extended real-membered set. Let us assume that there exists
a positive extended integer i¢ such that ¢g € X. The functor least-positive X
yielding a positive extended integer is defined by:
(Def. 2) least-positive X € X and for every positive extended integer i such that
i € X holds least-positive X < 1.
Let f be a binary relation. We say that f is extended integer valued if and
only if:
(Def. 3) For every set x such that = € rng f holds z is extended integer.
Let us note that there exists a function which is extended integer valued.
Let A be a set. Note that there exists a function from A into R which is
extended integer valued.
Let f be an extended integer valued function and let x be a set. Note that
f(z) is extended integer.
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2. STRUCTURES

One can prove the following proposition

(12) Let K be a distributive left unital add-associative right zeroed right
complementable non empty double loop structure. Then —1x-—1x = 1.

Let K be a non empty double loop structure, let S be a subset of K, and
let n be a natural number. The functor S™ yielding a subset of K is defined by:
(Def. 4)(i) S™ = the carrier of K if n =0,
(ii)  there exists a finite sequence f of elements of 2the carrier of K gyichy that
S™ = f(len f) and len f = n and f(1) = S and for every natural number
i such that 4, i + 1 € dom f holds f(i + 1) = S * f;, otherwise.
In the sequel A denotes a subset of D. The following propositions are true:
(13) Al = A.
(14) A?=AxA.
Let R be a ring, let S be an ideal of R, and let n be a natural number.
Observe that S™ is non empty, add closed, left ideal, and right ideal.
Let G be a non empty double loop structure, let g be an element of G, and
let i be an integer. The functor ¢ yielding an element of G is defined as follows:

(Def. 5) ¢_{

Let G be a non empty double loop structure, let g be an element of G, and

powerq(g, |i]), if 0 <4,
powerg(g, |i]) 7!, otherwise.

let n be a natural number. Then g™ can be characterized by the condition:
(Def. 6) g¢™ = powerg(g,n).

In the sequel K is a field-like non degenerated associative add-associative
right zeroed right complementable distributive Abelian non empty double loop
structure and a, b, ¢ are elements of K. We now state two propositions:

(15) a™™™ =qa"-a™.

(16) If a # Ok, then a’ # O

3. VALUATION

Let K be a double loop structure. We say that K has a valuation if and only
if the condition (Def. 7) is satisfied.

(Def. 7) There exists an extended integer valued function f from K into R such
that
) for every element a of K such that a # O holds f(a) € Z,
(iii)  for all elements a, b of K holds f(a-b) = f(a) + f(b),
) for every element a of K such that 0 < f(a) holds 0 < f(1x + a), and
) there exists an element a of K such that f(a) # 0 and f(a) # +oc.
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Let K be a double loop structure. Let us assume that K has a valuation.
An extended integer valued function from K into R is said to be a valuation of
K if it satisfies the conditions (Def. 8).
(Def. 8)(i) It(0x) = o0,

(ii) for every element a of K such that a # Ok holds it(a) € Z,

(iii)  for all elements a, b of K holds it(a - b) = it(a) + it(b),

(iv)  for every element a of K such that 0 < it(a) holds 0 < it(1x + a), and

(v)  there exists an element a of K such that it(a) # 0 and it(a) # +oo.

In the sequel v denotes a valuation of K.
One can prove the following propositions:

If K has a valuation, then v(1g) = 0.

If K has a valuation and a # O, then v(a) # +oo.

If K has a valuation, then v(—1g) = 0.

If K has a valuation, then v(—a) = v(a).

If K has a valuation and a # O, then v(a™!) = —v(a).

If K has a valuation and b # Oy, then v(§) = v(a) — v(b).

If K has a valuation and a # Ox and b # O, then v(}) = —v(g).
If K has a valuation and b # Ox and 0 < v(%), then v(b) < v(a).

If K has a valuation and a # Ox and b # Ox and v(7) < 0, then
0 <w(2).
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26) If K has a valuation and b # Ox and v(§) < 0, then v(a) < v(b).
27) If K has a valuation, then min(v(a),v(b)) < v(a + b).

28) If K has a valuation and v(a) < v(b), then v(a) = v(a + b).

