
FORMALIZED MATHEMATICS

Vol. 19, No. 3, Pages 205–222, 2011

Sequent Calculus, Derivability, Provability.
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Summary. Fifth of a series of articles laying down the bases for classical
first order model theory. This paper presents multiple themes: first it introduces
sequents, rules and sets of rules for a first order language L as L-dependent types.
Then defines derivability and provability according to a set of rules, and gives
several technical lemmas binding all those concepts. Following that, it introduces
a fixed set D of derivation rules, and proceeds to convert them to Mizar functorial
cluster registrations to give the user a slick interface to apply them.

The remaining goals summon all the definitions and results introduced in
this series of articles. First: D is shown to be correct and having the requisites
to deliver a sensible definition of Henkin model (see [18]). Second: as a particu-
lar application of all the machinery built thus far, the satisfiability and Gödel
completeness theorems are shown when restricting to countable languages. The
techniques used to attain this are inspired from [18], then heavily modified with
the twofold goal of embedding them into the more flexible framework of a varia-
ble ruleset here introduced, and of proving completeness of a set of rules more
sparing than the one there used; in particular the simpler ruleset allowed to avo-
id the definition and tractation of free occurence of a literal, a fact which, along
with shortening proofs, is remarkable in its own right. A preparatory account of
some of the ideas used in the proofs given here can be found in [15].
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1. Formalization of the Notion of Derivability and Provability.
Henkin’s Theorem for Arbitrary Languages

For simplicity, we adopt the following convention: k, m, n denote natural
numbers, m1 denotes an element of N, U denotes a non empty set, A, B, X,
Y , Z, x, y, z denote sets, S denotes a language, s denotes an element of S, f ,
g denote functions, p1, p2, p3, p4 denote w.f.f. strings of S, P1, P2, P3 denote
subsets of AllFormulasOf S, t, t1, t2 denote termal strings of S, a denotes an
of-atomic-formula element of S, l, l1, l2 denote literal elements of S, p denotes
a finite sequence, and m2 denotes a non zero natural number.

Let S be a language. The functor S-sequents is defined as follows:

(Def. 1) S-sequents = {〈〈p5, c1〉〉; p5 ranges over subsets of AllFormulasOf S, c1

ranges over w.f.f. strings of S: p5 is finite}.
Let S be a language. Note that S-sequents is non empty.
Let us consider S. Observe that S-sequents is relation-like.
Let S be a language and let x be a set. We say that x is S-sequent-like if

and only if:

(Def. 2) x ∈ S-sequents .

Let us consider S, X. We say that X is S-sequents-like if and only if:

(Def. 3) X ⊆ S-sequents .

Let us consider S. One can check that every subset of S-sequents is S-
sequents-like and every element of S-sequents is S-sequent-like.

Let S be a language. One can verify that there exists an element of
S-sequents which is S-sequent-like and there exists a subset of S-sequents which
is S-sequents-like.

Let us consider S. One can check that there exists a set which is S-sequent-
like and there exists a set which is S-sequents-like.

Let S be a language. A rule of S is an element of (2S-sequents)2S-sequents .
Let S be a language. A rule set of S is a subset of (2S-sequents)2S-sequents .
For simplicity, we adopt the following rules: D, D1, D2, D3 denote rule sets

of S, R denotes a rule of S, S1, S2, S3 denote subsets of S-sequents, s1, s2, s3

denote elements of S-sequents, S4, S5 denote S-sequents-like sets, and S6, S7

denote S-sequent-like sets.
Let us consider A, B and let X be a subset of BA. One can check that

⋃
X

is relation-like.
Let S be a language and let D be a rule set of S. One can check that

⋃
D

is relation-like.
Let us consider S, D. The functor OneStepD yielding a rule of S is defined

as follows:

(Def. 4) For every element S8 of 2S-sequents holds (OneStepD)(S8) =⋃
((
⋃
D)◦{S8}).
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Let us consider S, D, m. The functor (m,D)-derivables yields a rule of S
and is defined by:

(Def. 5) (m,D)-derivables = (OneStepD)m.

Let S be a language, let D be a rule set of S, and let S9, S10 be sets. We
say that S10 is (S9, D)-derivable if and only if:

(Def. 6) S10 ⊆
⋃

(((OneStepD)∗)◦{S9}).
Let us consider m, S, D and let S1, s1 be sets. We say that s1 is (m,S1, D)-

derivable if and only if:

(Def. 7) s1 ∈ (m,D)-derivables(S1).

Let us consider S, D. The functor D -iterators yielding a family of subsets
of 2S-sequents × 2S-sequents is defined as follows:

(Def. 8) D -iterators = {(OneStepD)m1}.
Let us consider S, R. We say that R is isotone if and only if:

(Def. 9) If S2 ⊆ S3, then R(S2) ⊆ R(S3).

Let us consider S. Observe that there exists a rule of S which is isotone.
Let us consider S, D. We say that D is isotone if and only if:

(Def. 10) For all S2, S3, f such that S2 ⊆ S3 and f ∈ D there exists g such that
g ∈ D and f(S2) ⊆ g(S3).

Let us consider S and let M be an isotone rule of S. One can verify that
{M} is isotone.

Let us consider S. One can verify that there exists a rule set of S which is
isotone.

