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Summary. Let ω(G) and χ(G) be the clique number and the chromatic
number of a graph G. Mycielski [11] presented a construction that for any n

creates a graph Mn which is triangle-free (ω(G) = 2) with χ(G) > n. The
starting point is the complete graph of two vertices (K2). M(n+1) is obtained
from Mn through the operation µ(G) called the Mycielskian of a graph G.

We first define the operation µ(G) and then show that ω(µ(G)) = ω(G) and
χ(µ(G)) = χ(G) + 1. This is done for arbitrary graph G, see also [10]. Then we
define the sequence of graphs Mn each of exponential size in n and give their
clique and chromatic numbers.
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The notation and terminology used here have been introduced in the following
papers: [1], [15], [13], [8], [5], [2], [14], [9], [16], [3], [6], [18], [19], [12], [17], [4],
and [7].

1. Preliminaries

One can prove the following propositions:

(1) For all real numbers x, y, z such that 0 ≤ x holds x ·(y−′z) = x ·y−′x ·z.
(2) For all natural numbers x, y, z holds x ∈ y \ z iff z ≤ x < y.

(3) For all sets A, B, C, D, E, X such that X ⊆ A or X ⊆ B or X ⊆ C or
X ⊆ D or X ⊆ E holds X ⊆ A ∪B ∪ C ∪D ∪ E.

(4) For all sets A, B, C, D, E, x holds x ∈ A ∪B ∪ C ∪D ∪ E iff x ∈ A or
x ∈ B or x ∈ C or x ∈ D or x ∈ E.
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(5) Let R be a symmetric relational structure and x, y be sets. Suppose
x ∈ the carrier of R and y ∈ the carrier of R and 〈〈x, y〉〉 ∈ the internal
relation of R. Then 〈〈y, x〉〉 ∈ the internal relation of R.

(6) For every symmetric relational structure R and for all elements x, y of
R such that x ≤ y holds y ≤ x.

2. Partitions

One can prove the following proposition

(7) For every set X and for every partition P of X holds P ⊆ X .

Let X be a set, let P be a partition of X, and let S be a subset of X. The
functor P �S yields a partition of S and is defined by:

(Def. 1) P �S = {x ∩ S;x ranges over elements of P : x meets S}.
Let X be a set. Observe that there exists a partition of X which is finite.
Let X be a set, let P be a finite partition of X, and let S be a subset of X.

Observe that P �S is finite.
One can prove the following propositions:

(8) For every set X and for every finite partition P of X and for every subset
S of X holds P �S ≤ P .

(9) Let X be a set, P be a finite partition of X, and S be a subset of X. Then
for every set p such that p ∈ P holds p meets S if and only if P �S = P .

(10) Let R be a relational structure, C be a coloring of R, and S be a subset
of R. Then C�S is a coloring of sub(S).

3. Chromatic Number and Clique Cover Number

Let R be a relational structure. We say that R is finitely colorable if and
only if:

(Def. 2) There exists a coloring of R which is finite.

One can check that there exists a relational structure which is finitely colo-
rable.

Let us observe that every relational structure which is finite is also finitely
colorable.

Let R be a finitely colorable relational structure. Observe that there exists
a coloring of R which is finite.

Let R be a finitely colorable relational structure and let S be a subset of R.
One can verify that sub(S) is finitely colorable.

Let R be a finitely colorable relational structure. The functor χ(R) yielding
a natural number is defined by:
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(Def. 3) There exists a finite coloring C of R such that C = χ(R) and for every
finite coloring C of R holds χ(R) ≤ C .

Let R be an empty relational structure. Observe that χ(R) is empty.
Let R be a non empty finitely colorable relational structure. Observe that

χ(R) is positive.
Let R be a relational structure. We say that R has finite clique cover if and

only if:

(Def. 4) There exists a clique-partition of R which is finite.

One can verify that there exists a relational structure which has finite clique
cover.

One can verify that every relational structure which is finite has also finite
clique cover.

Let R be a relational structure with finite clique cover. Observe that there
exists a clique-partition of R which is finite.

Let R be a relational structure with finite clique cover and let S be a subset
of R. Observe that sub(S) has finite clique cover.

Let R be a relational structure with finite clique cover. The functor κ(R)
yielding a natural number is defined by:

(Def. 5) There exists a finite clique-partition C of R such that C = κ(R) and for
every finite clique-partition C of R holds κ(R) ≤ C .

