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Summary. We formulate a few basic concepts of J. H. Conway’s theory
of games based on his book [6]. This is a first step towards formalizing Conway’s
theory of numbers into Mizar, which is an approach to proving the existence of
a FIELD (i.e., a proper class that satisfies the axioms of a real-closed field) that
includes the reals and ordinals, thus providing a uniform, independent and simple
approach to these two constructions that does not go via the rational numbers
and hence does for example not need the notion of a quotient field.

In this first article on Conway’s games, we provide a definition of games, their
birthdays (or ranks), their trees (a notion which is not in Conway’s book, but is
useful as a tool), their negates and their signs, together with some elementary
properties of these notions. If one is interested only in Conway’s numbers, it
would have been easier to define them directly, but going via the notion of a
game is a more general approach in the sense that a number is a special instance
of a game and that there is a rich theory of games that are not numbers.

The main obstacle in formulating these topics in Mizar is that all defini-
tions are highly recursive, which is not entirely simple to translate into the Mizar
language. For example, according to Conway’s definition, a game is an object
consisting of left and right options which are themselves games, and this is by
definition the only way to construct a game. This cannot directly be transla-
ted into Mizar, but a theorem is included in the article which proves that our
definition is equivalent to Conway’s.

MML identifier: CGAMES 1, version: 7.11.07 4.156.1112

The terminology and notation used here have been introduced in the following
articles: [1], [4], [7], [5], [2], [3], [9], and [8].
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1. Construction of Days

We follow the rules: x, z, s are sets, α, β are ordinal numbers, and n is a
natural number.

We introduce lefts-rights which are systems
〈 left options, right options 〉,

where the left options and the right options constitute sets.
The functor 0 is defined by:

(Def. 1) 0 = 〈∅, ∅〉.
One can verify that there exists a left-right which is strict.
Let us consider α. The functor ConwayDayα yields a set and is defined by

the condition (Def. 2).

(Def. 2) There exists a transfinite sequence f such that α ∈ dom f and f(α) =
ConwayDayα and for every β such that β ∈ dom f holds f(β) = {〈x, y〉 :
x ranges over subsets of

⋃
rng(f�β), y ranges over subsets of

⋃
rng(f�β)}.

We now state three propositions:

(1) z ∈ ConwayDayα if and only if there exists a strict left-right w such
that z = w and for every x such that x ∈ (the left options of w) ∪ (the
right options of w) there exists β such that β ∈ α and x ∈ ConwayDay β.

(2) ConwayDay 0 = {0}.
(3) If α ⊆ β, then ConwayDayα ⊆ ConwayDay β.

Let us consider α. Note that ConwayDayα is non empty.

2. Games

Let us consider x. We say that x is Conway game-like if and only if:

(Def. 3) There exists α such that x ∈ ConwayDayα.

Let us consider α. Note that every element of ConwayDayα is Conway game-
like.

Let us observe that 0 is Conway game-like.
One can check that there exists a left-right which is Conway game-like and

strict and there exists a set which is Conway game-like.
A Conway game is a Conway game-like set.
0 is an element of ConwayDay 0.
The element 1 of ConwayDay 1 is defined by:

(Def. 4) 1 = 〈{0}, ∅〉.
The element ∗ of ConwayDay 1 is defined as follows:

(Def. 5) ∗ = 〈{0}, {0}〉.
In the sequel g, g0, g1, g2, g3, g4, g5, g6 are Conway games.
We now state the proposition
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(4) g is a strict left-right.

One can verify that every left-right which is Conway game-like is also strict.
Let us consider g. The left options of g is defined as follows:

(Def. 6) There exists a left-right w such that g = w and the left options of g = the
left options of w.

The right options of g is defined by:

(Def. 7) There exists a left-right w such that g = w and the right options of
g = the right options of w.

Let us consider g. The options of g is defined by:

(Def. 8) The options of g = (the left options of g) ∪ (the right options of g).

Next we state the proposition

(5) g1 = g2 if and only if the following conditions are satisfied:
(i) the left options of g1 = the left options of g2, and
(ii) the right options of g1 = the right options of g2.