In the sequel K, K1 are isotone rule sets of S.
Let S be a language, let D be a rule set of S, and let S1 be a set. We say

that S1 is D-derivable if and only if:

(Def. 11) S1 is (∅, D)-derivable.

Let us consider S, D. One can verify that every set which is D-derivable is
also (∅, D)-derivable and every set which is (∅, D)-derivable is also D-derivable.

Let us consider S, D and let S1 be an empty set. One can verify that every
set which is (S1, D)-derivable is also D-derivable.

Let us consider S, D, X and let p2 be a set. We say that p2 is (X,D)-provable
if and only if:

(Def. 12) {〈〈X, p2〉〉} is D-derivable or there exists a set s1 such that (s1)1 ⊆ X

and (s1)2 = p2 and {s1} is D-derivable.

Let us consider S, D, X, x. Let us observe that x is (X,D)-provable if and
only if:

(Def. 13) There exists a set s1 such that (s1)1 ⊆ X and (s1)2 = x and {s1} is
D-derivable.

Let us consider S, D, R. We say that R is D-macro if and only if:
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(Def. 14) For every subset S8 of S-sequents holds R(S8) is (S8, D)-derivable.

Let us consider S, D and let P1 be a set. The functor (P1, D) -termEq is
defined as follows:

(Def. 15) (P1, D) -termEq = {〈〈t1, t2〉〉; t1 ranges over termal strings of S, t2 ranges
over termal strings of S: 〈TheEqSymbOf S〉 a t1 a t2 is (P1, D)-provable}.

Let us consider S, D and let P1 be a set. We say that P1 is D-expanded if
and only if:

(Def. 16) If x is (P1, D)-provable, then {x} ⊆ P1.

Let us consider S, x. We say that x is S-null if and only if:

(Def. 17) Not contradiction.

Let us consider S, D and let P1 be a set. Then (P1, D) -termEq is a binary
relation on AllTermsOf S.

Let us consider S, p2 and let P2, P3 be finite subsets of AllFormulasOf S.
One can check that 〈〈P2 ∪ P3, p2〉〉 is S-sequent-like.

Let us consider S, let x be an empty set, and let p2 be a w.f.f. string of S.
Then 〈〈x, p2〉〉 is an element of S-sequents.

Let us consider S. Note that ∅ ∩ S is S-sequents-like.
Let us consider S. One can verify that there exists a set which is S-null.
Let us consider S. One can check that every set which is S-sequent-like is

also S-null.
Let us consider S. One can check that every element of S-sequents is S-null.
Let us consider m, S, D, X. One can verify that (m,D)-derivables(X) is

S-sequents-like.
Let us consider S, Y and let X be an S-sequents-like set. One can verify

that X ∩ Y is S-sequents-like.
Let us consider S, D, m, X. Note that every set which is (m,X,D)-derivable

is also S-sequent-like.
Let us consider S, D and let P2, P3 be sets. Observe that every set which is

(P2 \ P3, D)-provable is also (P2, D)-provable.
Let us consider S, D and let P2, P3 be sets. Observe that every set which is

(P2 \ P3, D)-provable is also (P2 ∪ P3, D)-provable.
Let us consider S, D and let P2, P3 be sets. Observe that every set which is

(P2 ∩ P3, D)-provable is also (P2, D)-provable.
Let us consider S, D, let X be a set, and let x be a subset of X. Note that

every set which is (x,D)-provable is also (X,D)-provable.
Let us consider S, let p5 be a finite subset of AllFormulasOf S, and let p2 be

a w.f.f. string of S. One can check that 〈〈p5, p2〉〉 is S-sequent-like.
Let us consider S and let p3, p4 be w.f.f. strings of S. Observe that 〈〈{p3},

p4〉〉 is S-sequent-like. Let p6 be a w.f.f. string of S. Note that 〈〈{p3, p4}, p6〉〉 is
S-sequent-like.
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Let us consider S, p3, p4 and let P1 be a finite subset of AllFormulasOf S.
One can verify that 〈〈P1 ∪ {p3}, p4〉〉 is S-sequent-like.

Let us consider S, D. Note that there exists a subset of AllFormulasOf S
which is D-expanded.

Let us consider S, D. Observe that there exists a set which is D-expanded.
Let S1 be a set, let S be a language, and let s1 be an S-null set. We say that

s1 rule 0 S1 if and only if:

(Def. 18) (s1)2 ∈ (s1)1.

We say that s1 rule 1 S1 if and only if:

(Def. 19) There exists a set y such that y ∈ S1 and y1 ⊆ (s1)1 and (s1)2 = y2.

We say that s1 rule 2 S1 if and only if:

(Def. 20) (s1)1 is empty and there exists a termal string t of S such that (s1)2 =
〈TheEqSymbOf S〉 a t a t.

We say that s1 rule 3a S1 if and only if the condition (Def. 21) is satisfied.

(Def. 21) There exist termal strings t, t1, t2 of S and there exists a set x such
that x ∈ S1 and (s1)1 = x1 ∪ {〈TheEqSymbOf S〉 a t1 a t2} and x2 =
〈TheEqSymbOf S〉 a t a t1 and (s1)2 = 〈TheEqSymbOf S〉 a t a t2.

We say that s1 rule 3b S1 if and only if:

(Def. 22) There exist termal strings t1, t2 of S such that (s1)1 =
{〈TheEqSymbOf S〉 a t1 a t2} and (s1)2 = 〈TheEqSymbOf S〉 a t2 a t1.