Let R be an empty relational structure. One can check that κ(R) is empty.
Let R be a non empty relational structure with finite clique cover. One can

verify that κ(R) is positive.
We now state several propositions:

(11) For every finite relational structure R holds ω(R) ≤ the carrier of R.

(12) For every finite relational structure R holds α(R) ≤ the carrier of R.

(13) For every finite relational structure R holds χ(R) ≤ the carrier of R.

(14) For every finite relational structure R holds κ(R) ≤ the carrier of R.

(15) For every finitely colorable relational structure R with finite clique num-
ber holds ω(R) ≤ χ(R).

(16) For every relational structure R with finite stability number and finite
clique cover holds α(R) ≤ κ(R).

4. Complement

The following two propositions are true:

(17) Let R be a relational structure, x, y be elements of R, and a, b be
elements of ComplRelStrR. If x = a and y = b and x ≤ y, then a 6≤ b.
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(18) Let R be a relational structure, x, y be elements of R, and a, b be
elements of ComplRelStrR. If x = a and y = b and x 6= y and x ∈ the
carrier of R and a 6≤ b, then x ≤ y.

Let R be a finite relational structure. Note that ComplRelStrR is finite.
Next we state four propositions:

(19) For every symmetric relational structure R holds every clique of R is a
stable set of ComplRelStrR.

(20) For every symmetric relational structure R holds every clique of
ComplRelStrR is a stable set of R.

(21) For every relational structure R holds every stable set of R is a clique of
ComplRelStrR.

(22) For every relational structure R holds every stable set of ComplRelStrR
is a clique of R.

Let R be a relational structure with finite clique number.
One can verify that ComplRelStrR has finite stability number.
Let R be a symmetric relational structure with finite stability number. Ob-

serve that ComplRelStrR has finite clique number.
The following propositions are true:

(23) For every symmetric relational structure R with finite clique number
holds ω(R) = α(ComplRelStrR).

(24) For every symmetric relational structure R with finite stability number
holds α(R) = ω(ComplRelStrR).

(25) For every relational structure R holds every coloring of R is a clique-
partition of ComplRelStrR.

(26) For every symmetric relational structure R holds every clique-partition
of ComplRelStrR is a coloring of R.

(27) For every symmetric relational structure R holds every clique-partition
of R is a coloring of ComplRelStrR.

(28) For every relational structure R holds every coloring of ComplRelStrR
is a clique-partition of R.

Let R be a finitely colorable relational structure.
Observe that ComplRelStrR has finite clique cover.
Let R be a symmetric relational structure with finite clique cover. One can

check that ComplRelStrR is finitely colorable.
The following propositions are true:

(29) For every finitely colorable symmetric relational structure R holds
χ(R) = κ(ComplRelStrR).

(30) For every symmetric relational structure R with finite clique cover holds
κ(R) = χ(ComplRelStrR).
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5. Adjacent Set

Let R be a relational structure and let v be an element of R. The functor
Adjacent(v) yields a subset of R and is defined as follows:

(Def. 6) For every element x of R holds x ∈ Adjacent(v) iff x < v or v < x.

The following proposition is true

(31) Let R be a finitely colorable relational structure, C be a finite coloring
of R, and c be a set. Suppose c ∈ C and C = χ(R). Then there exists
an element v of R such that v ∈ c and for every element d of C such
that d 6= c there exists an element w of R such that w ∈ Adjacent(v) and
w ∈ d.

6. Natural Numbers as Vertices

Let n be a natural number. A strict relational structure is said to be a
relational structure of n if:

(Def. 7) The carrier of it = n.

Let us observe that every relational structure of 0 is empty.
Let n be a non empty natural number. Note that every relational structure

of n is non empty.
Let n be a natural number. Note that every relational structure of n is finite

and there exists a relational structure of n which is irreflexive.
Let n be a natural number. The functor K(n) yields a relational structure

of n and is defined as follows:

(Def. 8) The internal relation of K(n) = n× n \ idn.

The following proposition is true

(32) Let n be a natural number and x, y be sets. Suppose x, y ∈ n. Then 〈〈x,
y〉〉 ∈ the internal relation of K(n) if and only if x 6= y.

Let n be a natural number. Note that K(n) is irreflexive and symmetric.
Let n be a natural number. Observe that ΩK(n) is a clique.
The following propositions are true:

(33) For every natural number n holds ω(K(n)) = n.

(34) For every non empty natural number n holds α(K(n)) = 1.

(35) For every natural number n holds χ(K(n)) = n.