29) If K has a valuation and a # Ok, then v(a’) =i - v(a).

w
(=)

If K has a valuation and 0 < v(1x + a), then 0 < v(a).
If K has a valuation and 0 < v(1x — a), then 0 < v(a).
If K has a valuation and a # Ox and v(a) < v(b), then 0 < v(%).

If K has a valuation, then 400 € rngwv.

W W w
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If v(a) = 1, then least-positiverngv = 1.

w
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If K has a valuation, then least-positiverng v is integer.
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If K has a valuation, then for every element x of K such that z # Ox
there exists an integer ¢ such that v(x) = i - least-positive rng v.

Let us consider K, v. Let us assume that K has a valuation. The functor
Pgenerator v yielding an element of K is defined as follows:

(Def. 9) Pgenerator v = the element of v~!({least-positiverng v}).

Let us consider K, v. Let us assume that K has a valuation. The functor
normal-valuation v yields a valuation of K and is defined by:

(Def. 10) wv(a) = (normal-valuationv)(a) - least-positive rng v.
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We now state a number of propositions:
(37) If K has a valuation, then v(a) = 0 iff (normal-valuationv)(a) = 0.
(38) If K has a valuation, then v(a) = +oo0 iff (normal-valuation v)(a) = +oc.

(39) If K has a valuation, then v(a) = v(b) iff (normal-valuationv)(a) =
(normal-valuation v)(b).

(40) If K has a valuation, then v(a) is positive iff (normal-valuationv)(a) is
positive.

(41) If K has a valuation, then 0 < v(a) iff 0 < (normal-valuation v)(a).

(42) If K has a valuation, then v(a) is non negative iff (normal-valuation v)(a)

is non negative.
(43) If K has a valuation, then (normal-valuation v)(Pgenerator v) = 1.
(44) If K has a valuation and 0 < v(a), then (normal-valuationv)(a) < v(a).
(45
(

46

)
)
) If K has a valuation and v(a) = 1, then normal-valuationv = v.

) If K has a valuation, then normal-valuation(normal-valuationv) =
normal-valuation v.

4. VALUATION RING

Let K be a non empty double loop structure and let v be a valuation of K.
The functor NonNegElements v is defined as follows:

(Def. 11) NonNegElementsv = {z € K: 0 < v(x)}.
The following four propositions are true:
(47) Let K be a non empty double loop structure, v be a valuation of K, and
a be an element of K. Then a € NonNegElements v if and only if 0 < v(a).
(48) For every non empty double loop structure K and for every valuation v
of K holds NonNegElementsv C the carrier of K.

(49) For every non empty double loop structure K and for every valuation v
of K such that K has a valuation holds 0 € NonNegElements v.

(50) If K has a valuation, then 1x € NonNegElementsv.

Let us consider K, v. Let us assume that K has a valuation. The functor
ValuatRing v yields a strict commutative non degenerated ring and is defined
by the conditions (Def. 12).
(Def. 12)(i)  The carrier of ValuatRing v = NonNegElements v,
(ii)  the addition of ValuatRing v = (the addition of K)[(NonNegElements v x
NonNegElements v),
(iii) the multiplication of ValuatRingv = (the multiplication of
K)[(NonNegElements v x NonNegElements v),
(iv)  the zero of ValuatRingv = O, and
(v)  the one of ValuatRingv = 1.
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The following propositions are true:

(51) If K has a valuation, then every element of ValuatRingv is an element
of K.

(52) If K has a valuation, then 0 < v(a) iff a is an element of ValuatRingv.

(53) If K has a valuation, then for every subset S of ValuatRingv holds 0 is
a lower bound of v°S.

(54) Suppose K has a valuation. Let x, y be elements of K and z1, y; be
elements of ValuatRingv. If x = z; and y = y1, then x +y = 21 + y1.

(55) Suppose K has a valuation. Let x, y be elements of K and x1, y; be
elements of ValuatRingv. If x = z; and y = y1, then -y = x1 - y1.

(56) If K has a valuation, then OvaluatRingv = Ok -
(67) If K has a valuation, then lvaluatRingv = 1K -

(58) If K has a valuation, then for every element x of K and for every element
y of ValuatRing v such that x = y holds —x = —y.