We say that s1 rule 3d S1 if and only if the condition (Def. 23) is satisfied.

(Def. 23) There exists a low-compounding element s of S and there exist |ar s|-
element elements T , U of (AllTermsOf S)∗ such that

(i) s is operational,
(ii) (s1)1 = {〈TheEqSymbOf S〉 a T1(j) a U1(j); j ranges over elements of

Seg|ar s|, T1 ranges over functions from Seg|ar s| into (AllSymbolsOf S)∗ \
{∅}, U1 ranges over functions from Seg|ar s| into (AllSymbolsOf S)∗ \{∅} :
T1 = T ∧ U1 = U}, and

(iii) (s1)2 = 〈TheEqSymbOf S〉 a (s-compoundT ) a (s-compoundU).

We say that s1 rule 3e S1 if and only if the condition (Def. 24) is satisfied.

(Def. 24) There exists a relational element s of S and there exist |ar s|-element
elements T , U of (AllTermsOf S)∗ such that

(i) (s1)1 = {s-compoundT} ∪ {〈TheEqSymbOf S〉 a T1(j) a U1(j); j
ranges over elements of Seg|ar s|, T1 ranges over functions from Seg|ar s|
into (AllSymbolsOf S)∗ \ {∅}, U1 ranges over functions from Seg|ar s| into
(AllSymbolsOf S)∗ \ {∅} : T1 = T ∧ U1 = U}, and

(ii) (s1)2 = s-compoundU.

We say that s1 rule 4 S1 if and only if the condition (Def. 25) is satisfied.
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(Def. 25) There exists a literal element l of S and there exists a w.f.f. string p2 of S
and there exists a termal string t of S such that (s1)1 = {(l, t) SubstIn p2}
and (s1)2 = 〈l〉 a p2.

We say that s1 rule 5 S1 if and only if:

(Def. 26) There exist literal elements v1, v2 of S and there exist x, p such
that (s1)1 = x ∪ {〈v1〉 a p} and v2 is x ∪ {p} ∪ {s12}-absent and
〈〈x ∪ {(v1 SubstWith v2)(p)}, (s1)2〉〉 ∈ S1.

We say that s1 rule 6 S1 if and only if the condition (Def. 27) is satisfied.

(Def. 27) There exist sets y1, y2 and there exist w.f.f. strings p3, p4 of S

such that y1, y2 ∈ S1 and (y1)1 = (y2)1 = (s1)1 and (y1)2 =
〈TheNorSymbOf S〉 a p3

a p3 and (y2)2 = 〈TheNorSymbOf S〉 a p4
a p4

and (s1)2 = 〈TheNorSymbOf S〉 a p3
a p4.

We say that s1 rule 7 S1 if and only if:

(Def. 28) There exists a set y and there exist w.f.f. strings p3, p4 of S such that
y ∈ S1 and y1 = (s1)1 and y2 = 〈TheNorSymbOf S〉a p3

a p4 and (s1)2 =
〈TheNorSymbOf S〉 a p4

a p3.

We say that s1 rule 8 S1 if and only if the condition (Def. 29) is satisfied.

(Def. 29) There exist sets y1, y2 and there exist w.f.f. strings p2, p3, p4 of
S such that y1, y2 ∈ S1 and (y1)1 = (y2)1 and (y1)2 = p3 and
(y2)2 = 〈TheNorSymbOf S〉 a p3

a p4 and {p2} ∪ (s1)1 = (y1)1 and
(s1)2 = 〈TheNorSymbOf S〉 a p2

a p2.

We say that s1 rule 9 S1 if and only if:

(Def. 30) There exists a set y and there exists a w.f.f. string p2 of S such that
y ∈ S1 and (s1)2 = p2 and y1 = (s1)1 and y2 = xnot xnot p2.

Let S be a language. The functor P0S yielding a relation between 2S-sequents

and S-sequents is defined by:

(Def. 31) For every element S1 of 2S-sequents and for every element s1 of S-sequents
holds 〈〈S1, s1〉〉 ∈ P0S iff s1 rule 0 S1.

The functor P1S yields a relation between 2S-sequents and S-sequents and is
defined as follows:

(Def. 32) For every element S1 of 2S-sequents and for every element s1 of S-sequents
holds 〈〈S1, s1〉〉 ∈ P1S iff s1 rule 1 S1.

The functor P2S yields a relation between 2S-sequents and S-sequents and is
defined as follows:

(Def. 33) For every element S1 of 2S-sequents and for every element s1 of S-sequents
holds 〈〈S1, s1〉〉 ∈ P2S iff s1 rule 2 S1.

The functor P3aS yielding a relation between 2S-sequents and S-sequents is de-
fined as follows:
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(Def. 34) For every element S1 of 2S-sequents and for every element s1 of S-sequents
holds 〈〈S1, s1〉〉 ∈ P3aS iff s1 rule 3a S1.

The functor P3bS yields a relation between 2S-sequents and S-sequents and is
defined as follows:

(Def. 35) For every element S1 of 2S-sequents and for every element s1 of S-sequents
holds 〈〈S1, s1〉〉 ∈ P3bS iff s1 rule 3b S1.

The functor P3dS yields a relation between 2S-sequents and S-sequents and is
defined as follows:

(Def. 36) For every element S1 of 2S-sequents and for every element s1 of S-sequents
holds 〈〈S1, s1〉〉 ∈ P3dS iff s1 rule 3d S1.

