Sperner's Lemma Karol Pąk Institute of Informatics University of Białystok Poland **Summary.** In this article we introduce and prove properties of simplicial complexes in real linear spaces which are necessary to formulate Sperner's lemma. The lemma states that for a function f, which for an arbitrary vertex v of the barycentric subdivision \mathcal{B} of simplex \mathcal{K} assigns some vertex from a face of \mathcal{K} which contains v, we can find a simplex S of \mathcal{B} which satisfies $f(S) = \mathcal{K}$ (see [10]). MML identifier: SIMPLEX1, version: 7.11.07 4.146.1112 The notation and terminology used in this paper have been introduced in the following papers: [2], [11], [19], [9], [6], [7], [1], [5], [3], [4], [13], [15], [12], [22], [23], [16], [18], [20], [14], [17], [21], and [8]. ## 1. Preliminaries We follow the rules: x, y, X denote sets and n, k denote natural numbers. The following two propositions are true: - (1) Let R be a binary relation and C be a cardinal number. If for every x such that $x \in X$ holds $\operatorname{Card}(R^{\circ}x) = C$, then $\operatorname{Card} R = \operatorname{Card}(R \upharpoonright (\operatorname{dom} R \setminus X)) + C \cdot \operatorname{Card} X$. - (2) Let Y be a non empty finite set. Suppose $\operatorname{Card} X = \overline{\overline{Y}} + 1$. Let f be a function from X into Y. Suppose f is onto. Then there exists y such that $y \in Y$ and $\operatorname{Card}(f^{-1}(\{y\})) = 2$ and for every x such that $x \in Y$ and $x \neq y$ holds $\operatorname{Card}(f^{-1}(\{x\})) = 1$. Let X be a 1-sorted structure. A simplicial complex structure of X is a simplicial complex structure of the carrier of X. A simplicial complex of X is a simplicial complex of the carrier of X. Let X be a 1-sorted structure, let K be a simplicial complex structure of X, and let A be a subset of K. The functor ${}^{@}A$ yielding a subset of X is defined by: (Def. 1) $${}^{@}A = A$$. Let X be a 1-sorted structure, let K be a simplicial complex structure of X, and let A be a family of subsets of K. The functor [@]A yielding a family of subsets of X is defined by: (Def. 2) $${}^{@}A = A$$. We now state the proposition (3) Let X be a 1-sorted structure and K be a subset-closed simplicial complex structure of X. Suppose K is total. Let S be a finite subset of K. Suppose S is simplex-like. Then the complex of $\{^@S\}$ is a subsimplicial complex of K. ### 2. The Area of an Abstract Simplicial Complex For simplicity, we adopt the following rules: R_1 denotes a non empty RLS structure, K_1 , K_2 , K_3 denote simplicial complex structures of R_1 , V denotes a real linear space, and K_4 denotes a non void simplicial complex of V. Let us consider R_1 , K_1 . The functor $|K_1|$ yields a subset of R_1 and is defined by: (Def. 3) $x \in |K_1|$ iff there exists a subset A of K_1 such that A is simplex-like and $x \in \text{conv}^{@}A$. One can prove the following propositions: - (4) If the topology of $K_2 \subseteq$ the topology of K_3 , then $|K_2| \subseteq |K_3|$. - (5) For every subset A of K_1 such that A is simplex-like holds $\operatorname{conv}^{@}A \subseteq |K_1|$. - (6) Let K be a subset-closed simplicial complex structure of V. Then $x \in |K|$ if and only if there exists a subset A of K such that A is simplex-like and $x \in \text{Int}(^{@}A)$. - (7) $|K_1|$ is empty iff K_1 is empty-membered. - (8) For every subset A of R_1 holds | the complex of $\{A\}$ | = conv A. - (9) For all families A, B of subsets of R_1 holds |the complex of $A \cup B$ | = |the complex of $A \mid \cup$ |the complex of $B \mid$. #### 3. The Subdivision of a Simplicial Complex Let us consider R_1 , K_1 . A simplicial complex structure of R_1 is said to be a subdivision structure of K_1 if it satisfies the conditions (Def. 4). ## (Def. 4)(i) $|K_1| \subseteq |it|$, and (ii) for every subset A of it such that A is simplex-like there exists a subset B of K_1 such that B is simplex-like and $\operatorname{conv}^{@}A \subseteq \operatorname{conv}^{@}B$. The