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Representation of the Fibonacci and Lucas
Numbers in Terms of Floor and Ceiling
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Summary. In the paper we show how to express the Fibonacci numbers
and Lucas numbers using the floor and ceiling operations.

MML identifier: FIB NUM4, version: 7.11.0 4.1 .10

The notation and terminology used here have been introduced in the following
papers: [7], [3], [8], [11], [10], [1], [4], [6], [2], [5], and [9].

1. Preliminaries

One can prove the following propositions:

(1) For all real numbers a, b and for every natural number c holds (ab )c = ac

bc .

(2) For every real number a and for all integer numbers b, c such that a 6= 0
holds ab+c = ab · ac.

(3) For every natural number n and for every real number a such that n is
even and a 6= 0 holds (−a)n = an.

(4) For every natural number n and for every real number a such that n is
odd and a 6= 0 holds (−a)n = −an.

(5) |τ | < 1.

(6) For every natural number n and for every non empty real number r such
that n is even holds rn > 0.

(7) For every natural number n and for every real number r such that n is
odd and r < 0 holds rn < 0.
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(8) For every natural number n such that n 6= 0 holds τn < 1
2 .

(9) For all natural numbers n, m and for every real number r such that m
is odd and n ≥ m and r < 0 and r > −1 holds rn ≥ rm.

(10) For all natural numbers n, m such that m is odd and n ≥ m holds
τn ≥ τm.

(11) For all natural numbers n, m such that n is even and m is even and
n ≥ m holds τn ≤ τm.

(12) For all non empty natural numbers m, n such that m ≥ n holds
Luc(m) ≥ Luc(n).

(13) For every non empty natural number n holds τn > τn.

(14) For every natural number n such that n > 1 holds −1
2 < τn.

(15) For every natural number n such that n > 2 holds τn ≥ − 1√
5
.

(16) For every natural number n such that n ≥ 2 holds τn ≤ 1√
5
.

(17) For every natural number n holds τn√
5

+ 1
2 > 0 and τn√

5
+ 1

2 < 1.

2. Formulas for the Fibonacci Numbers

Next we state two propositions:

(18) For every natural number n holds b τn√
5

+ 1
2c = Fib(n).

(19) For every natural number n such that n 6= 0 holds d τn√
5
− 1

2e = Fib(n).

We now state a number of propositions:

(20) For every natural number n such that n 6= 0 holds b τ2·n√
5
c = Fib(2 · n).

(21) For every natural number n holds d τ2·n+1√
5
e = Fib(2 · n+ 1).

(22) For every natural number n such that n ≥ 2 and n is even holds Fib(n+
1) = bτ · Fib(n) + 1c.

(23) For every natural number n such that n ≥ 2 and n is odd holds Fib(n+
1) = dτ · Fib(n)− 1e.

(24) For every natural number n such that n ≥ 2 holds Fib(n + 1) =

bFib(n)+
√

5·Fib(n)+1
2 c.

(25) For every natural number n such that n ≥ 2 holds Fib(n + 1) =

d (Fib(n)+
√

5·Fib(n))−1
2 e.

(26) For every natural number n holds Fib(n+1) = Fib(n)+
√

5·Fib(n)2+4·(−1)n

2 .

(27) For every natural number n such that n ≥ 2 holds Fib(n + 1) =

bFib(n)+1+
√

(5·Fib(n)2−2·Fib(n))+1
2 c.

(28) For every natural number n such that n ≥ 2 holds Fib(n) = b 1
τ ·(Fib(n+

1) + 1
2)c.
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(29) For all natural numbers n, k such that n ≥ k > 1 or k = 1 and n > k

holds bτk · Fib(n) + 1
2c = Fib(n+ k).

3. Formulas for the Lucas Numbers

Next we state a number of propositions:

(30) For every natural number n such that n ≥ 2 holds Luc(n) = bτn + 1
2c.

(31) For every natural number n such that n ≥ 2 holds Luc(n) = dτn − 1
2e.

(32) For every natural number n such that n ≥ 2 holds Luc(2 · n) = dτ2·ne.
(33) For every natural number n such that n ≥ 2 holds Luc(2 · n + 1) =
bτ2·n+1c.

(34) For every natural number n such that n ≥ 2 and n is odd holds Luc(n+
1) = bτ · Luc(n) + 1c.

(35) For every natural number n such that n ≥ 2 and n is even holds Luc(n+
1) = dτ · Luc(n)− 1e.

(36) For every natural number n such that n 6= 1 holds Luc(n + 1) =
Luc(n)+

√
5·(Luc(n)2−4·(−1)n)

2 .

(37) For every natural number n such that n ≥ 4 holds Luc(n + 1) =

bLuc(n)+1+
√

(5·Luc(n)2−2·Luc(n))+1
2 c.

(38) For every natural number n such that n > 2 holds Luc(n) = b 1
τ ·(Luc(n+

1) + 1
2)c.

(39) For all natural numbers n, k such that n ≥ 4 and k ≥ 1 and n > k and
n is odd holds Luc(n+ k) = bτk · Luc(n) + 1c.
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