The functor P3eS yielding a relation between 2S-sequents and S-sequents is de-
fined by:

(Def. 37) For every element S1 of 2S-sequents and for every element s1 of S-sequents
holds 〈〈S1, s1〉〉 ∈ P3eS iff s1 rule 3e S1.

The functor P4S yielding a relation between 2S-sequents and S-sequents is defined
by:

(Def. 38) For every element S1 of 2S-sequents and for every element s1 of S-sequents
holds 〈〈S1, s1〉〉 ∈ P4S iff s1 rule 4 S1.

The functor P5S yields a relation between 2S-sequents and S-sequents and is
defined by:

(Def. 39) For every element S1 of 2S-sequents and for every element s1 of S-sequents
holds 〈〈S1, s1〉〉 ∈ P5S iff s1 rule 5 S1.

The functor P6S yielding a relation between 2S-sequents and S-sequents is defined
by:

(Def. 40) For every element S1 of 2S-sequents and for every element s1 of S-sequents
holds 〈〈S1, s1〉〉 ∈ P6S iff s1 rule 6 S1.

The functor P7S yielding a relation between 2S-sequents and S-sequents is defined
as follows:

(Def. 41) For every element S1 of 2S-sequents and for every element s1 of S-sequents
holds 〈〈S1, s1〉〉 ∈ P7S iff s1 rule 7 S1.

The functor P8S yields a relation between 2S-sequents and S-sequents and is
defined as follows:

(Def. 42) For every element S1 of 2S-sequents and for every element s1 of S-sequents
holds 〈〈S1, s1〉〉 ∈ P8S iff s1 rule 8 S1.

The functor P9S yields a relation between 2S-sequents and S-sequents and is
defined as follows:

(Def. 43) For every element S1 of 2S-sequents and for every element s1 of S-sequents
holds 〈〈S1, s1〉〉 ∈ P9S iff s1 rule 9 S1.
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Let us consider S and let R be a relation between 2S-sequents and S-sequents.
The functor FuncRuleR yields a rule of S and is defined by:

(Def. 44) For every set i1 such that i1 ∈ 2S-sequents holds (FuncRuleR)(i1) = {x ∈
S-sequents: 〈〈i1, x〉〉 ∈ R}.

Let us consider S. The functor R0S yielding a rule of S is defined as follows:

(Def. 45) R0S = FuncRule P0S.

The functor R1S yielding a rule of S is defined as follows:

(Def. 46) R1S = FuncRule P1S.

The functor R2S yielding a rule of S is defined by:

(Def. 47) R2S = FuncRule P2S.

The functor R3aS yielding a rule of S is defined by:

(Def. 48) R3aS = FuncRule P3aS.

The functor R3bS yielding a rule of S is defined as follows:

(Def. 49) R3bS = FuncRule P3bS.

The functor R3dS yielding a rule of S is defined as follows:

(Def. 50) R3dS = FuncRule P3dS.

The functor R3eS yielding a rule of S is defined by:

(Def. 51) R3eS = FuncRule P3eS.

The functor R4S yields a rule of S and is defined as follows:

(Def. 52) R4S = FuncRule P4S.

The functor R5S yielding a rule of S is defined as follows:

(Def. 53) R5S = FuncRule P5S.

The functor R6S yields a rule of S and is defined by:

(Def. 54) R6S = FuncRule P6S.

The functor R7S yields a rule of S and is defined by:

(Def. 55) R7S = FuncRule P7S.

The functor R8S yielding a rule of S is defined as follows:

(Def. 56) R8S = FuncRule P8S.

The functor R9S yields a rule of S and is defined by:

(Def. 57) R9S = FuncRule P9S.

Let us consider S and let t be a termal string of S.
Note that {〈〈∅, 〈TheEqSymbOf S〉 a t a t〉〉} is {R2S}-derivable. Note that

R2S is isotone. One can verify that R3bS is isotone.
Let t, t1, t2 be termal strings of S, and let p5 be a finite subset of
AllFormulasOf S. Observe that 〈〈p5 ∪ {〈TheEqSymbOf S〉 a t1 a t2},
〈TheEqSymbOf S〉a ta t2〉〉 is (1, {〈〈p5, 〈TheEqSymbOf S〉a ta t1〉〉}, {R3aS})-

derivable.
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Let us consider S, let t, t1, t2 be termal strings of S, and let p2 be a w.f.f.
string of S. Note that 〈〈{p2, 〈TheEqSymbOf S〉 a t1 a t2}, 〈TheEqSymbOf S〉 a
t a t2〉〉 is (1, {〈〈{p2}, 〈TheEqSymbOf S〉 a t a t1〉〉}, {R3aS})-derivable.

Let us consider S, let p2 be a w.f.f. string of S, and let P1 be a finite subset of
AllFormulasOf S. One can verify that 〈〈P1∪{p2}, p2〉〉 is (1, ∅, {R0S})-derivable.

Let us consider S and let p3, p4 be w.f.f. strings of S. One can check that
〈〈{p3, p4}, p3〉〉 is (1, ∅, {R0S})-derivable.

Let us consider S, p2. Note that 〈〈{p2}, p2〉〉 is (1, ∅, {R0S})-derivable.
Let us consider S and let p2 be a w.f.f. string of S. Observe that {〈〈{p2},

p2〉〉} is (∅, {R0S})-derivable.
Let us consider S. One can verify the following observations:

∗ R0S is isotone,

∗ R3aS is isotone,

∗ R3dS is isotone, and

∗ R3eS is isotone.