following proposition is true (10) For every subdivision structure P of K_1 holds $|K_1| = |P|$. Let us consider R_1 and let K_1 be a simplicial complex structure of R_1 with a non-empty element. Observe that every subdivision structure of K_1 has a non-empty element. We now state four propositions: - (11) K_1 is a subdivision structure of K_1 . - (12) The complex of the topology of K_1 is a subdivision structure of K_1 . - (13) Let K be a subset-closed simplicial complex structure of V and S_1 be a family of subsets of K. Suppose $S_1 = \text{SubFin}(\text{the topology of } K)$. Then the complex of S_1 is a subdivision structure of K. - (14) For every subdivision structure P_1 of K_1 holds every subdivision structure of P_1 is a subdivision structure of K_1 . Let us consider V and let K be a simplicial complex structure of V. Note that there exists a subdivision structure of K which is finite-membered and subset-closed. Let us consider V and let K be a simplicial complex structure of V. A subdivision of K is a finite-membered subset-closed subdivision structure of K. We now state the proposition (15) Let K be a simplicial complex of V with empty element. Suppose $|K| \subseteq \Omega_K$. Let B be a function from $2_+^{\text{the carrier of }V}$ into the carrier of V. Suppose that for every simplex S of K such that S is non empty holds $B(S) \in \text{conv}^@S$. Then subdivision(B,K) is a subdivision structure of K. Let us consider V, K_4 . One can verify that there exists a subdivision of K_4 which is non void. ### 4. The Barycentric Subdivision Let us consider V, K_4 . Let us assume that $|K_4| \subseteq \Omega_{(K_4)}$. The functor BCS K_4 yields a non void subdivision of K_4 and is defined by: (Def. 5) BCS K_4 = subdivision(the center of mass of V, K_4). Let us consider n and let us consider V, K_4 . Let us assume that $|K_4| \subseteq \Omega_{(K_4)}$. The functor BCS (n, K_4) yields a non void subdivision of K_4 and is defined by: - (Def. 6) BCS (n, K_4) = subdivision $(n, \text{the center of mass of } V, K_4)$. - Next we state several propositions: - (16) If $|K_4| \subseteq \Omega_{(K_4)}$, then BCS $(0, K_4) = K_4$. (17) If $|K_4| \subseteq \Omega_{(K_4)}$, then BCS $(1, K_4) = BCS K_4$. - (18) If $|K_4| \subseteq \Omega_{(K_4)}$, then $\Omega_{\mathrm{BCS}(n,K_4)} = \Omega_{(K_4)}$. - (19) If $|K_4| \subseteq \Omega_{(K_4)}$, then $|BCS(n, K_4)| = |K_4|$. - (20) If $|K_4| \subseteq \Omega_{(K_4)}$, then $BCS(n+1, K_4) = BCSBCS(n, K_4)$. - (21) If $|K_4| \subseteq \Omega_{(K_4)}$ and degree $(K_4) \le 0$, then the topological structure of $K_4 = \operatorname{BCS} K_4$. - (22) If n > 0 and $|K_4| \subseteq \Omega_{(K_4)}$ and degree $(K_4) \le 0$, then the topological structure of $K_4 = BCS(n, K_4)$. - (23) Let S_2 be a non void subsimplicial complex of K_4 . If $|K_4| \subseteq \Omega_{(K_4)}$ and $|S_2| \subseteq \Omega_{(S_2)}$, then $BCS(n, S_2)$ is a subsimplicial complex of $BCS(n, K_4)$. - (24) If $|K_4| \subseteq \Omega_{(K_4)}$, then Vertices $K_4 \subseteq \text{Vertices BCS}(n, K_4)$. Let us consider n, V and let K be a non void total simplicial complex of V. Note that BCS(n, K) is total. Let us consider n, V and let K be a non void finite-vertices total simplicial complex of V. Note that BCS(n, K) is finite-vertices. ## 5. Selected Properties of Simplicial Complexes Let us consider V and let K be a simplicial complex structure of V. We say that K is affinely-independent if and only if: (Def. 7) For every subset A of K such that A is simplex-like holds ${}^{@}A$ is affinely-independent. Let us consider R_1 , K_1 . We say that K_1 is simplex-join-closed if and only if: (Def. 8) For all subsets A, B of K_1 such that A is simplex-like and B is simplex-like holds $\operatorname{conv}^{@}A \cap \operatorname{conv}^{@}B = \operatorname{conv}^{@}A \cap B$. Let us consider V. Note that every simplicial complex structure of V which is empty-membered is also affinely-independent. Let F be an affinely-independent family of subsets of V. Observe that