One can verify the following observations:

∗ the left options of 0 is empty,

∗ the right options of 0 is empty, and

∗ the right options of 1 is empty.

Next we state four propositions:

(6) g = 0 iff the options of g = ∅.
(7) x ∈ the left options of 1 iff x = 0.

(8)(i) x ∈ the options of ∗ iff x = 0,
(ii) x ∈ the left options of ∗ iff x = 0, and
(iii) x ∈ the right options of ∗ iff x = 0.

(9) g ∈ ConwayDayα iff for every x such that x ∈ the options of g there
exists β such that β ∈ α and x ∈ ConwayDay β.

Let g be a set. Let us assume that g is a Conway game. The functor
ConwayRank g yields an ordinal number and is defined as follows:

(Def. 9) g ∈ ConwayDay ConwayRank g and for every β such that β ∈
ConwayRank g holds g /∈ ConwayDay β.

One can prove the following propositions:

(10) If g ∈ ConwayDayα and x ∈ the options of g, then x ∈ ConwayDayα.

(11) If g ∈ ConwayDayα and if x ∈ the left options of g or x ∈ the right
options of g, then x ∈ ConwayDayα.

(12) g ∈ ConwayDayα iff ConwayRank g ⊆ α.
(13) ConwayRank g ∈ α iff there exists β such that β ∈ α and g ∈

ConwayDay β.

(14) If g3 ∈ the options of g, then ConwayRank g3 ∈ ConwayRank g.
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(15) If g3 ∈ the left options of g or g3 ∈ the right options of g, then
ConwayRank g3 ∈ ConwayRank g.

(16) g /∈ the options of g.

(17) If x ∈ the options of g, then x is a Conway game-like left-right.

(18) If x ∈ the left options of g or x ∈ the right options of g, then x is a
Conway game-like left-right.

(19) Let w be a strict left-right. Then w is a Conway game if and only if for
every z such that z ∈ (the left options of w) ∪ (the right options of w)
holds z is a Conway game.

3. Schemes of Induction

In this article we present several logical schemes. The scheme ConwayGa-
meMinTot concerns a unary predicate P, and states that:

There exists g such that P[g] and for every g1 such that ConwayRank g1 ∈
ConwayRank g holds not P[g1]

provided the following condition is met:
• There exists g such that P[g].

The scheme ConwayGameMin concerns a unary predicate P, and states that:
There exists g such that P[g] and for every g3 such that g3 ∈ the
options of g holds not P[g3]

provided the parameters satisfy the following condition:
• There exists g such that P[g].

The scheme ConwayGameInd concerns a unary predicate P, and states that:
For every g holds P[g]

provided the following condition is met:
• For every g such that for every g3 such that g3 ∈ the options of g

holds P[g3] holds P[g].

4. Tree of a Game

Let f be a function. We say that f is Conway game-valued if and only if:

(Def. 10) For every x such that x ∈ dom f holds f(x) is a Conway game.

Let us consider g. One can verify that 〈g〉 is Conway game-valued.
Let us mention that there exists a finite sequence which is Conway game-

valued and non empty.
Let f be a non empty finite sequence. Observe that every element of dom f

is natural and non empty.
Let f be a Conway game-valued non empty function and let x be an element

of dom f. Note that f(x) is Conway game-like.
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Let f be a Conway game-valued non empty finite sequence. We say that f
is Conway game chain-like if and only if:

(Def. 11) For every element n of dom f such that n > 1 holds f(n − 1) ∈ the
options of f(n).

One can prove the following proposition

(20) For every finite sequence f and for every n such that n ∈ dom f and
n > 1 holds n− 1 ∈ dom f.

Let us consider g. Observe that 〈g〉 is Conway game chain-like.
Let us observe that there exists a Conway game-valued non empty finite

sequence which is Conway game chain-like.
A Conway game chain is a Conway game chain-like Conway game-valued

non empty finite sequence.
Next we state three propositions:

(21) For every Conway game chain f and for all elements n, m of dom f such
that n < m holds ConwayRank f(n) ∈ ConwayRank f(m).

(22) For every Conway game chain f and for all elements n, m of dom f such
that n ≤ m holds ConwayRank f(n) ⊆ ConwayRank f(m).

