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The Definition of Topological Manifolds
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Summary. This article introduces the definition of n-locally Euclidean
topological spaces and topological manifolds [13].
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The papers [8], [1], [6], [15], [7], [18], [3], [4], [17], [2], [16], [9], [19], [20], [11],
[12], [10], [14], and [5] provide the terminology and notation for this paper.

1. Preliminaries

Let x, y be sets. Observe that {〈〈x, y〉〉} is one-to-one.
In the sequel n denotes a natural number.
One can prove the following two propositions:

(1) For every non empty topological space T holds T and T �ΩT are home-
omorphic.

(2) Let X be a non empty subspace of EnT and f be a function from X into
R1. Suppose f is continuous. Then there exists a function g from X into
EnT such that

(i) for every point a of X and for every point b of EnT and for every real
number r such that a = b and f(a) = r holds g(b) = r · b, and

(ii) g is continuous.

Let us consider n and let S be a subset of EnT. We say that S is ball if and
only if:

(Def. 1) There exists a point p of EnT and there exists a real number r such that
S = Ball(p, r).

41
c© 2011 University of Białystok

ISSN 1426–2630(p), 1898-9934(e)

http://fm.mizar.org/miz/mfold_1.miz
http://ftp.mizar.org/


42 marco riccardi

Let us consider n. Observe that there exists a subset of EnT which is ball and
every subset of EnT which is ball is also open.

Let us consider n. One can verify that there exists a subset of EnT which is
non empty and ball.

In the sequel p denotes a point of EnT and r denotes a real number.
The following proposition is true

(3) For every open subset S of EnT such that p ∈ S there exists ball subset
B of EnT such that B ⊆ S and p ∈ B.

Let us consider n, p, r. The functor Br(p) yields a subspace of EnT and is
defined as follows:

(Def. 2) Br(p) = EnT� Ball(p, r).

Let us consider n. The functor Bn yields a subspace of EnT and is defined as
follows:

(Def. 3) Bn = B1(0EnT).

Let us consider n. One can verify that Bn is non empty. Let us consider p
and let s be a positive real number. Observe that Bs(p) is non empty.

The following propositions are true:

(4) The carrier of Br(p) = Ball(p, r).

(5) If n 6= 0 and p is a point of Bn, then |p| < 1.

(6) Let f be a function from Bn into EnT. Suppose n 6= 0 and for every point
a of Bn and for every point b of EnT such that a = b holds f(a) = 1

1−|b|·|b| ·b.
Then f is homeomorphism.

(7) Let r be a positive real number and f be a function from Bn into Br(p).
Suppose n 6= 0 and for every point a of Bn and for every point b of EnT
such that a = b holds f(a) = r · b+ p. Then f is homeomorphism.

(8) Bn and EnT are homeomorphic.

In the sequel q denotes a point of EnT.
We now state three propositions:

(9) For all positive real numbers r, s holds Br(p) and Bs(q) are homeomor-
phic.

(10) For every non empty ball subset B of EnT holds B and ΩEnT are home-
omorphic.

(11) Let M , N be non empty topological spaces, p be a point of M , U be
a neighbourhood of p, and B be an open subset of N . Suppose U and B

are homeomorphic. Then there exists an open subset V of M and there
exists an open subset S of N such that V ⊆ U and p ∈ V and V and S

are homeomorphic.
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2. Manifold

In the sequel M is a non empty topological space.
Let us consider n, M . We say that M is n-locally Euclidean if and only if

the condition (Def. 4) is satisfied.

(Def. 4) Let p be a point of M . Then there exists a neighbourhood U of p and
there exists an open subset S of EnT such that U and S are homeomorphic.

Let us consider n. Observe that EnT is n-locally Euclidean.
Let us consider n. Observe that there exists a non empty topological space

which is n-locally Euclidean.
We now state two propositions:

(12) M is n-locally Euclidean if and only if for every point p of M there exists
a neighbourhood U of p and there exists ball subset B of EnT such that U
and B are homeomorphic.

(13) M is n-locally Euclidean if and only if for every point p of M there exists
a neighbourhood U of p such that U and ΩEnT are homeomorphic.

Let us consider n. Observe that every non empty topological space which is
n-locally Euclidean is also first-countable.

Let us note that every non empty topological space which is 0-locally Euc-
lidean is also discrete and every non empty topological space which is discrete
is also 0-locally Euclidean.

Let us consider n. One can verify that EnT is second-countable.
Let us consider n. Note that there exists a non empty topological space

which is second-countable, Hausdorff, and n-locally Euclidean.
Let us consider n, M . We say that M is n-manifold if and only if:

(Def. 5) M is second-countable, Hausdorff, and n-locally Euclidean.

Let us consider M . We say that M is manifold-like if and only if:

(Def. 6) There exists n such that M is n-manifold.

Let us consider n. Observe that there exists a non empty topological space
which is n-manifold.

Let us consider n. One can check the following observations:

∗ every non empty topological space which is n-manifold is also second-
countable, Hausdorff, and n-locally Euclidean,

∗ every non empty topological space which is second-countable, Hausdorff,
and n-locally Euclidean is also n-manifold, and

∗ every non empty topological space which is n-manifold is also manifold-
like.

Let us note that every non empty topological space which is second-countable
and discrete is also 0-manifold.
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Let us consider n and let M be an n-manifold non empty topological space.
One can verify that every non empty subspace of M which is open is also n-
manifold.

Let us note that there exists a non empty topological space which is manifold-
like.

A manifold is a manifold-like non empty topological space.
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