the complex of F is affinely-independent. Let us consider R_1 . One can verify that every simplicial complex structure of R_1 which is empty-membered is also simplex-join-closed. Let us consider V and let I be an affinely-independent subset of V. One can check that the complex of $\{I\}$ is simplex-join-closed. Let us consider V. One can check that there exists a subset of V which is non empty, trivial, and affinely-independent. Let us consider V. One can check that there exists a simplicial complex of V which is finite-vertices, affinely-independent, simplex-join-closed, and total and has a non-empty element. Let us consider V and let K be an affinely-independent simplicial complex structure of V. One can verify that every subsimplicial complex of K is affinely-independent. Let us consider V and let K be a simplex-join-closed simplicial complex structure of V. One can check that every subsimplicial complex of K is simplex-join-closed. Next we state the proposition (25) Let K be a subset-closed simplicial complex structure of V. Then K is simplex-join-closed if and only if for all subsets A, B of K such that A is simplex-like and B is simplex-like and $\operatorname{Int}({}^{\textcircled{@}}A)$ meets $\operatorname{Int}({}^{\textcircled{@}}B)$ holds A = B. For simplicity, we follow the rules: K_5 is a simplex-join-closed simplicial complex of V, A_1 , B_1 are subsets of K_5 , K_6 is a non void affinely-independent simplicial complex of V, K_7 is a non void affinely-independent simplex-join-closed simplicial complex of V, and K is a non void affinely-independent simplex-join-closed total simplicial complex of V. Let us consider V, K_6 and let S be a simplex of K_6 . Note that ${}^{@}S$ is affinely-independent. One can prove the following propositions: - (26) If A_1 is simplex-like and B_1 is simplex-like and $Int(^@A_1)$ meets $conv^@B_1$, then $A_1 \subseteq B_1$. - (27) If A_1 is simplex-like and ${}^{@}A_1$ is affinely-independent and B_1 is simplex-like, then $\operatorname{Int}({}^{@}A_1) \subseteq \operatorname{conv}{}^{@}B_1$ iff $A_1 \subseteq B_1$. - (28) If $|K_6| \subseteq \Omega_{(K_6)}$, then BCS K_6 is affinely-independent. Let us consider V and let K_6 be a non void affinely-independent total simplicial complex of V. Observe that BCS K_6 is affinely-independent. Let us consider n. Observe that BCS (n, K_6) is affinely-independent. Let us consider V, K_7 . One can verify that (the center of mass of V) the topology of K_7 is one-to-one. We now state the proposition (29) If $|K_7| \subseteq \Omega_{(K_7)}$, then BCS K_7 is simplex-join-closed. Let us consider V, K. Note that BCS K is simplex-join-closed. Let us consider n. Observe that BCS(n, K) is simplex-join-closed. The following four propositions are true: - (30) Suppose $|K_4| \subseteq \Omega_{(K_4)}$ and for every n such that $n \leq \operatorname{degree}(K_4)$ there exists a simplex S of K_4 such that $\overline{\overline{S}} = n + 1$ and ${}^{\tiny{\textcircled{0}}}S$ is affinely-independent. Then $\operatorname{degree}(K_4) = \operatorname{degree}(\operatorname{BCS} K_4)$. - (31) If $|K_6| \subseteq \Omega_{(K_6)}$, then degree $(K_6) = \text{degree}(BCS K_6)$. - (32) If $|K_6| \subseteq \Omega_{(K_6)}$, then degree $(K_6) = \text{degree}(BCS(n, K_6))$. (33) Let S be a simplex-like family of subsets of K_7 . If S has non empty elements, then Card $S = \text{Card}(\text{the center of mass of } V)^{\circ}S)$. For simplicity, we adopt the following convention: A_2 denotes a finite affinely-independent subset of V, A_3 , B_2 denote finite subsets of V, B denotes a subset of V, S, T denote finite families of subsets of V, S_3 denotes a \subseteq -linear finite finite-membered family of subsets of V, S_4 , T_1 denote finite simplex-like families of subsets of K, and A_4 denotes a simplex of K. The following propositions are true: - (34) Let S_6 , S_5 be simplex-like families of subsets of K_7 . Suppose that - (i) $|K_7| \subseteq \Omega_{(K_7)}$, - (ii) S_6 has non empty elements, - (iii) (the