(23) For every Conway game chain f such that f(len f) ∈ ConwayDayα holds
f(1) ∈ ConwayDayα.

Let us consider g. The tree of g yields a set and is defined as follows:

(Def. 12) z ∈ the tree of g iff there exists a Conway game chain f such that
f(1) = z and f(len f) = g.

Let us consider g. Observe that the tree of g is non empty.
Let us consider g. The proper tree of g yielding a subset of the tree of g is

defined by:

(Def. 13) The proper tree of g = (the tree of g) \ {g}.
We now state the proposition

(24) g ∈ the tree of g.

Let us consider α and let g be an element of ConwayDayα. Then the tree
of g is a subset of ConwayDayα.

Let us consider g. One can verify that every element of the tree of g is
Conway game-like.

The following propositions are true:

(25) For every Conway game chain f and for every non empty natural number
n holds f�n is a Conway game chain.

(26) Let f1, f2 be Conway game chains. Given g such that g = f2(1) and
f1(len f1) ∈ the options of g. Then f1

a f2 is a Conway game chain.

(27) x ∈ the tree of g iff x = g or there exists g3 such that g3 ∈ the options
of g and x ∈ the tree of g3.
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(28) If g3 ∈ the tree of g, then g3 = g or ConwayRank g3 ∈ ConwayRank g.

(29) If g3 ∈ the tree of g, then ConwayRank g3 ⊆ ConwayRank g.

(30) For every set s such that g ∈ s and for every g1 such that g1 ∈ s holds
the options of g1 ⊆ s holds the tree of g ⊆ s.

(31) If g1 ∈ the tree of g2, then the tree of g1 ⊆ the tree of g2.

(32) If g1 ∈ the tree of g2, then the proper tree of g1 ⊆ the proper tree of g2.

(33) The options of g ⊆ the proper tree of g.

(34) The options of g ⊆ the tree of g.

(35) If g1 ∈ the proper tree of g2, then the tree of g1 ⊆ the proper tree of g2.

(36) If g3 ∈ the options of g, then the tree of g3 ⊆ the proper tree of g.

(37) The tree of 0 = {0}.
(38) 0 ∈ the tree of g.

The scheme ConwayGameMin2 concerns a unary predicate P, and states
that:

There exists g such that P[g] and for every g3 such that g3 ∈ the
proper tree of g holds not P[g3]

provided the following condition is met:
• There exists g such that P[g].

5. Scheme about Definability of Functions by Recursion

Now we present two schemes. The scheme Func1RecUniq deals with a binary
functor F yielding a set, and states that:

Let given g and f1, f2 be functions. Suppose that
(i) dom f1 = the tree of g,
(ii) dom f2 = the tree of g,

(iii) for every g1 such that g1 ∈ dom f1 holds f1(g1) = F(g1, f1�the
proper tree of g1), and
(iv) for every g1 such that g1 ∈ dom f2 holds f2(g1) = F(g1, f2�the
proper tree of g1).

Then f1 = f2
for all values of the parameter.

The scheme Func1RecEx deals with a binary functor F yielding a set, and
states that:

There exists a function f such that dom f = the tree of g and for
every g1 such that g1 ∈ dom f holds f(g1) = F(g1, f�the proper
tree of g1)

for all values of the parameter.



conway’s games and some of their basic . . . 79

6. The Negative and Signs

Let us consider g. The functor −g is defined by the condition (Def. 14).

(Def. 14) There exists a function f such that
(i) dom f = the tree of g,
(ii) −g = f(g), and
(iii) for every g1 such that g1 ∈ dom f holds f(g1) = 〈{f(g4); g4 ranges over

elements of the right options of g1: the right options of g1 6= ∅}, {f(g7); g7
ranges over elements of the left options of g1: the left options of g1 6= ∅}〉.

Let us consider g. One can check that −g is Conway game-like.
We now state three propositions:

(39)(i) For every x holds x ∈ the left options of −g iff there exists g4 such
that g4 ∈ the right options of g and x = −g4, and

(ii) for every x holds x ∈ the right options of −g iff there exists g7 such
that g7 ∈ the left options of g and x = −g7.

