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Poland

Summary. In this article we introduce and prove properties of simplicial
complexes in real linear spaces which are necessary to formulate Sperner’s lemma.
The lemma states that for a function f , which for an arbitrary vertex v of the
barycentric subdivision B of simplex K assigns some vertex from a face of K
which contains v, we can find a simplex S of B which satisfies f(S) = K (see
[10]).
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The notation and terminology used in this paper have been introduced in the
following papers: [2], [11], [19], [9], [6], [7], [1], [5], [3], [4], [13], [15], [12], [22],
[23], [16], [18], [20], [14], [17], [21], and [8].

1. Preliminaries

We follow the rules: x, y, X denote sets and n, k denote natural numbers.
The following two propositions are true:

(1) Let R be a binary relation and C be a cardinal number. If for every x

such that x ∈ X holds Card(R◦x) = C, then CardR = Card(R�(domR \
X)) + C · CardX.

(2) Let Y be a non empty finite set. Suppose CardX = Y + 1. Let f be a
function from X into Y . Suppose f is onto. Then there exists y such that
y ∈ Y and Card(f−1({y})) = 2 and for every x such that x ∈ Y and x 6= y

holds Card(f−1({x})) = 1.
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Let X be a 1-sorted structure. A simplicial complex structure of X is a
simplicial complex structure of the carrier of X. A simplicial complex of X is a
simplicial complex of the carrier of X.

Let X be a 1-sorted structure, let K be a simplicial complex structure of X,
and let A be a subset of K. The functor @A yielding a subset of X is defined
by:

(Def. 1) @A = A.

Let X be a 1-sorted structure, let K be a simplicial complex structure of
X, and let A be a family of subsets of K. The functor @A yielding a family of
subsets of X is defined by:

(Def. 2) @A = A.

We now state the proposition

(3) Let X be a 1-sorted structure and K be a subset-closed simplicial com-
plex structure of X. Suppose K is total. Let S be a finite subset of K.
Suppose S is simplex-like. Then the complex of {@S} is a subsimplicial
complex of K.

2. The Area of an Abstract Simplicial Complex

For simplicity, we adopt the following rules: R1 denotes a non empty RLS
structure, K1, K2, K3 denote simplicial complex structures of R1, V denotes a
real linear space, and K4 denotes a non void simplicial complex of V .

Let us consider R1, K1. The functor |K1| yields a subset of R1 and is defined
by:

(Def. 3) x ∈ |K1| iff there exists a subset A of K1 such that A is simplex-like and
x ∈ conv@A.

One can prove the following propositions:

(4) If the topology of K2 ⊆ the topology of K3, then |K2| ⊆ |K3|.
(5) For every subset A of K1 such that A is simplex-like holds conv@A ⊆
|K1|.

(6) Let K be a subset-closed simplicial complex structure of V . Then x ∈ |K|
if and only if there exists a subset A of K such that A is simplex-like and
x ∈ Int(@A).

(7) |K1| is empty iff K1 is empty-membered.

(8) For every subset A of R1 holds |the complex of {A}| = convA.

(9) For all families A, B of subsets of R1 holds |the complex of A∪B| = |the
complex of A| ∪ |the complex of B|.



Sperner’s lemma 191

3. The Subdivision of a Simplicial Complex

Let us consider R1, K1. A simplicial complex structure of R1 is said to be a
subdivision structure of K1 if it satisfies the conditions (Def. 4).

(Def. 4)(i) |K1| ⊆ |it|, and
(ii) for every subset A of it such that A is simplex-like there exists a subset

B of K1 such that B is simplex-like and conv@A ⊆ conv@B.

The following proposition is true

(10) For every subdivision structure P of K1 holds |K1| = |P |.
Let us consider R1 and let K1 be a simplicial complex structure of R1 with

a non-empty element. Observe that every subdivision structure of K1 has a
non-empty element.

We now state four propositions:

(11) K1 is a subdivision structure of K1.

(12) The complex of the topology of K1 is a subdivision structure of K1.

(13) Let K be a subset-closed simplicial complex structure of V and S1 be a
family of subsets of K. Suppose S1 = SubFin(the topology of K). Then
the complex of S1 is a subdivision structure of K.