Let us consider K1, K2. One can verify that K1 ∪K2 is isotone.
Let us consider S and let t1, t2 be termal strings of S.
Observe that 〈TheEqSymbOf S〉 a t1 a t2 is 0-w.f.f..
Let us consider S, let m be a non zero natural number, and let T , U be m-

element elements of (AllTermsOf S)∗. The functor PairWiseEq(T,U) is defined
by the condition (Def. 58).

(Def. 58) PairWiseEq(T,U) = {〈TheEqSymbOf S〉 a T1(j) a U1(j); j ranges
over elements of Segm,T1 ranges over functions from Segm into
(AllSymbolsOf S)∗ \ {∅}, U1 ranges over functions from Segm into
(AllSymbolsOf S)∗ \ {∅} : T1 = T ∧ U1 = U}.

Let us consider S, let m be a non zero natural number, and let T2, T3 be
m-element elements of (AllTermsOf S)∗. Then PairWiseEq(T2, T3) is a subset
of AllFormulasOf S.

Let us consider S, let m be a non zero natural number, and let T , U be m-
element elements of (AllTermsOf S)∗. Observe that PairWiseEq(T,U) is finite.

Let us consider S, let s be a relational element of S, and let T2, T3 be |ar s|-
element elements of (AllTermsOf S)∗. Observe that {〈〈PairWiseEq(T2, T3) ∪
{s-compoundT2}, s-compoundT3〉〉} is (∅, {R3eS})-derivable.

Let us consider m, S, D. We say that D is m-ranked if and only if:

(Def. 59)(i) R0S, R2S, R3aS, R3bS ∈ D if m = 0,
(ii) R0S, R2S, R3aS, R3bS, R3dS, R3eS ∈ D if m = 1,
(iii) R0S, R1S, R2S, R3aS, R3bS, R3dS, R3eS, R4S, R5S, R6S, R7S,

R8S ∈ D if m = 2,
(iv) D = ∅, otherwise.



214 marco b. caminati

Let us consider S. One can verify that every rule set of S which is 1-ranked
is also 0-ranked and every rule set of S which is 2-ranked is also 1-ranked.

Let us consider S. The functor S-rules yields a rule set of S and is defined
by:

(Def. 60) S-rules = {R0S,R1S,R2S,R3aS,R3bS,R3dS,R3eS,R4S}∪
{R5S,R6S,R7S,R8S}.

Let us consider S. Observe that S-rules is 2-ranked.
Let us consider S. Note that there exists a rule set of S which is 2-ranked.
Let us consider S. Observe that there exists a rule set of S which is 1-ranked.
Let us consider S. Note that there exists a rule set of S which is 0-ranked.
Let us consider S, let D be a 1-ranked rule set of S, let X be a D-expanded

set, and let us consider a. Observe that X-freeInterpreter a is (X,D) -termEq-
respecting.

Let us consider S, let D be a 0-ranked rule set of S, and let X be a D-
expanded set. Observe that (X,D) -termEq is total, symmetric, and transitive.

Let us consider S. Observe that there exists a 0-ranked rule set of S which
is 1-ranked.

The following proposition is true

(1) If D1 ⊆ D2 and if D2 is isotone or D1 is isotone and if Y is (X,D1)-
derivable, then Y is (X,D2)-derivable.

Let us consider S, S6. One can verify that {S6} is S-sequents-like.
Let us consider S, S11, S5. One can check that S11 ∪ S5 is S-sequents-like.
Let us consider S and let x, y be S-sequent-like sets. Observe that {x, y} is

S-sequents-like.
Let us consider S, p3, p4. Note that 〈〈{xnot p3, xnot p4}, 〈TheNorSymbOf S〉a

p3
ap4〉〉 is (1, {〈〈{xnot p3, xnot p4}, xnot p3〉〉, 〈〈{xnot p3, xnot p4}, xnot p4〉〉}, {R6S})-

derivable.
Let us consider S, p3, p4. One can check that 〈〈{p3, p4}, p4〉〉 is (1, ∅, {R0S})-

derivable.
We now state two propositions:

(2) For every relation R between 2S-sequents and S-sequents such that 〈〈S4,

S6〉〉 ∈ R holds S6 ∈ (FuncRuleR)(S4).

(3) If x ∈ R(X), then x is (1, X, {R})-derivable.

Let us consider S, D, X. Let us observe that X is D-expanded if and only
if:

(Def. 61) If x is (X,D)-provable, then x ∈ X.
The following four propositions are true:

(4) If p2 ∈ X, then p2 is (X, {R0S})-provable.

(5) Suppose that
(i) D1 ∪D2 is isotone,
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(ii) D1 ∪D2 ∪D3 is isotone,
(iii) x is (m,S11, D1)-derivable,
(iv) y is (m,S5, D2)-derivable, and
(v) z is (n, {x, y}, D3)-derivable.

Then z is (m+ n, S11 ∪ S5, D1 ∪D2 ∪D3)-derivable.

(6) Suppose D1 is isotone and D1 ∪ D2 is isotone and y is (m,X,D1)-
derivable and z is (n, {y}, D2)-derivable. Then z is (m + n,X,D1 ∪D2)-
derivable.

