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Summary. In the article we prove that a family of open n-hypercubes
is a basis of n-dimensional Euclidean space. The equality of the space and the
product of n real lines has been proven.
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The terminology and notation used in this paper have been introduced in the
following papers: [2], [6], [10], [4], [7], [18], [8], [13], [1], [3], [5], [15], [16], [17],
[21], [22], [9], [19], [20], [11], [14], and [12].

For simplicity, we use the following convention: x, y are sets, ¢, n are natural
numbers, r, s are real numbers, and f1, fo are n-long real-valued finite sequences.

Let s be a real number and let r be a non positive real number. One can
check the following observations:

% ]s —r, s+ r[is empty,

% [s—r,s+r|is empty, and

* ]s—r,s4 7] is empty.

Let s be a real number and let r be a negative real number. Observe that
[s — 7, s+ 7] is empty.

Let f be an empty yielding function and let us consider x. Observe that f(z)
is empty.

Let us consider 7. Observe that i — 0 is empty yielding.

Let f be an n-long complex-valued finite sequence. One can check the follo-
wing observations:
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* —f is n-long,

x f~1is n-long,
x f?is n-long, and
x| f] is n-long.

Let g be an n-long complex-valued finite sequence. One can verify the following
observations:

* f + g is n-long,

x f — g is n-long,

* fgis n-long, and

x  f/g is n-long.

Let ¢ be a complex number and let f be an n-long complex-valued finite
sequence. One can check the following observations:

* ¢+ f is n-long,

* f — cis n-long, and

* ¢ f is n-long.

Let f be a real-valued function. Note that {f} is real-functions-membered.
Let g be a real-valued function. One can verify that {f, g} is real-functions-
membered.

Let D be a set and let us consider n. Note that D" is finite sequence-
membered.

Let us consider n. Note that R" is finite sequence-membered.

Let us consider n. Observe that R" is real-functions-membered.

Let us consider z, y and let f be an n-long finite sequence. Observe that
f+ (z,y) is n-long.

One can prove the following three propositions:

(1) For every n-long finite sequence f such that f is empty holds n = 0.
(2) For every n-long real-valued finite sequence f holds f € R™.
(3) For all complex-valued functions f, g holds |f — g| = |g — f]-

Let us consider f1, fo. The functor max-diff-index(fi, f2) yields a natural

number and is defined as follows:
(Def. 1) max-diff-index(f1, f2) is the element of |f; — fo| "t ({suprng|f1 — fa|}).
Let us note that the functor max-diff-index(fi, f2) is commutative.
One can prove the following propositions:
(4) If n # 0, then max-diff-index(fi, f2) € dom f.

(5) |fi — fol(z) < |f1 — fo|(max-diff-index(f1, f2)).
One can verify that the metric space of real numbers is real-membered.
Let us observe that (€%)p is trivial.
Let us consider n. Observe that £" is constituted finite sequences.
Let us consider n. One can verify that every point of £ is real-valued.
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Let us consider n. One can check that every point of £ is n-long.
The following two propositions are true:

