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Summary. In this article, we define the Riemann integral on functions
from R into real normed space and prove the linearity of this operator. As a
result, the Riemann integration can be applied to a wider range of functions.
The proof method follows the [16].

MML identifier: INTEGR18, version: 7.11.07 4.156.1112

The terminology and notation used here have been introduced in the following
articles: [2], [3], [4], [5], [7], [10], [8], [9], [1], [14], [6], [13], [15], [11], [19], [17],
[12], [18], and [20].

1. Preliminaries

Let X be a real normed space, let A be a closed-interval subset of R, let f
be a function from A into the carrier of X, and let D be a Division of A. A
finite sequence of elements of X is said to be a middle volume of f and D if it
satisfies the conditions (Def. 1).

(Def. 1)(i) len it = lenD, and
(ii) for every natural number i such that i ∈ domD there exists a point c

of X such that c ∈ rng(f� divset(D, i)) and it(i) = vol(divset(D, i)) · c.
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Let X be a real normed space, let A be a closed-interval subset of R, let f
be a function from A into the carrier of X, let D be a Division of A, and let F
be a middle volume of f and D. The functor middle sum(f, F ) yielding a point
of X is defined by:

(Def. 2) middle sum(f, F ) =
∑
F.

Let X be a real normed space, let A be a closed-interval subset of R, let f
be a function from A into the carrier of X, and let T be a division sequence
of A. A function from N into (the carrier of X)∗ is said to be a middle volume
sequence of f and T if:

(Def. 3) For every element k of N holds it(k) is a middle volume of f and T (k).

Let X be a real normed space, let A be a closed-interval subset of R, let f
be a function from A into the carrier of X, let T be a division sequence of A,
let S be a middle volume sequence of f and T , and let k be an element of N.
Then S(k) is a middle volume of f and T (k).

Let X be a real normed space, let A be a closed-interval subset of R, let f be
a function from A into the carrier of X, let T be a division sequence of A, and
let S be a middle volume sequence of f and T . The functor middle sum(f, S)
yielding a sequence of X is defined as follows:

(Def. 4) For every element i of N holds
(middle sum(f, S))(i) = middle sum(f, S(i)).

2. Definition of Riemann Integral on Functions from R into Real
Normed Space

Let X be a real normed space, let A be a closed-interval subset of R, and
let f be a function from A into the carrier of X. We say that f is integrable if
and only if the condition (Def. 5) is satisfied.

(Def. 5) There exists a point I of X such that for every division sequence
T of A and for every middle volume sequence S of f and T if δT is
convergent and lim(δT ) = 0, then middle sum(f, S) is convergent and
lim middle sum(f, S) = I.

We now state three propositions:

(1) Let X be a real normed space and R1, R2, R3 be finite sequences of
elements of X. If lenR1 = lenR2 and R3 = R1 +R2, then

∑
R3 =

∑
R1 +∑

R2.

(2) Let X be a real normed space and R1, R2, R3 be finite sequences of
elements of X. If lenR1 = lenR2 and R3 = R1−R2, then

∑
R3 =

∑
R1−∑

R2.

(3) Let X be a real normed space, R1, R2 be finite sequences of elements of
X, and a be an element of R. If R2 = aR1, then

∑
R2 = a ·

∑
R1.
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Let X be a real normed space, let A be a closed-interval subset of R, and let
f be a function from A into the carrier of X. Let us assume that f is integrable.
The functor integral f yields a point ofX and is defined by the condition (Def. 6).

(Def. 6) Let T be a division sequence of A and S be a middle volume sequence
of f and T . If δT is convergent and lim(δT ) = 0, then middle sum(f, S) is
convergent and lim middle sum(f, S) = integral f.

We now state four propositions:

(4) Let X be a real normed space, A be a closed-interval subset of R, r be a
real number, and f , h be functions from A into the carrier of X. If h = r f

and f is integrable, then h is integrable and integralh = r · integral f.

(5) Let X be a real normed space, A be a closed-interval subset of R, and f ,
h be functions from A into the carrier of X. If h = −f and f is integrable,
then h is integrable and integralh = −integral f.

(6) Let X be a real normed space, A be a closed-interval subset of R, and
f , g, h be functions from A into the carrier of X. Suppose h = f + g and
f is integrable and g is integrable. Then h is integrable and integralh =
integral f + integral g.

(7) Let X be a real normed space, A be a closed-interval subset of R, and
f , g, h be functions from A into the carrier of X. Suppose h = f − g and
f is integrable and g is integrable. Then h is integrable and integralh =
integral f − integral g.

Let X be a real normed space, let A be a closed-interval subset of R, and let
f be a partial function from R to the carrier of X. We say that f is integrable
on A if and only if:

(Def. 7) There exists a function g from A into the carrier of X such that g = f�A
and g is integrable.

