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Summary. In this article, we give several differentiation and integrability
formulas of special and composite functions including the trigonometric function,
and the polynomial function.
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The papers [12], [2], [3], [1], [7], [11], [13], [4], [17], [8], [9], [6], [18], [5], [10], [15],
[16], and [14] provide the terminology and notation for this paper.

One can check that there exists a subset of R which is closed-interval.
For simplicity, we use the following convention: a, b, x, r are real numbers,

n is an element of N, A is a closed-interval subset of R, f , g, f1, f2, g1, g2 are
partial functions from R to R, and Z is an open subset of R.

We now state a number of propositions:

(1) Suppose Z ⊆ dom( 1
f1+f2

) and for every x such that x ∈ Z holds f1(x) = 1
and f2 = �2. Then 1

f1+f2
is differentiable on Z and for every x such that

x ∈ Z holds ( 1
f1+f2

)′�Z(x) = − 2·x
(1+x2)2 .

(2) Suppose that A ⊆ Z and f =
1

g1+g2
f2

and f2 = the func-
tion arccot and Z ⊆ ]−1, 1[ and g2 = �2 and for every x such
that x ∈ Z holds g1(x) = 1 and f2(x) > 0 and Z = dom f.

Then
∫
A

f(x)dx = (−(the function ln) · (the function arccot))(supA) −

(−(the function ln) · (the function arccot))(inf A).

(3) Suppose that
(i) A ⊆ Z,
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(ii) for every x such that x ∈ Z holds (the function exp)(x) < 1 and
f1(x) = 1,

(iii) Z ⊆ dom((the function arctan) ·(the function exp)),
(iv) Z = dom f, and
(v) f = the function exp

f1+(the function exp)2
.

Then
∫
A

f(x)dx = ((the function arctan) ·(the function exp))(supA) −

((the function arctan) ·(the function exp))(inf A).

(4) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds (the function exp)(x) < 1 and
f1(x) = 1,

(iii) Z ⊆ dom((the function arccot) ·(the function exp)),
(iv) Z = dom f, and
(v) f = −the function exp

f1+(the function exp)2
.

Then
∫
A

f(x)dx = ((the function arccot) ·(the function exp))(supA)−((the

function arccot) ·(the function exp))(inf A).

(5) Suppose that
(i) A ⊆ Z,
(ii) Z = dom f, and

(iii) f = (the function exp) the function sin
the function cos + the function exp

(the function cos)2
.

Then
∫
A

f(x)dx = ((the function exp) (the function tan))(supA) − ((the

function exp) (the function tan))(inf A).

(6) Suppose that
(i) A ⊆ Z,

(ii) Z = dom f, and
(iii) f = (the function exp) the function cos

the function sin −
the function exp

(the function sin)2
.

Then
∫
A

f(x)dx = ((the function exp) (the function cot))(supA) − ((the

function exp) (the function cot))(inf A).

(7) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f1(x) = 1,
(iii) Z ⊆ ]−1, 1[,
(iv) Z = dom f, and
(v) f = (the function exp) (the function arctan)+ the function exp

f1+�2
.
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Then
∫
A

f(x)dx = ((the function exp) (the function arctan))(supA)−((the

function exp) (the function arctan))(inf A).

(8) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f1(x) = 1,
(iii) Z ⊆ ]−1, 1[,
(iv) Z = dom f, and
(v) f = (the function exp) (the function arccot)− the function exp

f1+�2
.

Then
∫
A

f(x)dx = ((the function exp) (the function arccot))(supA)−((the

function exp) (the function arccot))(inf A).

(9) Suppose A ⊆ Z = dom f and f = ((the function exp) ·(the function sin))

(the function cos). Then
∫
A

f(x)dx = ((the function exp) ·(the function

sin))(supA)− ((the function exp) ·(the function sin))(inf A).

(10) Suppose A ⊆ Z = dom f and f = ((the function exp) ·(the function
cos)) (the function sin).

Then
∫
A

f(x)dx = (−(the function exp) · (the function cos))(supA) −

(−(the function exp) · (the function cos))(inf A).

(11) Suppose A ⊆ Z and for every x such that x ∈ Z holds x > 0 and
Z = dom f and f = ((the function cos) ·(the function ln)) 1

idZ
. Then∫

A

f(x)dx = ((the function sin) ·(the function ln))(supA)− ((the function

sin) ·(the function ln))(inf A).

(12) Suppose A ⊆ Z and for every x such that x ∈ Z holds x > 0
and Z = dom f and f = ((the function sin) ·(the function ln))

1
idZ
. Then

∫
A

f(x)dx = (−(the function cos) · (the function ln))(supA) −

(−(the function cos) · (the function ln))(inf A).