(7) If x is (m,X,D)-derivable, then {x} is (X,D)-derivable.

Let us consider S. Observe that R6S is isotone.
One can prove the following propositions:

(8) If D1 ⊆ D2 and if D1 is isotone or D2 is isotone and if x is (X,D1)-
provable, then x is (X,D2)-provable.

(9) If X ⊆ Y and x is (X,D)-provable, then x is (Y,D)-provable.

Let us consider S. Note that R8S is isotone.
Let us consider S. Observe that R1S is isotone.
Next we state the proposition

(10) If {y} is (S4, D)-derivable, then there existsm1 such that y is (m1, S4, D)-
derivable.

Let us consider S, D, X. Observe that every set which is (X,D)-derivable
is also S-sequents-like.

Let us consider S, D, X, x. Let us observe that x is (X,D)-provable if and
only if:

(Def. 62) There exists a set H and there exists m such that H ⊆ X and 〈〈H, x〉〉 is
(m, ∅, D)-derivable.

The following proposition is true

(11) If D1 ⊆ D2 and if D2 is isotone or D1 is isotone and if x is (m,X,D1)-
derivable, then x is (m,X,D2)-derivable.

Let us consider S. Observe that R7S is isotone.
Next we state the proposition

(12) If x is (X,D)-provable, then x is a w.f.f. string of S.

In the sequel F denotes a rule set of S.
Let us consider S, D1 and let X be a D1-expanded set. One can verify that

(S,X)-freeInterpreter is (X,D1) -termEq-respecting.
Let us consider S, let D be a 0-ranked rule set of S, and let X be a D-

expanded set. The functor DHenkinX yielding a function is defined by:

(Def. 63) DHenkinX = (S,X)-freeInterpreter quotient(X,D) -termEq .

Let us consider S, let D be a 0-ranked rule set of S, and let X be a D-
expanded set. One can check that DHenkinX is OwnSymbolsOf S-defined.
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Let us consider S, D1 and let X be a D1-expanded set. Observe that
D1 HenkinX is (S,Classes(X,D1) -termEq)-interpreter-like.

Let us consider S, D1 and let X be a D1-expanded set. Then D1 HenkinX
is an element of Classes((X,D1) -termEq)-InterpretersOf S.

Let us consider S, p3, p4. One can verify that 〈TheNorSymbOf S〉 a p3
a p4

is ({xnot p3, xnot p4}, {R0S} ∪ {R6S})-provable.
Let us consider S. Note that every 0-ranked rule set of S is non empty.
Let us consider S, x. We say that x is S-premises-like if and only if:

(Def. 64) x ⊆ AllFormulasOf S and x is finite.

Let us consider S. One can verify that every set which is S-premises-like is
also finite.

Let us consider S, p2. Note that {p2} is S-premises-like.
Let us consider S and let e be an empty set. One can check that e nullS is

S-premises-like.
Let us consider X, S. Observe that there exists a subset of X which is

S-premises-like.
Let us consider S. Observe that there exists a set which is S-premises-like.
Let us consider S and let X be an S-premises-like set. Observe that every

subset of X is S-premises-like.
In the sequel H3 denotes an S-premises-like set.
Let us consider S, H2, H1. Then H1 nullH2 is a subset of AllFormulasOf S.
Let us consider S, H, x. Note that H nullx is S-premises-like.
Let us consider S, H1, H2. Note that H1 ∪H2 is S-premises-like.
Let us consider S, H, p2. Observe that 〈〈H, p2〉〉 is S-sequent-like.
Let us consider S, H1, H2, p2. One can verify that 〈〈H1∪H2, p2〉〉 is (1, {〈〈H1,

p2〉〉}, {R1S})-derivable.
Let us consider S, H, p2, p3, p4. One can check that 〈〈H null p3

ap4, xnot p2〉〉 is
(1, {〈〈H∪{p2}, p3〉〉, 〈〈H∪{p2}, 〈TheNorSymbOf S〉ap3

ap4〉〉}, {R8S})-derivable.
Let us consider S. One can verify that ∅nullS is S-sequents-like.
Let us consider S, H, p2. Observe that 〈〈H ∪ {p2}, p2〉〉 is (1, ∅, {R0S})-

derivable. Let us consider p3, p4. Note that 〈〈H null p4, xnot p3〉〉 is
(2, {〈〈H, 〈TheNorSymbOf S〉ap3

ap4〉〉}, {R0S}∪{R1S}∪{R8S})-derivable.
Let us consider S, H, p3, p4. Note that 〈〈H, 〈TheNorSymbOf S〉a p4

a p3〉〉 is
(1, {〈〈H, 〈TheNorSymbOf S〉 a p3

a p4〉〉}, {R7S})-derivable.
Let us consider S, H, p3, p4. Observe that 〈〈H null p3, xnot p4〉〉 is (3, {〈〈H,

〈TheNorSymbOf S〉 a p3
a p4〉〉}, {R0S} ∪ {R1S} ∪ {R8S} ∪ {R7S})-derivable.

Let us consider S, S6. Observe that (S6)1 is S-premises-like.
Let us consider S, X, D. Then D nullX is a rule set of S.
Let us consider S, p3, p4, l1, H and let l2 be an H∪{p3}∪{p4}-absent literal

element of S.
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Note that 〈〈(H∪{〈l1〉ap3}) null l2, p4〉〉 is (1, {〈〈H∪{(l1, l2) -SymbolSubstIn p3},
p4〉〉}, {R5S})-derivable.

