FORMALIZED MATHEMATICS
vol. 18, No. 1, Pages 77-80, 2010

Representation of the Fibonacci and Lucas
Numbers in Terms of Floor and Ceiling

Magdalena Jastrzebska
Institute of Mathematics
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Summary. In the paper we show how to express the Fibonacci numbers
and Lucas numbers using the floor and ceiling operations.

MML identifier: FIB_NUM4, version: 7.11.05 4.134.1080

The notation and terminology used here have been introduced in the following
papers: [7], [3], [8], [11], [10], [1], [4], [6], [2], 5], and [9].

1. PRELIMINARIES

One can prove the following propositions:
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(2) For every real number a and for all integer numbers b, ¢ such that a # 0
holds a®™¢ = ab - a°.

(3) For every natural number n and for every real number a such that n is
even and a # 0 holds (—a)" = a™.

(4) For every natural number n and for every real number a such that n is
odd and a # 0 holds (—a)™ = —a™.

(5) 7] <1.

(6) For every natural number n and for every non empty real number r such
that n is even holds " > 0.

(1) For all real numbers a, b and for every natural number ¢ holds (§)¢ =

(7) For every natural number n and for every real number r such that n is

odd and r < 0 holds "™ < 0.
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(8) For every natural number n such that n # 0 holds 7" < 3.
(9) For all natural numbers n, m and for every real number r such that m
is odd and n > m and r < 0 and r > —1 holds " > r™.
(10) For all natural numbers n, m such that m is odd and n > m holds
T >Tm
(11) For all natural numbers n, m such that n is even and m is even and
n > m holds 7% < 7™
(12) For all non empty natural numbers m, n such that m > n holds
Luc(m) > Luc(n).

(13) For every non empty natural number n holds 7" > 7".

(14) For every natural number n such that n > 1 holds —3 < 7".
(15) For every natural number n such that n > 2 holds 7" > —%.
(16) For every natural number n such that n > 2 holds 7" < %
(17) For every natural number n holds ~ f +3 >0 and \/% +3 <1

2. FORMULAS FOR THE FIBONACCI NUMBERS

Next we state two propositions:

(18) For every natural number n holds L% + 3] = Fib(n

)-
(19) For every natural number n such that n # 0 holds [\TT 3] = Fib(n).
We now state a number of propositions:

(20) For every natural number n such that n # 0 holds L%J = Fib(2 - n).

=Fib(2-n+1).

(22) For every natural number n such that n > 2 and n is even holds Fib(n +
1) = |7 - Fib(n) +1].

(23) For every natural number n such that n > 2 and n is odd holds Fib(n +
1) = [7 - Fib(n) — 1].

(24) For every natural number n such that n > 2 holds Fib(n + 1) =
LFib(n)Jr\/g-Fib(n)JrlJ.

(21) For every natural number n holds (T2 n+1_|

(25) For every natural number n such that n > 2 holds Fib(n + 1) =
[(Fib(n)—i-\/g-Fib(n))—l—l
5 :

(26) For every natural number n holds Fib(n+1) = Fib(n)+ 5’Fi;(n)2+4'(_1)n

(27) For every natural number n such that n > 2 holds Fib(n + 1) =
LFlb +1+\/(5F1b n)2— 2~Fib(n))+1J

(28) For every natural number n such that n > 2 holds Fib(n) = |1+ (Fib(n+
1)+ 3)].



REPRESENTATION OF THE FIBONACCI AND ...

(29) For all natural numbers n, k such that n > k> 1lork=1and n > k
holds | 7% - Fib(n) + 1| = Fib(n + k).

3. FORMULAS FOR THE LucAs NUMBERS

Next we state a number of propositions:
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(30) For every natural number n such that n > 2 holds Luc(n)
(31)
(32) For every natural number n such that n > 2 holds Luc(2-n) = [
(33)

T

=1
For every natural number n such that n > 2 holds Luc(n) = [7" —

[\

For every natural number n such that n > 2 holds Luc(2 - n + 1
|72t
(34) For every natural number n such that n > 2 and n is odd holds Luc(n +
1) = |7 - Luc(n) + 1].
(35) For every natural number n such that n > 2 and n is even holds Luc(n+
1) = [7 - Luc(n) — 1].
(36) For every natural number n such that n # 1 holds Luc(n + 1) =
Luc(n)+\/5~(Luc(n)2—4~(—1)”)
2

~—

(37) For every natural number n such that n > 4 holds Luc(n + 1) =

Luc(n)+1+\/(5~Luc(n)2—2-Luc(n))+1
] ; J.

(38) For every natural number n such that n > 2 holds Luc(n) = |1 (Luc(n+
1)+ 3)].

(39) For all natural numbers n, k such that n > 4 and k¥ > 1 and n > k and
n is odd holds Luc(n + k) = [7% - Luc(n) + 1].
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