center of mass of V) $^{\circ}S_5$ is a simplex of BCS K_7 , and - (iv) (the center of mass of V) $^{\circ}S_6 \subseteq$ (the center of mass of V) $^{\circ}S_5$. Then $S_6 \subseteq S_5$ and S_5 is \subseteq -linear. - (35) Suppose S has non empty elements and $\bigcup S \subseteq A_2$ and $\overline{\overline{S}} + n + 1 \le \overline{\overline{A_2}}$. Then the following statements are equivalent - (i) B_2 is a simplex of $n + \overline{S}$ and BCS (the complex of $\{A_2\}$) and (the center of mass of V) $^{\circ}S \subseteq B_2$, - (ii) there exists T such that T misses S and $T \cup S$ is \subseteq -linear and has non empty elements and $\overline{T} = n + 1$ and $\bigcup T \subseteq A_2$ and $B_2 =$ (the center of mass of V) $^{\circ}S \cup$ (the center of mass of V) $^{\circ}T$. - (36) Suppose S_3 has non empty elements and $\bigcup S_3 \subseteq A_2$. Then the following statements are equivalent - (i) (the center of mass of V) $^{\circ}S_3$ is a simplex of $\overline{\bigcup S_3} 1$ and BCS (the complex of $\{A_2\}$), - (ii) for every n such that $0 < n \le \overline{\overline{\bigcup S_3}}$ there exists x such that $x \in S_3$ and $\operatorname{Card} x = n$. - (37) Let given S. Suppose S is \subseteq -linear and has non empty elements and $\overline{\overline{S}} = \operatorname{Card} \bigcup S$. Let given A_3 , B_2 . Suppose A_3 is non empty and A_3 misses $\bigcup S$ and $\bigcup S \cup A_3$ is affinely-independent and $\bigcup S \cup A_3 \subseteq B_2$. Then (the center of mass of V) $^{\circ}S \cup$ (the center of mass of V) $^{\circ}\{\bigcup S \cup A_3\}$ is a simplex of $\overline{\overline{S}}$ and BCS (the complex of $\{B_2\}$). - (38) Let given S_3 . Suppose S_3 has non empty elements and $\overline{S_3} = \overline{\bigcup S_3}$. Let v be an element of V. Suppose $v \notin \bigcup S_3$ and $\bigcup S_3 \cup \{v\}$ is affinely-independent. Then $\{S_6; S_6 \text{ ranges over simplexes of } \overline{S_3} \text{ and BCS (the complex of } \{\bigcup S_3 \cup \{v\}\})$: (the center of mass of V)° $S_3 \subseteq S_6$ = {(the center of mass of V)° $S_3 \cup \{v\}$ }. - (39) Let given S_3 . Suppose S_3 has non empty elements and $\overline{S_3} + 1 = \overline{\bigcup S_3}$ and $\bigcup S_3$ is affinely-independent. Then $\operatorname{Card}\{S_6; S_6 \text{ ranges over simplexes of } \overline{S_3}$ and BCS (the complex of $\{\bigcup S_3\}$): (the center of mass of V)° $S_3 \subseteq S_6\} = 2$. - (40) Suppose A_2 is a simplex of K. Then B is a simplex of BCS (the complex of $\{A_2\}$) if and only if B is a simplex of BCS K and conv $B \subseteq \text{conv } A_2$. - (41) Suppose S_4 has non empty elements and $\overline{S_4} + n \leq \operatorname{degree}(K)$. Then the following statements are equivalent - (i) A_3 is a simplex of $n + \overline{S_4}$ and BCS K and (the center of mass of $V)^{\circ}S_4 \subseteq A_3$, - (ii) there exists T_1 such that T_1 misses S_4 and $T_1 \cup S_4$ is \subseteq -linear and has non empty elements and $\overline{\overline{T_1}} = n + 1$ and $A_3 =$ (the center of mass of V) $^{\circ}S_4 \cup$ (the center of mass of V) $^{\circ}T_1$. - (42) Suppose S_4 is \subseteq -linear and has non empty elements and $\overline{S_4} = \overline{\bigcup S_4}$ and $\bigcup S_4 \subseteq A_4$ and $\overline{A_4} = \overline{S_4} + 1$. Then $\{S_6; S_6 \text{ ranges over simplexes of } \overline{S_4} = 1\}$ and BCS K: (the center of mass of V)° $S_4 \subseteq S_6 \land \text{conv}^@S_6 \subseteq \text{conv}^@A_4\} = \{(\text{the center of mass of } V)^\circ S_4 \cup (\text{the center of mass of } V)^\circ \{A_4\}\}.$ - (43) Suppose S_4 is \subseteq -linear and has non empty elements and $\overline{S_4} + 1 = \overline{\bigcup S_4}$. Then $\operatorname{Card}\{S_6; S_6 \text{ ranges over simplexes of } \overline{S_4} \text{ and } \operatorname{BCS} K : (the center of mass of } V)^{\circ}S_4 \subseteq S_6 \wedge \operatorname{conv}^{@}S_6 \subseteq \operatorname{conv}^{@}\bigcup S_4\} = 2.