Let us consider S, D, X. We say that X is D-inconsistent if and only if:

(Def. 65) There exist p3, p4 such that p3 is (X,D)-provable and 〈TheNorSymbOf S〉a
p3
a p4 is (X,D)-provable.

Let us consider m2, S, H1, H2, p2. Note that 〈〈(H1 ∪ H2) nullm2, p2〉〉 is
(m2, {〈〈H1, p2〉〉}, {R1S})-derivable.

Let us consider S. Observe that there exists an isotone rule set of S which
is non empty.

We now state the proposition

(13) If X is D-inconsistent and D is isotone and R1S, R8S ∈ D, then xnot p2

is (X,D)-provable.

Let us consider S. Observe that R5S is isotone.
Let us consider S, l, t, p2. Observe that 〈〈{(l, t) SubstIn p2}, 〈l〉 a p2〉〉 is

(1, ∅, {R4S})-derivable.
Let us consider S. One can verify that R4S is isotone.
Let us consider S, X. We say that X is S-witnessed if and only if:

(Def. 66) For all l1, p3 such that 〈l1〉 a p3 ∈ X there exists l2 such that
(l1, l2) -SymbolSubstIn p3 ∈ X and l2 /∈ rng p3.

We now state the proposition

(14)3 Let X be a D1-expanded set. Suppose R1S, R4S, R6S,
R7S, R8S ∈ D1 and X is S-mincover and S-witnessed. Then
(D1 HenkinX)-TruthEval p1 = 1 if and only if p1 ∈ X.

Let us consider S, D, X. We introduce X is D-consistent as an antonym of
X is D-inconsistent.

We now state the proposition

(15) For every subset X of Y such that X is D-inconsistent holds Y is D-
inconsistent.

Let us consider S, D, let X be a functional set, and let p2 be an element of
ExFormulasOf S. The functor (D, p2) AddAsWitnessToX is defined by:

(Def. 67) (D, p2) AddAsWitnessToX =



X ∪ {(S-firstChar(p2), the element
of LettersOf S \ SymbolsOf
(((AllSymbolsOf S)∗ \ {∅}) ∩ (X∪
{head p2}))) -SymbolSubstIn head p2},
if X ∪ {p2} is D-consistent and
LettersOf S \ SymbolsOf(((AllSym−
bolsOf S)∗ \ {∅}) ∩ (X ∪ {head p2})) 6= ∅,

X, otherwise.

3Henkin’s Theorem
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Let us consider S, D, let X be a functional set, and let p2 be an element of
ExFormulasOf S. One can check that X \((D, p2) AddAsWitnessToX) is empty.

Let us consider S, D, let X be a functional set, and let p2 be an element of
ExFormulasOf S. One can check that ((D, p2) AddAsWitnessToX)\X is trivial.

Let us consider S, D, let X be a functional set, and let p2 be an
element of ExFormulasOf S. Then (D, p2) AddAsWitnessToX is a subset of
X ∪AllFormulasOf S.

Let us consider S, D. We say that D is correct if and only if the condition
(Def. 68) is satisfied.

(Def. 68) Let given p2, X. Suppose p2 is (X,D)-provable. Let given U and I be an
element of U -InterpretersOf S. If X is I-satisfied, then I-TruthEval p2 = 1.

Let us consider S, t1, t2. One can check that SubTerms(〈TheEqSymbOf S〉a
t1
a t2)−. 〈t1, t2〉 is empty.
Let us consider S and let R be a rule of S. We say that R is correct if and

only if:

(Def. 69) If X is S-correct, then R(X) is S-correct.

Let us consider S. Observe that every set which is S-sequent-like is also
S-null.

Let us consider S. Note that R0S is correct.
Let us consider S. Note that there exists a rule of S which is correct.
Let us consider S. One can check that R1S is correct.
Let us consider S. Note that R2S is correct.
Let us consider S. One can check that R3aS is correct.
Let us consider S. Observe that R3bS is correct.
Let us consider S. Observe that R3dS is correct.
Let us consider S. Note that R3eS is correct.
Let us consider S. One can check that R4S is correct.
Let us consider S. One can check that R5S is correct.
Let us consider S. One can verify that R6S is correct.
Let us consider S. Observe that R7S is correct.
Let us consider S. Observe that R8S is correct.
Next we state the proposition

(16) If for every rule R of S such that R ∈ D holds R is correct, then D is
correct.

Let us consider S and let R be a correct rule of S. Note that {R} is correct.
Observe that S-rules is correct. One can check that R9S is isotone. Let us
consider H, p2. Observe that 〈〈H, p2〉〉null 1 is (1, {〈〈H, xnot xnot p2〉〉}, {R9S})-
derivable.

Let us consider X, S. Observe that there exists an 0-w.f.f. string of S which
is X-implied.
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Let us consider X, S. Observe that there exists a w.f.f. string of S which is
X-implied.

Let us consider S, X and let p2 be an X-implied w.f.f. string of S. Observe
that xnot xnot p2 is X-implied.

Let us consider X, S, p2. We say that p2 is X-provable if and only if:

(Def. 70) p2 is (X, {R9S} ∪ S-rules)-provable.