Let X be a real normed space, let A be a closed-interval subset of R, and let f
be a partial function from R to the carrier of X. Let us assume that A ⊆ dom f.

The functor
∫
A

f(x)dx yields an element of X and is defined as follows:

(Def. 8) There exists a function g from A into the carrier of X such that g = f�A

and
∫
A

f(x)dx = integral g.

We now state several propositions:

(8) Let A be a closed-interval subset of R, f be a partial function from R to
the carrier of X, and g be a function from A into the carrier of X. Suppose
f�A = g. Then f is integrable on A if and only if g is integrable.

(9) Let A be a closed-interval subset of R, f be a partial function from R
to the carrier of X, and g be a function from A into the carrier of X. If
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A ⊆ dom f and f�A = g, then
∫
A

f(x)dx = integral g.

(10) Let X, Y be non empty sets, V be a real normed space, g, f be partial
functions from X to the carrier of V , and g1, f1 be partial functions from
Y to the carrier of V . If g = g1 and f = f1, then g1 + f1 = g + f.

(11) Let X, Y be non empty sets, V be a real normed space, g, f be partial
functions from X to the carrier of V , and g1, f1 be partial functions from
Y to the carrier of V . If g = g1 and f = f1, then g1 − f1 = g − f.

(12) Let r be a real number, X, Y be non empty sets, V be a real normed
space, g be a partial function from X to the carrier of V , and g1 be a
partial function from Y to the carrier of V . If g = g1, then r g1 = r g.

3. Linearity of the Integration Operator

Next we state three propositions:

(13) Let r be a real number, A be a closed-interval subset of R, and f be
a partial function from R to the carrier of X. Suppose A ⊆ dom f and

f is integrable on A. Then r f is integrable on A and
∫
A

(r f)(x)dx =

r ·
∫
A

f(x)dx.

(14) Let A be a closed-interval subset of R and f1, f2 be partial functions from
R to the carrier of X. Suppose f1 is integrable on A and f2 is integrable
on A and A ⊆ dom f1 and A ⊆ dom f2. Then f1 + f2 is integrable on A

and
∫
A

(f1 + f2)(x)dx =
∫
A

f1(x)dx+
∫
A

f2(x)dx.

(15) Let A be a closed-interval subset of R and f1, f2 be partial functions from
R to the carrier of X. Suppose f1 is integrable on A and f2 is integrable
on A and A ⊆ dom f1 and A ⊆ dom f2. Then f1 − f2 is integrable on A

and
∫
A

(f1 − f2)(x)dx =
∫
A

f1(x)dx−
∫
A

f2(x)dx.

Let X be a real normed space, let f be a partial function from R to the

carrier of X, and let a, b be real numbers. The functor
b∫
a

f(x)dx yielding an

element of X is defined as follows:

(Def. 9)
b∫
a

f(x)dx =



∫
[a,b]

f(x)dx, if a ≤ b,

−
∫

[b,a]

f(x)dx, otherwise.
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One can prove the following propositions:

(16) Let f be a partial function from R to the carrier of X, A be a closed-
interval subset of R, and a, b be real numbers. If A = [a, b], then∫
A

f(x)dx =
b∫
a

f(x)dx.

(17) Let f be a partial function from R to the carrier of X and A be a closed-
interval subset of R. If vol(A) = 0 and A ⊆ dom f, then f is integrable on

A and
∫
A

f(x)dx = 0X .

(18) Let f be a partial function from R to the carrier of X, A be a closed-
interval subset of R, and a, b be real numbers. If A = [b, a] and A ⊆ dom f,

then −
∫
A

f(x)dx =
b∫
a

f(x)dx.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529–536, 1990.

[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[7] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral

and some related lemmas. Formalized Mathematics, 8(1):93–102, 1999.
[8] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Darboux’s theorem. Formalized
Mathematics, 9(1):197–200, 2001.

[9] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for
partial functions from R to R and integrability for continuous functions. Formalized
Mathematics, 9(2):281–284, 2001.

[10] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Scalar multiple of Riemann
definite integral. Formalized Mathematics, 9(1):191–196, 2001.

[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[12] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathe-
matics, 1(2):273–275, 1990.

[13] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223–230, 1990.

[14] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111–115, 1991.
[15] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real num-

bers. Formalized Mathematics, 1(4):777–780, 1990.
[16] Murray R. Spiegel. Theory and Problems of Vector Analysis. McGraw-Hill, 1974.
[17] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296,

1990.
[18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.



22 keiichi miyajima et al.

[19] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,
1990.

[20] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Ma-
thematics, 3(2):171–175, 1992.

Received May 20, 2010