$ - (44) Let given A_3 . Suppose that - (i) K is a subdivision of the complex of $\{A_3\}$, - (ii) $\overline{A_3} = n + 1$, - (iii) degree(K) = n, and - (iv) for every simplex S of n-1 and K and for every X such that $X = \{S_6; S_6 \text{ ranges over simplexes of } n \text{ and } K : S \subseteq S_6\}$ holds if $\operatorname{conv}^@S$ meets Int A_3 , then $\operatorname{Card} X = 2$ and if $\operatorname{conv}^@S$ misses Int A_3 , then $\operatorname{Card} X = 1$. Let S be a simplex of n-1 and $\operatorname{BCS} K$ and given X such that $X = \{S_6; S_6 \text{ ranges over simplexes of } n \text{ and } \operatorname{BCS} K : S \subseteq S_6\}$. Then - (v) if $\operatorname{conv}^{@}S$ meets $\operatorname{Int} A_3$, then $\operatorname{Card} X = 2$, and - (vi) if $\operatorname{conv}^{@}S$ misses $\operatorname{Int} A_3$, then $\operatorname{Card} X = 1$. - (45) Let S be a simplex of n-1 and BCS(k), the complex of $\{A_2\}$) such that $\overline{A_2} = n+1$ and $X = \{S_6; S_6 \text{ ranges over simplexes of } n \text{ and BCS}(k)$, the complex of $\{A_2\}$): $S \subseteq S_6\}$. Then - (i) if $\operatorname{conv}^{@}S$ meets $\operatorname{Int} A_2$, then $\operatorname{Card} X = 2$, and - (ii) if $\operatorname{conv}^{@}S$ misses $\operatorname{Int} A_2$, then $\operatorname{Card} X = 1$. ## 6. The Main Theorem In the sequel v is a vertex of BCS(k, the complex of $\{A_2\}$) and F is a function from Vertices BCS(k, the complex of $\{A_2\}$) into A_2 . The following two propositions are true: (46) Let given F. Suppose that for all v, B such that $B \subseteq A_2$ and $v \in \text{conv } B$ holds $F(v) \in B$. Then there exists n such that $\text{Card}\{S; S \text{ ranges over}\}$ - simplexes of $\overline{\overline{A_2}} 1$ and BCS $(k, \text{the complex of } \{A_2\})$: $F^{\circ}S = A_2\} = 2 \cdot n + 1$. - (47) Let given F. Suppose that for all v, B such that $B \subseteq A_2$ and $v \in \text{conv } B$ holds $F(v) \in B$. Then there exists a simplex S of $\overline{A_2} 1$ and BCS(k), the complex of $\{A_2\}$) such that $F \circ S = A_2$. ## References - [1] Broderick Arneson and Piotr Rudnicki. Recognizing chordal graphs: Lex BFS and MCS. Formalized Mathematics, 14(4):187–205, 2006, doi:10.2478/v10037-006-0022-z. - [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990. - [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990. - [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. - [5] Grzegorz Bancerek and Yasunari Shidama. Introduction to matroids. Formalized Mathematics, 16(4):325–332, 2008, doi:10.2478/v10037-008-0040-0. - [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990. - [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990. - [8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990 - [9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990. - [10] Roman Duda. Wprowadzenie do topologii. PWN, 1986. - [11] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Convex sets and convex combinations. Formalized Mathematics, 11(1):53–58, 2003. - [12] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990. - [13] Adam Naumowicz. On Segre's product of partial line spaces. Formalized Mathematics, 9(2):383–390, 2001. - [14] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990. - [15] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990. - [16] Karol Pak. Affine independence in vector spaces. Formalized Mathematics, 18(1):87–93, 2010, doi: 10.2478/v10037-010-0012-z. - [17] Karol Pąk. Abstract simplicial complexes. Formalized Mathematics, 18(1):95–106, 2010, doi: 10.2478/v10037-010-0013-y. - [18] Karol Pak. The geometric interior in real linear spaces. Formalized Mathematics, 18(3):185–188, 2010, doi: 10.2478/v10037-010-0021-y. - [19] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990. - [20] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, - [21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990. - [22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990. - [23] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990. Received February 9, 2010