(14) For every subdivision structure P1 of K1 holds every subdivision struc-
ture of P1 is a subdivision structure of K1.

Let us consider V and let K be a simplicial complex structure of V . Note
that there exists a subdivision structure of K which is finite-membered and
subset-closed.

Let us consider V and let K be a simplicial complex structure of V . A
subdivision of K is a finite-membered subset-closed subdivision structure of K.

We now state the proposition

(15) Let K be a simplicial complex of V with empty element. Suppose |K| ⊆
ΩK . Let B be a function from 2the carrier of V+ into the carrier of V . Suppose
that for every simplex S of K such that S is non empty holds B(S) ∈
conv@S. Then subdivision(B,K) is a subdivision structure of K.

Let us consider V , K4. One can verify that there exists a subdivision of K4
which is non void.

4. The Barycentric Subdivision

Let us consider V , K4. Let us assume that |K4| ⊆ Ω(K4). The functor BCSK4
yields a non void subdivision of K4 and is defined by:

(Def. 5) BCSK4 = subdivision(the center of mass of V , K4).

Let us consider n and let us consider V , K4. Let us assume that |K4| ⊆ Ω(K4).
The functor BCS(n,K4) yields a non void subdivision of K4 and is defined by:
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(Def. 6) BCS(n,K4) = subdivision(n, the center of mass of V , K4).

Next we state several propositions:

(16) If |K4| ⊆ Ω(K4), then BCS(0,K4) = K4.

(17) If |K4| ⊆ Ω(K4), then BCS(1,K4) = BCSK4.

(18) If |K4| ⊆ Ω(K4), then ΩBCS(n,K4) = Ω(K4).

(19) If |K4| ⊆ Ω(K4), then |BCS(n,K4)| = |K4|.
(20) If |K4| ⊆ Ω(K4), then BCS(n+ 1,K4) = BCS BCS(n,K4).

(21) If |K4| ⊆ Ω(K4) and degree(K4) ≤ 0, then the topological structure of
K4 = BCSK4.

(22) If n > 0 and |K4| ⊆ Ω(K4) and degree(K4) ≤ 0, then the topological
structure of K4 = BCS(n,K4).

(23) Let S2 be a non void subsimplicial complex of K4. If |K4| ⊆ Ω(K4) and
|S2| ⊆ Ω(S2), then BCS(n, S2) is a subsimplicial complex of BCS(n,K4).

(24) If |K4| ⊆ Ω(K4), then VerticesK4 ⊆ Vertices BCS(n,K4).

Let us consider n, V and let K be a non void total simplicial complex of V .
Note that BCS(n,K) is total.

Let us consider n, V and let K be a non void finite-vertices total simplicial
complex of V . Note that BCS(n,K) is finite-vertices.

5. Selected Properties of Simplicial Complexes

Let us consider V and let K be a simplicial complex structure of V . We say
that K is affinely-independent if and only if:

(Def. 7) For every subset A of K such that A is simplex-like holds @A is affinely-
independent.

Let us consider R1, K1. We say that K1 is simplex-join-closed if and only if:

(Def. 8) For all subsets A, B of K1 such that A is simplex-like and B is simplex-
like holds conv@A ∩ conv@B = conv@A ∩B.

Let us consider V . Note that every simplicial complex structure of V which is
empty-membered is also affinely-independent. Let F be an affinely-independent
family of subsets of V . Observe that the complex of F is affinely-independent.

Let us consider R1. One can verify that every simplicial complex structure
of R1 which is empty-membered is also simplex-join-closed.

Let us consider V and let I be an affinely-independent subset of V . One can
check that the complex of {I} is simplex-join-closed.

Let us consider V . One can check that there exists a subset of V which is
non empty, trivial, and affinely-independent.

Let us consider V . One can check that there exists a simplicial complex of V
which is finite-vertices, affinely-independent, simplex-join-closed, and total and
has a non-empty element.
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Let us consider V and let K be an affinely-independent simplicial complex
structure of V . One can verify that every subsimplicial complex of K is affinely-
independent.

Let us consider V and let K be a simplex-join-closed simplicial complex
structure of V . One can check that every subsimplicial complex of K is simplex-
join-closed.