2. Constructions for Countable Languages: Witness Adjoining

Let X be a functional set, let us consider S, D, and let n1 be a function
from N into ExFormulasOf S. The functor (D,n1) AddWitnessesToX yields a
function from N into 2X∪AllFormulasOf S and is defined by:

(Def. 71) ((D,n1) AddWitnessesToX)(0) = X and
for every m1 holds ((D,n1) AddWitnessesToX)(m1 + 1) =
(D,n1(m1)) AddAsWitnessTo((D,n1) AddWitnessesToX)(m1).

Let X be a functional set, let us consider S, D, and let n1 be a function
from N into ExFormulasOf S. We introduce (D,n1) addwX as a synonym of
(D,n1) AddWitnessesToX.

We now state the proposition

(17) Let X be a functional set and n1 be a function from N into
ExFormulasOf S. Suppose D is isotone and R1S, R8S, R2S, R5S ∈ D
and LettersOf S\SymbolsOf(X∩((AllSymbolsOf S)∗\{∅})) is infinite and
X is D-consistent. Then ((D,n1) addwX)(k) ⊆ ((D,n1) addwX)(k +m)
and LettersOf S \SymbolsOf(((D,n1) addwX)(m)∩((AllSymbolsOf S)∗\
{∅})) is infinite and ((D,n1) addwX)(m) is D-consistent.

Let X be a functional set, let us consider S, D, and let n1 be a function from
N into ExFormulasOf S. The functor X WithWitnessesFrom(D,n1) yielding a
subset of X ∪AllFormulasOf S is defined by:

(Def. 72) X WithWitnessesFrom(D,n1) =
⋃

rng((D,n1) AddWitnessesToX).

Let X be a functional set, let us consider S, D, and let n1 be a function
from N into ExFormulasOf S. We introduce X addw(D,n1) as a synonym of
X WithWitnessesFrom(D,n1).

Let X be a functional set, let us consider S, D, and let n1 be a function from
N into ExFormulasOf S. One can verify that X \ (X addw(D,n1)) is empty.

The following proposition is true

(18) Let X be a functional set and n1 be a function from N into
ExFormulasOf S. Suppose that D is isotone and R1S, R8S, R2S, R5S ∈
D and LettersOf S \ SymbolsOf(X ∩ ((AllSymbolsOf S)∗ \ {∅})) is in-
finite and X addw(D,n1) ⊆ Z and Z is D-consistent and rng n1 =
ExFormulasOf S. Then Z is S-witnessed.
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3. Constructions for Countable Languages: Consistently
Maximizing a Set of Formulas of a Countable Language

(Lindenbaum’s Lemma)

Let us consider X, S, D and let p2 be an element of AllFormulasOf S. The
functor (D, p2) AddFormulaToX is defined by:

(Def. 73) (D, p2) AddFormulaToX =


X ∪ {p2},

if xnot p2 is not (X,D)-provable,
X ∪ {xnot p2}, otherwise.

Let us consider X, S, D and let p2 be an element of AllFormulasOf S. Then
(D, p2) AddFormulaToX is a subset of X ∪AllFormulasOf S.

Let us consider X, S, D and let p2 be an element of AllFormulasOf S. Note
that X \ ((D, p2) AddFormulaToX) is empty.

Let us consider X, S, D and let n1 be a function from N into
AllFormulasOf S. The functor (D,n1) AddFormulasToX yields a function from
N into

2X∪AllFormulasOf S and is defined by:

(Def. 74) ((D,n1) AddFormulasToX)(0) = X and for every m holds
((D,n1) AddFormulasToX)(m+ 1) =
(D,n1(m)) AddFormulaTo((D,n1) AddFormulasToX)(m).

Let us consider X, S, D and let n1 be a function from N into
AllFormulasOf S. The functor (D,n1) CompletionOf X yields a subset of X ∪
AllFormulasOf S and is defined as follows:

(Def. 75) (D,n1) CompletionOf X =
⋃

rng((D,n1) AddFormulasToX).

Let us consider X, S, D and let n1 be a function from N into
AllFormulasOf S. One can check that X \ ((D,n1) CompletionOf X) is empty.

We now state the proposition

(19) For every relation R between 2S-sequents and S-sequents holds y ∈
(FuncRuleR)(X) iff y ∈ S-sequents and 〈〈X, y〉〉 ∈ R.

In the sequel D2 is a 2-ranked rule set of S.
Let us consider S and let r1, r2 be isotone rules of S. Note that {r1, r2} is

isotone.
Let us consider S and let r1, r2, r3, r4 be isotone rules of S. Observe that

{r1, r2, r3, r4} is isotone.
Let us consider S. Observe that S-rules is isotone.
Let us consider S. Observe that there exists an isotone rule set of S which

is correct.
Let us consider S. Observe that there exists a correct isotone rule set of S

which is 2-ranked.
Let S be a countable language. Observe that AllFormulasOf S is countable.
We now state the proposition
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(20) Let S be a countable language and D be a rule set of S. Suppo-
se D is 2-ranked, isotone, and correct and Z is D-consistent and Z ⊆
AllFormulasOf S. Then there exists a non empty set U and there exists
an element I of U -InterpretersOf S such that Z is I-satisfied.

In the sequel C denotes a countable language and p2 denotes a w.f.f. string
of C.

We now state the proposition

(21) If X ⊆ AllFormulasOf C and p2 is X-implied, then p2 is X-provable.
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