(59) If K has a valuation, then ValuatRing v is integral domain-like.
(60) If K has a valuation, then for every element y of ValuatRingwv holds
powerK(y, n) = powerValuatRingv(ya TL)

Let us consider K, v. Let us assume that K has a valuation. The functor
PosElements v yields an ideal of ValuatRingv and is defined as follows:

(Def. 13) PosElementsv = {z € K: 0 < v(z)}.
Let us consider K, v. We introduce vpv as a synonym of PosElements v.
Next we state three propositions:
(61) If K has a valuation, then a € vpuv iff 0 < v(a).
(62) If K has a valuation, then Ox € vpo.
(63) If K has a valuation, then 1x ¢ vpo.
Let us consider K, v and let .S be a non empty subset of K. Let us assume

that K has a valuation and S is a subset of ValuatRing v. The functor min(S, v)
yielding a subset of ValuatRing v is defined as follows:

(Def. 14) min(S,v) = v~ ({inf(v°9)}) N S.
The following four propositions are true:

(64) For every non empty subset S of K such that K has a valuation and S
is a subset of ValuatRingv holds min(S,v) C S.

(65) Let S be a non empty subset of K. Suppose K has a valuation and S is
a subset of ValuatRingv. Let = be an element of K. Then z € min(S,v)
if and only if the following conditions are satisfied:

(i) ze€S, and
(ii)  for every element y of K such that y € S holds v(z) < v(y).
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(66) Suppose K has a valuation. Let I be a non empty subset of K and x be an
element of ValuatRing v. If I is an ideal of ValuatRing v and x € min(I,v),
then I = {x}-ideal.

(67) For every non empty double loop structure R holds every add closed non
empty subset of R is a set closed w.r.t. the addition of R.

Let R be aring and let P be a right ideal of R. A submodule of RightMod(R)
is called a submodule of P if:
(Def. 15) The carrier of it = P.
Let R be a ring and let P be a right ideal of R. Note that there exists a
submodule of P which is strict. Next we state the proposition

(68) Let R be a ring, P be an ideal of R, M be a submodule of P, a be a
binary operation on P, z be an element of P, and m be a function from
P x the carrier of R into P. Suppose a = (the addition of R)[(P x P) and
m = (the multiplication of R)[(P x the carrier of R) and z = the zero of
R. Then the right module structure of M = (P, a, z, m).
Let R be a ring, let My, M> be right modules over R, and let h be a function
from M into Ms. We say that h is scalar linear if and only if:
(Def. 16) For every element x of M; and for every element r of R holds h(z-r) =
h(z) - r.
Let R be a ring, let M; be a right module over R, and let M2 be a submodule
of M;. Observe that incl(My, M) is additive and scalar linear.
Next we state a number of propositions:
(69) If K has a valuation and b is an element of ValuatRing v, then v(a) <
v(a) +v(b).
(70) If K has a valuation and a is an element of ValuatRingwv, then
power g (a,n) is an element of ValuatRing v.
(71) If K has a valuation, then for every element x of ValuatRing v such that
x # O holds powery (z,n) # Ok.
(72) If K has a valuation and v(a) = 0, then a is an element of ValuatRing v
and ¢! is an element of ValuatRingv.

(73) If K has a valuation and a # Ox and a is an element of ValuatRingv
and a~! is an element of ValuatRing v, then v(a) = 0.

(74) If K has a valuation and v(a) = 0, then for every ideal I of ValuatRing v
holds a € I iff I = the carrier of ValuatRing v.

(75) 1If K has a valuation, then Pgenerator v is an element of ValuatRingv.

(76) If K has a valuation, then vpv is proper.

(77) If K has a valuation, then for every element x of ValuatRing v such that
x ¢ vpv holds v(x) = 0.

(78) If K has a valuation, then vpv is prime.
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(79) If K has a valuation, then for every proper ideal I of ValuatRing v holds
I Cvpo.
(80) If K has a valuation, then vpv is maximal.

(81) If K has a valuation, then for every maximal ideal I of ValuatRingv
holds I = vpw.

(82) If K has a valuation, then NonNegElementsnormal-valuationv =
NonNegElements v.

(83) If K has a valuation, then ValuatRingnormal-valuationv =
ValuatRing v.
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