Next we state the proposition

(25) Let K be a subset-closed simplicial complex structure of V . Then K

is simplex-join-closed if and only if for all subsets A, B of K such that
A is simplex-like and B is simplex-like and Int(@A) meets Int(@B) holds
A = B.

For simplicity, we follow the rules: K5 is a simplex-join-closed simplicial
complex of V , A1, B1 are subsets of K5, K6 is a non void affinely-independent
simplicial complex of V , K7 is a non void affinely-independent simplex-join-
closed simplicial complex of V , andK is a non void affinely-independent simplex-
join-closed total simplicial complex of V .

Let us consider V , K6 and let S be a simplex of K6. Note that @S is affinely-
independent.

One can prove the following propositions:

(26) If A1 is simplex-like and B1 is simplex-like and Int(@A1) meets conv@B1,
then A1 ⊆ B1.

(27) If A1 is simplex-like and @A1 is affinely-independent and B1 is simplex-
like, then Int(@A1) ⊆ conv@B1 iff A1 ⊆ B1.

(28) If |K6| ⊆ Ω(K6), then BCSK6 is affinely-independent.

Let us consider V and let K6 be a non void affinely-independent total simpli-
cial complex of V . Observe that BCSK6 is affinely-independent. Let us consider
n. Observe that BCS(n,K6) is affinely-independent.

Let us consider V , K7. One can verify that (the center of mass of V )�the
topology of K7 is one-to-one.

We now state the proposition

(29) If |K7| ⊆ Ω(K7), then BCSK7 is simplex-join-closed.

Let us consider V , K. Note that BCSK is simplex-join-closed. Let us con-
sider n. Observe that BCS(n,K) is simplex-join-closed.

The following four propositions are true:

(30) Suppose |K4| ⊆ Ω(K4) and for every n such that n ≤ degree(K4) the-

re exists a simplex S of K4 such that S = n + 1 and @S is affinely-
independent. Then degree(K4) = degree(BCSK4).

(31) If |K6| ⊆ Ω(K6), then degree(K6) = degree(BCSK6).

(32) If |K6| ⊆ Ω(K6), then degree(K6) = degree(BCS(n,K6)).
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(33) Let S be a simplex-like family of subsets of K7. If S has non empty
elements, then CardS = Card((the center of mass of V )◦S).

For simplicity, we adopt the following convention: A2 denotes a finite affinely-
independent subset of V , A3, B2 denote finite subsets of V , B denotes a subset
of V , S, T denote finite families of subsets of V , S3 denotes a ⊆-linear finite
finite-membered family of subsets of V , S4, T1 denote finite simplex-like families
of subsets of K, and A4 denotes a simplex of K.

The following propositions are true:

(34) Let S6, S5 be simplex-like families of subsets of K7. Suppose that
(i) |K7| ⊆ Ω(K7),

(ii) S6 has non empty elements,
(iii) (the center of mass of V )◦S5 is a simplex of BCSK7, and
(iv) (the center of mass of V )◦S6 ⊆ (the center of mass of V )◦S5.

Then S6 ⊆ S5 and S5 is ⊆-linear.

(35) Suppose S has non empty elements and
⋃
S ⊆ A2 and S + n+ 1 ≤ A2 .

Then the following statements are equivalent
(i) B2 is a simplex of n+S and BCS (the complex of {A2}) and (the center

of mass of V )◦S ⊆ B2,
(ii) there exists T such that T misses S and T ∪ S is ⊆-linear and has non

empty elements and T = n + 1 and
⋃
T ⊆ A2 and B2 = (the center of

mass of V )◦S ∪ (the center of mass of V )◦T.

(36) Suppose S3 has non empty elements and
⋃
S3 ⊆ A2. Then the following

statements are equivalent
(i) (the center of mass of V )◦S3 is a simplex of

⋃
S3 − 1 and BCS (the

complex of {A2}),
(ii) for every n such that 0 < n ≤

⋃
S3 there exists x such that x ∈ S3 and

Cardx = n.

(37) Let given S. Suppose S is ⊆-linear and has non empty elements and
S = Card

⋃
S. Let given A3, B2. Suppose A3 is non empty and A3 misses⋃

S and
⋃
S ∪ A3 is affinely-independent and

⋃
S ∪ A3 ⊆ B2. Then (the

center of mass of V )◦S∪ (the center of mass of V )◦{
⋃
S∪A3} is a simplex

of S and BCS (the complex of {B2}).
(38) Let given S3. Suppose S3 has non empty elements and S3 =

⋃
S3 .