(40) −−g = g.

(41)(i) g3 ∈ the left options of −g iff −g3 ∈ the right options of g,
(ii) g3 ∈ the left options of g iff −g3 ∈ the right options of −g,
(iii) g3 ∈ the right options of −g iff −g3 ∈ the left options of g, and
(iv) g3 ∈ the right options of g iff −g3 ∈ the left options of −g.

Let us consider g. We say that g is non-negative if and only if the condition
(Def. 15) is satisfied.

(Def. 15) There exists s such that
(i) g ∈ s, and
(ii) for every g1 such that g1 ∈ s and for every g4 such that g4 ∈ the right

options of g1 there exists g8 such that g8 ∈ the left options of g4 and g8 ∈ s.
Let us consider g. We say that g is non-positive if and only if:

(Def. 16) −g is non-negative.

Let us consider g. We say that g is zero if and only if:

(Def. 17) g is non-negative and non-positive.

We say that g is fuzzy if and only if:

(Def. 18) g is not non-negative and g is not non-positive.

Let us consider g. We say that g is positive if and only if:

(Def. 19) g is non-negative and g is not zero.

We say that g is negative if and only if:

(Def. 20) g is non-positive and g is not zero.

One can verify the following observations:

∗ every Conway game which is zero is also non-negative and non-positive,

∗ every Conway game which is non-positive and non-negative is also zero,



80 robin nittka

∗ every Conway game which is negative is also non-positive and non zero,

∗ every Conway game which is non-positive and non zero is also negative,

∗ every Conway game which is positive is also non-negative and non zero,

∗ every Conway game which is non-negative and non zero is also positive,

∗ every Conway game which is fuzzy is also non non-negative and non
non-positive, and

∗ every Conway game which is non non-negative and non non-positive is
also fuzzy.

One can prove the following propositions:

(42) g is zero, or positive, or negative, or fuzzy.

(43) g is non-negative if and only if for every g4 such that g4 ∈ the right
options of g there exists g8 such that g8 ∈ the left options of g4 and g8 is
non-negative.

(44) g is non-positive if and only if for every g7 such that g7 ∈ the left options
of g there exists g6 such that g6 ∈ the right options of g7 and g6 is non-
positive.

(45)(i) g is non-negative iff for every g4 such that g4 ∈ the right options of g
holds g4 is fuzzy or positive, and

(ii) g is non-positive iff for every g7 such that g7 ∈ the left options of g
holds g7 is fuzzy or negative.

(46) g is fuzzy if and only if the following conditions are satisfied:
(i) there exists g7 such that g7 ∈ the left options of g and g7 is non-negative,

and
(ii) there exists g4 such that g4 ∈ the right options of g and g4 is non-

positive.

(47) g is zero if and only if the following conditions are satisfied:
(i) for every g7 such that g7 ∈ the left options of g holds g7 is fuzzy or

negative, and
(ii) for every g4 such that g4 ∈ the right options of g holds g4 is fuzzy or

positive.

(48) g is positive if and only if the following conditions are satisfied:
(i) for every g4 such that g4 ∈ the right options of g holds g4 is fuzzy or

positive, and
(ii) there exists g7 such that g7 ∈ the left options of g and g7 is non-negative.

(49) g is negative if and only if the following conditions are satisfied:
(i) for every g7 such that g7 ∈ the left options of g holds g7 is fuzzy or

negative, and
(ii) there exists g4 such that g4 ∈ the right options of g and g4 is non-

positive.
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One can check that 0 is zero.
Let us observe that 1 is positive and ∗ is fuzzy.
One can verify the following observations:

∗ there exists a Conway game which is zero,

∗ there exists a Conway game which is positive, and

∗ there exists a Conway game which is fuzzy.

Let g be a non-positive Conway game. Note that −g is non-negative.
Let g be a non-negative Conway game. Note that −g is non-positive.
Let g be a positive Conway game. One can verify that −g is negative.
Let us note that there exists a Conway game which is negative.
Let g be a negative Conway game. Note that −g is positive.
Let g be a fuzzy Conway game. Note that −g is fuzzy.
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