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Summary. The article formalizes the Cayley’s theorem saying that every
group G is isomorphic to a subgroup of the symmetric group on G.
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The notation and terminology used in this paper have been introduced in the
following papers: [3], [6], [4], [5], [10], [11], [7], [2], [1], [9], and [8].

In this paper X, Y denote sets, G denotes a group, and n denotes a natural
number.

Let us consider X. Note that ∅X,∅ is onto.
Let us observe that every set which is permutational is also functional.
Let us consider X. The functor permutationsX is defined as follows:

(Def. 1) permutationsX = {f : f ranges over permutations of X}.
Next we state three propositions:

(1) For every set f such that f ∈ permutationsX holds f is a permutation
of X.

(2) permutationsX ⊆ XX .

(3) permutations Seg n = the permutations of n.

Let us consider X. One can verify that permutationsX is non empty and
functional.

Let X be a finite set. One can verify that permutationsX is finite.
Next we state the proposition

(4) permutations ∅ = 1.

Let us consider X. The functor SymGroupX yields a strict constituted func-
tions multiplicative magma and is defined by:
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(Def. 2) The carrier of SymGroupX = permutationsX and for all elements x, y
of SymGroupX holds x · y = (y qua function) ·x.

One can prove the following proposition

(5) Every element of SymGroupX is a permutation of X.

Let us consider X. Note that SymGroupX is non empty, associative, and
group-like.

The following propositions are true:

(6) 1SymGroupX = idX .

(7) For every element x of SymGroupX holds x−1 = (x qua function) −1.

Let us consider n. One can verify that An is constituted functions.
One can prove the following proposition

(8) SymGroup Seg n = An.

Let X be a finite set. Observe that SymGroupX is finite.
We now state the proposition

(9) SymGroup ∅ = Trivial-multMagma .

Let us note that SymGroup ∅ is trivial.
Let us consider X, Y and let p be a function from X into Y . Let us assume

that X 6= ∅ and Y 6= ∅ and p is bijective. The functor SymGroupsIso p yielding
a function from SymGroupX into SymGroupY is defined by:

(Def. 3) For every element x of SymGroupX holds (SymGroupsIso p)(x) = p ·x ·
p−1.

We now state four propositions:

(10) For all non empty sets X, Y and for every function p from X into Y

such that p is bijective holds SymGroupsIso p is multiplicative.

(11) For all non empty sets X, Y and for every function p from X into Y

such that p is bijective holds SymGroupsIso p is one-to-one.

(12) For all non empty sets X, Y and for every function p from X into Y

such that p is bijective holds SymGroupsIso p is onto.

(13) If X ≈ Y, then SymGroupX and SymGroupY are isomorphic.

Let us consider G. The functor CayleyIsoG yields a function from G into
SymGroup (the carrier of G) and is defined as follows:

(Def. 4) For every element g of G holds (CayleyIsoG)(g) = ·g.
Let us consider G. One can verify that CayleyIsoG is multiplicative.
Let us consider G. One can verify that CayleyIsoG is one-to-one.
One can prove the following proposition

(14) G and Im CayleyIsoG are isomorphic.
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