Let v be an element of V . Suppose v /∈
⋃
S3 and

⋃
S3 ∪ {v} is affinely-

independent. Then {S6;S6 ranges over simplexes of S3 and BCS (the com-
plex of {

⋃
S3 ∪ {v}}): (the center of mass of V )◦S3 ⊆ S6} = {(the center

of mass of V )◦S3 ∪ (the center of mass of V )◦{
⋃
S3 ∪ {v}}}.

(39) Let given S3. Suppose S3 has non empty elements and S3+1 =
⋃
S3 and⋃

S3 is affinely-independent. Then Card{S6;S6 ranges over simplexes of S3
and BCS (the complex of {

⋃
S3}): (the center of mass of V )◦S3 ⊆ S6} = 2.
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(40) Suppose A2 is a simplex of K. Then B is a simplex of BCS (the complex
of {A2}) if and only if B is a simplex of BCSK and convB ⊆ convA2.

(41) Suppose S4 has non empty elements and S4 +n ≤ degree(K). Then the
following statements are equivalent

(i) A3 is a simplex of n + S4 and BCSK and (the center of mass of
V )◦S4 ⊆ A3,

(ii) there exists T1 such that T1 misses S4 and T1 ∪ S4 is ⊆-linear and has
non empty elements and T1 = n + 1 and A3 = (the center of mass of
V )◦S4 ∪ (the center of mass of V )◦T1.

(42) Suppose S4 is ⊆-linear and has non empty elements and S4 =
⋃
S4 and⋃

S4 ⊆ A4 and A4 = S4 + 1. Then {S6;S6 ranges over simplexes of S4
and BCSK : (the center of mass of V )◦S4 ⊆ S6 ∧ conv@S6 ⊆ conv@A4} =
{(the center of mass of V )◦S4 ∪ (the center of mass of V )◦{A4}}.

(43) Suppose S4 is ⊆-linear and has non empty elements and S4 + 1 =
⋃
S4 .

Then Card{S6;S6 ranges over simplexes of S4 and BCSK : (the center of
mass of V )◦S4 ⊆ S6 ∧ conv@S6 ⊆ conv@

⋃
S4} = 2.

(44) Let given A3. Suppose that
(i) K is a subdivision of the complex of {A3},
(ii) A3 = n+ 1,
(iii) degree(K) = n, and
(iv) for every simplex S of n − 1 and K and for every X such that X =
{S6;S6 ranges over simplexes of n and K: S ⊆ S6} holds if conv@S meets
IntA3, then CardX = 2 and if conv@S misses IntA3, then CardX = 1.
Let S be a simplex of n−1 and BCSK and given X such that X = {S6;S6
ranges over simplexes of n and BCSK : S ⊆ S6}. Then

(v) if conv@S meets IntA3, then CardX = 2, and
(vi) if conv@S misses IntA3, then CardX = 1.

(45) Let S be a simplex of n− 1 and BCS(k, the complex of {A2}) such that
A2 = n + 1 and X = {S6;S6 ranges over simplexes of n and BCS(k, the
complex of {A2}): S ⊆ S6}. Then

(i) if conv@S meets IntA2, then CardX = 2, and
(ii) if conv@S misses IntA2, then CardX = 1.

6. The Main Theorem

In the sequel v is a vertex of BCS(k, the complex of {A2}) and F is a function
from Vertices BCS(k, the complex of {A2}) into A2.

The following two propositions are true:

(46) Let given F . Suppose that for all v, B such that B ⊆ A2 and v ∈ convB
holds F (v) ∈ B. Then there exists n such that Card{S;S ranges over
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simplexes of A2 − 1 and BCS(k, the complex of {A2}): F ◦S = A2} =
2 · n+ 1.

(47) Let given F . Suppose that for all v, B such that B ⊆ A2 and v ∈ convB
holds F (v) ∈ B. Then there exists a simplex S of A2 − 1 and BCS(k, the
complex of {A2}) such that F ◦S = A2.
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