(36) For every non empty natural number n holds κ(K(n)) = 1.
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7. Mycielskian of a Graph

Let n be a natural number and let R be a relational structure of n. The
functor MycielskianR yields a relational structure of 2 · n+ 1 and is defined by
the condition (Def. 9).

(Def. 9) The internal relation of MycielskianR = (the internal relation of R) ∪
{〈〈x, y + n〉〉;x ranges over elements of N, y ranges over elements of N: 〈〈x,
y〉〉 ∈ the internal relation of R}∪{〈〈x+n, y〉〉;x ranges over elements of N,
y ranges over elements of N: 〈〈x, y〉〉 ∈ the internal relation of R}∪{2 ·n}×
(2 · n \ n) ∪ (2 · n \ n)× {2 · n}.

One can prove the following propositions:

(37) Let n be a natural number and R be a relational structure of n. Then
the carrier of R ⊆ the carrier of MycielskianR.

(38) Let n be a natural number, R be a relational structure of n, and x, y be
natural numbers. Suppose 〈〈x, y〉〉 ∈ the internal relation of MycielskianR.
Then

(i) x < n and y < n, or
(ii) x < n ≤ y < 2 · n, or

(iii) n ≤ x < 2 · n and y < n, or
(iv) x = 2 · n and n ≤ y < 2 · n, or
(v) n ≤ x < 2 · n and y = 2 · n.

(39) Let n be a natural number and R be a relational structure of n. Then
the internal relation of R ⊆ the internal relation of MycielskianR.

(40) Let n be a natural number, R be a relational structure of n, and x, y be
sets. Suppose x, y ∈ n and 〈〈x, y〉〉 ∈ the internal relation of MycielskianR.
Then 〈〈x, y〉〉 ∈ the internal relation of R.

(41) Let n be a natural number, R be a relational structure of n, and x, y
be natural numbers. Suppose 〈〈x, y〉〉 ∈ the internal relation of R. Then
〈〈x, y + n〉〉 ∈ the internal relation of MycielskianR and 〈〈x + n, y〉〉 ∈ the
internal relation of MycielskianR.

(42) Let n be a natural number, R be a relational structure of n, and x, y be
natural numbers. Suppose x ∈ n and 〈〈x, y + n〉〉 ∈ the internal relation of
MycielskianR. Then 〈〈x, y〉〉 ∈ the internal relation of R.

(43) Let n be a natural number, R be a relational structure of n, and x, y be
natural numbers. Suppose y ∈ n and 〈〈x+ n, y〉〉 ∈ the internal relation of
MycielskianR. Then 〈〈x, y〉〉 ∈ the internal relation of R.

(44) Let n be a natural number, R be a relational structure of n, and m

be a natural number. Suppose n ≤ m < 2 · n. Then 〈〈m, 2 · n〉〉 ∈ the
internal relation of MycielskianR and 〈〈2 · n, m〉〉 ∈ the internal relation of
MycielskianR.
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(45) Let n be a natural number, R be a relational structure of n, and S be a
subset of MycielskianR. If S = n, then R = sub(S).

(46) For every natural number n and for every irreflexive relational structure
R of n such that 2 ≤ ω(R) holds ω(R) = ω(MycielskianR).

(47) For every finitely colorable relational structure R and for every subset S
of R holds χ(R) ≥ χ(sub(S)).

(48) For every natural number n and for every irreflexive relational structure
R of n holds χ(MycielskianR) = 1 + χ(R).

Let n be a natural number. The functor Mycielskiann yielding a relational
structure of 3 · 2n −′ 1 is defined by the condition (Def. 10).

(Def. 10) There exists a function m1 such that
(i) Mycielskiann = m1(n),

(ii) domm1 = N,
(iii) m1(0) = K(2), and
(iv) for every natural number k and for every relational structure R of

3 · 2k −′ 1 such that R = m1(k) holds m1(k + 1) = MycielskianR.

The following proposition is true

(49) Mycielskian 0 = K(2) and for every natural number k holds
Mycielskian(k + 1) = Mycielskian Mycielskian k.

Let n be a natural number. One can verify that Mycielskiann is irreflexive.
Let n be a natural number. Observe that Mycielskiann is symmetric.
We now state three propositions:

(50) For every natural number n holds ω(Mycielskiann) = 2 and
χ(Mycielskiann) = n+ 2.

(51) For every natural number n there exists a finite relational structure R
such that ω(R) = 2 and χ(R) > n.

(52) For every natural number n there exists a finite relational structure R
such that α(R) = 2 and κ(R) > n.
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