(13) Suppose A ⊆ Z = dom f and f = (the function exp) ((the function cos)

·(the function exp)). Then
∫
A

f(x)dx = ((the function sin) ·(the function

exp))(supA)− ((the function sin) ·(the function exp))(inf A).

(14) Suppose A ⊆ Z = dom f and f = (the function exp) ((the function sin)
·(the function exp)).

Then
∫
A

f(x)dx = (−(the function cos) · (the function exp))(supA) −

(−(the function cos) · (the function exp))(inf A).
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(15) Suppose thatA ⊆ Z ⊆ dom((the function ln) ·(f1+f2)) and r 6= 0 and for
every x such that x ∈ Z holds g(x) = x

r and g(x) > −1 and g(x) < 1 and
f1(x) = 1 and f2 = (�2) · g and Z = dom f and f = (the function arctan)

·g. Then
∫
A

f(x)dx = (idZ ((the function arctan) ·g)− r
2 ((the function ln)

·(f1 + f2)))(supA)− (idZ ((the function arctan) ·g)− r
2 ((the function ln)

·(f1 + f2)))(inf A).

(16) Suppose thatA ⊆ Z ⊆ dom((the function ln) ·(f1+f2)) and r 6= 0 and for
every x such that x ∈ Z holds g(x) = x

r and g(x) > −1 and g(x) < 1 and
f1(x) = 1 and f2 = (�2) · g and Z = dom f and f = (the function arccot)

·g. Then
∫
A

f(x)dx = (idZ ((the function arccot) ·g) + r
2 ((the function ln)

·(f1 + f2)))(supA)− (idZ ((the function arccot) ·g) + r
2 ((the function ln)

·(f1 + f2)))(inf A).

(17) Suppose that
(i) A ⊆ Z,

(ii) f = (the function arctan) ·f1 + idZ
r (g+f12)

,

(iii) for every x such that x ∈ Z holds g(x) = 1 and f1(x) = x
r and

f1(x) > −1 and f1(x) < 1,
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = (idZ ((the function arctan) ·f1))(supA) − (idZ ((the

function arctan) ·f1))(inf A).

(18) Suppose that
(i) A ⊆ Z,

(ii) f = (the function arccot) ·f1 − idZ
r (g+f12)

,

(iii) for every x such that x ∈ Z holds g(x) = 1 and f1(x) = x
r and

f1(x) > −1 and f1(x) < 1,
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = (idZ ((the function arccot) ·f1))(supA) − (idZ ((the

function arccot) ·f1))(inf A).

(19) Suppose that A ⊆ Z ⊆ ]−1, 1[ and for every x such that x ∈ Z holds
f1(x) = 1 and Z = dom f and Z ⊆ dom((�n) · (the function arcsin)) and

1 < n and f = n ((�n−1)·(the function arcsin))

(�
1
2 )·(f1−�2)

. Then
∫
A

f(x)dx = ((�n) · (the

function arcsin))(supA)− ((�n) · (the function arcsin))(inf A).

(20) Suppose that A ⊆ Z ⊆ ]−1, 1[ and for every x such that x ∈ Z holds
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f1(x) = 1 and Z ⊆ dom((�n) · (the function arccos)) and Z = dom f

and 1 < n and f = n ((�n−1)·(the function arccos))

(�
1
2 )·(f1−�2)

. Then
∫
A

f(x)dx =

(−(�n) · (the function arccos))(supA)− (−(�n) · (the function arccos))
(inf A).

(21) Suppose A ⊆ Z and for every x such that x ∈ Z holds f1(x) = 1 and
Z ⊆ ]−1, 1[ and Z = dom f and f = (the function arcsin)+ idZ

(�
1
2 )·(f1−�2)

.

Then
∫
A

f(x)dx = (idZ (the function arcsin))(supA) − (idZ (the function

arcsin))(inf A).

(22) Suppose A ⊆ Z and for every x such that x ∈ Z holds f1(x) = 1 and
Z ⊆ ]−1, 1[ and Z = dom f and f = (the function arccos)− idZ

(�
1
2 )·(f1−�2)

.

Then
∫
A

f(x)dx = (idZ (the function arccos))(supA) − (idZ (the function

arccos))(inf A).

(23) Suppose that
(i) A ⊆ Z,

(ii) Z ⊆ ]−1, 1[,
(iii) for every x such that x ∈ Z holds f1(x) = a · x+ b and f2(x) = 1,
(iv) Z = dom f, and
(v) f = a (the function arcsin)+ f1

(�
1
2 )·(f2−�2)

.