(6) The open set family of £° = {0, {0}}.
(7) For every subset B of €Y holds B = () or B = {0}.
In the sequel e, e; are points of £".
Let us consider n, e. The functor e yields a point of (£")i0p and is defined
by:
(Def. 2) ©e=e.
Let us consider n, e and let r be a non positive real number. Observe that
Ball(e, r) is empty.
Let us consider n, e and let r be a positive real number. Note that Ball(e, r)
is non empty.
We now state three propositions:
(8) For all points py, ps of EL such that i € domp; holds (p1 (i) — p2(i))? <
S22 (p1 — p2).
(9) Let n be an element of N and a, o, p be elements of £}. If a € Ball(o, ),
then for every set x holds |(a — 0)(z)| < r and |a(z) — o(z)| < 7.
(10) For all points a, o of £" such that a € Ball(o, ) and for every set x holds
|(a —o)(z)| < rand |a(x) —o(x)| <.
Let f be a real-valued function and let » be a real number. The functor
Intervals(f,r) yields a function and is defined as follows:
(Def. 3) dom Intervals(f,r) = dom f and for every set x such that € dom f
holds (Intervals(f,r))(x) = |f(z) —r, f(x) + r|.
Let us consider r. Note that Intervals(), r) is empty.
Let f be a real-valued finite sequence and let us consider r. One can check
that Intervals(f,r) is finite sequence-like.
Let us consider n, e, r. The functor OpenHypercube(e, r) yielding a subset
of (€™)top is defined by:
(Def. 4) OpenHypercube(e, ) = [] Intervals(e, ).
Next we state the proposition
(11) If 0 < r, then e € OpenHypercube(e, ).
Let n be a non zero natural number, let e be a point of £”, and let r be a
non positive real number. Observe that OpenHypercube(e, r) is empty.
One can prove the following proposition
(12) For every point e of £° holds OpenHypercube(e, r) = {(}.
Let e be a point of £° and let us consider 7. Note that OpenHypercube(e, 7)
is non empty.
Let us consider n, e and let r be a positive real number. One can check that
OpenHypercube(e, ) is non empty.
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One can prove the following propositions:
(13) If r < s, then OpenHypercube(e,r) C OpenHypercube(e, s).
(14) If n#0or 0 < r and if e; € OpenHypercube(e, r), then for every set x
holds |(e; — e)(x)| < r and |e1(z) — e(z)| < r.

If n # 0 and e; € OpenHypercube(e,r), then > ?(e; —e) < n - r2.

If n # 0 and e; € OpenHypercube(e,r), then p(ej,e) < r-/n.

If n # 0, then OpenHypercube(e, =) C Ball(e, ).

If n # 0, then OpenHypercube(e, ) C Ball(e,r - /n).

If e; € Ball(e, r), then there exists a non zero element m of N such that
OpenHypercube(ey, %) C Ball(e, 7).
(20) If n # 0 and e; € OpenHypercube(e,r),

then r > |e; — e|(max-diff-index(eq, €)).

(15
(16
(17
(18
(19

~— — ~— ~— ~—

(21) OpenHypercube(ey,r — |e; — e|(max-diff-index(ey,e))) C
OpenHypercube(e, 7).

(22) Ball(e,) C OpenHypercube(e, 7).

Let us consider n, e, r. Observe that OpenHypercube(e, r) is open.
We now state two propositions:

(23) Let V be a subset of (£")op. Suppose V' is open. Let e be a point of
E™. If e € V, then there exists a non zero element m of N such that
OpenHypercube(e, %) cV.

(24) Let V be a subset of (£")iop. Suppose that for every point e of £"
such that e € V there exists a real number r such that » > 0 and
OpenHypercube(e,r) C V. Then V is open.

Let us consider n, e. The functor OpenHypercubes e yields a family of subsets
of (€™)top and is defined by:
(Def. 5) OpenHypercubese = {OpenHypercube(e, %) : M ranges over Non Zzero
elements of N}.
Let us consider n, e. Observe that OpenHypercubese is non empty, open,
and e-quasi-basis.
Next we state four propositions:

(25) For every 1-sorted yielding many sorted set J indexed by Segn such that
J = Segn — R holds R5€" = [] (the support of .J).

(26) Let J be a topological space yielding many sorted set indexed by Segn.
Suppose n # 0 and J = Segn —— R. Let P; be a family of subsets of
(€™)top- If P1 = the product prebasis for J, then P; is quasi-prebasis.

(27) Let J be a topological space yielding many sorted set indexed by Segn.
Suppose J = Segn —— R. Let P; be a family of subsets of (E™)iqp. If
P = the product prebasis for J, then P; is open.

(28)  (E™)top = [1(Segn — RY).
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