Then
∫
A

f(x)dx = (f1 (the function arcsin))(supA) − (f1 (the function

arcsin))(inf A).

(24) Suppose that
(i) A ⊆ Z,

(ii) Z ⊆ ]−1, 1[,
(iii) for every x such that x ∈ Z holds f1(x) = a · x+ b and f2(x) = 1,
(iv) Z = dom f, and
(v) f = a (the function arccos)− f1

(�
1
2 )·(f2−�2)

.

Then
∫
A

f(x)dx = (f1 (the function arccos))(supA) − (f1 (the function

arccos))(inf A).

(25) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds g(x) = 1 and f1(x) = x
a and f1(x) > −1

and f1(x) < 1,
(iii) Z = dom f,

(iv) f is continuous on A, and
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(v) f = (the function arcsin) ·f1 + idZ
a ((�

1
2 )·(g−f12))

.

Then
∫
A

f(x)dx = (idZ ((the function arcsin) ·f1))(supA) − (idZ ((the function

arcsin) ·f1))(inf A).

(26) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds g(x) = 1 and f1(x) = x

a and f1(x) > −1
and f1(x) < 1,

(iii) Z = dom f,

(iv) f is continuous on A, and
(v) f = (the function arccos) ·f1 − idZ

a ((�
1
2 )·(g−f12))

.

Then
∫
A

f(x)dx = (idZ ((the function arccos) ·f1))(supA)− (idZ ((the function

arccos) ·f1))(inf A).

(27) Suppose A ⊆ Z and f = n ((�n−1)·(the function sin))
(�n+1)·(the function cos) and 1 ≤ n and Z ⊆

dom((�n) · (the function tan)) and Z = dom f. Then
∫
A

f(x)dx = ((�n) · (the

function tan))(supA)− ((�n) · (the function tan))(inf A).

(28) Suppose A ⊆ Z and f = n ((�n−1)·(the function cos))
(�n+1)·(the function sin) and 1 ≤ n and

Z ⊆ dom((�n) · (the function cot)) and Z = dom f. Then
∫
A

f(x)dx =

(−(�n) · (the function cot))(supA)− (−(�n) · (the function cot))(inf A).

(29) Suppose that
(i) A ⊆ Z,
(ii) Z ⊆ dom((the function tan) ·f1),

(iii) f = ((the function sin)·f1)2
((the function cos)·f1)2 ,

(iv) for every x such that x ∈ Z holds f1(x) = a · x and a 6= 0, and
(v) Z = dom f.

Then
∫
A

f(x)dx = (
1
a

((the function tan) ·f1) − idZ)(supA) − ( 1
a ((the function

tan) ·f1)− idZ)(inf A).

(30) Suppose that
(i) A ⊆ Z,
(ii) Z ⊆ dom((the function cot) ·f1),

(iii) f = ((the function cos)·f1)2
((the function sin)·f1)2 ,

(iv) for every x such that x ∈ Z holds f1(x) = a · x and a 6= 0, and
(v) Z = dom f.
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Then
∫
A

f(x)dx = ((−1
a

) ((the function cot) ·f1) − idZ)(supA) − ((− 1
a) ((the

function cot) ·f1)− idZ)(inf A).

(31) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f1(x) = a · x+ b,

(iii) Z = dom f, and
(iv) f = a the function sin

the function cos + f1
(the function cos)2

.

Then
∫
A

f(x)dx = (f1 (the function tan))(supA)−(f1 (the function tan))(inf A).

(32) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f1(x) = a · x+ b,

(iii) Z = dom f, and
(iv) f = a the function cos

the function sin −
f1

(the function sin)2
.

Then
∫
A

f(x)dx = (f1 (the function cot))(supA)− (f1 (the function cot))(inf A).

(33) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) = (the function sin)(x)2

(the function cos)(x)2 ,

(iii) Z ⊆ dom((the function tan)−idZ),
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = ((the function tan)−idZ)(supA) − ((the function

tan)−idZ)(inf A).

(34) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) = (the function cos)(x)2

(the function sin)(x)2 ,

(iii) Z ⊆ dom(−the function cot− idZ),
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = (−the function cot − idZ)(supA) − (−the function cot −

idZ)(inf A).

(35) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) = 1
x·(1+(the function ln)(x)2) and (the

function ln)(x) > −1 and (the function ln)(x) < 1,
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(iii) Z ⊆ dom((the function arctan) ·(the function ln)),
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = ((the function arctan) ·(the function ln))(supA)− ((the func-

tion arctan) ·(the function ln))(inf A).

(36) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = − 1

x·(1+(the function ln)(x)2) and (the
function ln)(x) > −1 and (the function ln)(x) < 1,

(iii) Z ⊆ dom((the function arccot) ·(the function ln)),
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = ((the function arccot) ·(the function ln))(supA)− ((the func-

tion arccot) ·(the function ln))(inf A).

(37) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = a√

1−(a·x+b)2
and f1(x) = a · x + b

and f1(x) > −1 and f1(x) < 1,
(iii) Z ⊆ dom((the function arcsin) ·f1),
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = ((the function arcsin) ·f1)(supA) − ((the function arcsin)

·f1)(inf A).

(38) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = a√

1−(a·x+b)2
and f1(x) = a · x + b

and f1(x) > −1 and f1(x) < 1,
(iii) Z ⊆ dom((the function arccos) ·f1),
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = (−(the function arccos) · f1)(supA)− (−(the function

arccos) · f1)(inf A).

(39) Suppose that A ⊆ Z and f1 = g − f2 and f2 = �2 and for every x such
that x ∈ Z holds f(x) = x · (1 − x2)−

1
2 and g(x) = 1 and f1(x) > 0 and

Z ⊆ dom((�
1
2 ) ·f1) and Z = dom f and f is continuous on A. Then

∫
A

f(x)dx =
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(−(�
1
2 ) · f1)(supA)− (−(�

1
2 ) · f1)(inf A).

(40) Suppose that A ⊆ Z and g = f1 − f2 and f2 = �2 and for every x such
that x ∈ Z holds f(x) = x · (a2 − x2)−

1
2 and f1(x) = a2 and g(x) > 0 and

Z ⊆ dom((�
1
2 ) · g) and Z = dom f and f is continuous on A. Then

∫
A

f(x)dx =

(−(�
1
2 ) · g)(supA)− (−(�

1
2 ) · g)(inf A).

(41) Suppose that
(i) A ⊆ Z,

(ii) n > 0,
(iii) for every x such that x ∈ Z holds f(x) = (the function cos)(x)

(the function sin)(x)n+1 and (the
function sin)(x) 6= 0,

(iv) Z ⊆ dom((�n) · 1
the function sin),

(v) Z = dom f, and
(vi) f is continuous on A.

Then
∫
A

f(x)dx = ((− 1
n

) ((�n) · 1
the function sin

))(supA) − ((− 1
n

) ((�n) ·

1
the function sin

))(inf A).

(42) Suppose that
(i) A ⊆ Z,

(ii) n > 0,
(iii) for every x such that x ∈ Z holds f(x) = (the function sin)(x)

(the function cos)(x)n+1 and (the
function cos)(x) 6= 0,

(iv) Z ⊆ dom((�n) · 1
the function cos),

(v) Z = dom f, and
(vi) f is continuous on A.

Then
∫
A

f(x)dx = (
1
n

((�n) · 1
the function cos

))(supA) − (
1
n

((�n) ·

1
the function cos

))(inf A).

(43) Suppose that A ⊆ Z and f =
1

g1+g2
f2

and f2 = the function arccot
and Z ⊆ ]−1, 1[ and g2 = �2 and for every x such that x ∈ Z holds
f(x) = 1

(1+x2)·(the function arccot)(x) and g1(x) = 1 and f2(x) > 0 and Z =

dom f. Then
∫
A

f(x)dx = (−(the function ln) · (the function arccot))(supA) −

(−(the function ln) · (the function arccot))(inf A).

(44) Suppose that
(i) A ⊆ Z,

(ii) Z ⊆ ]−1, 1[,
(iii) for every x such that x ∈ Z holds (the function arcsin)(x) > 0 and f1(x) = 1,
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(iv) Z ⊆ dom((the function ln) ·(the function arcsin)),
(v) Z = dom f, and

(vi) f = 1

((�
1
2 )·(f1−�2)) (the function arcsin)

.

Then
∫
A

f(x)dx = ((the function ln) ·(the function arcsin))(supA)− ((the func-

tion ln) ·(the function arcsin))(inf A).

(45) Suppose that
(i) A ⊆ Z,
(ii) Z ⊆ ]−1, 1[,

(iii) for every x such that x ∈ Z holds f1(x) = 1 and (the function arccos)(x) > 0,
(iv) Z ⊆ dom((the function ln) ·(the function arccos)),
(v) Z = dom f, and

(vi) f = 1

((�
1
2 )·(f1−�2)) (the function arccos)

.

Then
∫
A

f(x)dx = (−(the function ln) · (the function arccos))(supA)−

(−(the function ln) · (the function arccos))(inf A).
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