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Summary. In this article, we give several differentiation and integrability
formulas of special and composite functions including the trigonometric function,
the hyperbolic function and the polynomial function [3].
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The articles [10], [23], [19], [21], [22], [1], [8], [15], [9], [2], [4], [17], [5], [13], [16],
[14], [18], [7], [12], [20], [6], and [11] provide the terminology and notation for
this paper.

1. Differentiation Formulas

For simplicity, we adopt the following rules: r, x, a, b denote real numbers, n,
m denote elements of N, A denotes a closed-interval subset of R, and Z denotes
an open subset of R.
One can prove the following propositions:

(1)(i) (12�+0)−
1
4 ((the function sin) ·(2�+0)) is differentiable on R, and

(ii) for every x holds ((12�+0) −
1
4 ((the function sin) ·(2�+0)))

′
�R(x) =

(sinx)2.
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(2)(i) (12�+0) +
1
4 ((the function sin) ·(2�+0)) is differentiable on R, and

(ii) for every x holds ((12�+0) +
1
4 ((the function sin) ·(2�+0)))

′
�R(x) =

(cosx)2.

(3) 1
n+1 ((�

n+1) · (the function sin)) is differentiable on R and for every x
holds ( 1n+1 (the function sin)

n+1)′�R(x) = (sinx)
n · cosx.

(4)(i) (− 1
n+1) ((�

n+1) · (the function cos)) is differentiable on R, and
(ii) for every x holds ((− 1

n+1) (the function cos)
n+1)′�R(x) = (cosx)

n · sinx.
(5) Suppose m+ n 6= 0 and m− n 6= 0. Then
(i) 1

2·(m+n) ((the function sin) ·((m+n)�+0))+
1

2·(m−n) ((the function sin)
·((m− n)�+0)) is differentiable on R, and

(ii) for every x holds ( 1
2·(m+n) ((the function sin) ·((m + n)�+0)) +

1
2·(m−n) ((the function sin) ·((m− n)�+0)))

′
�R(x) = cos(m · x) · cos(n · x).

(6) Suppose m+ n 6= 0 and m− n 6= 0. Then
(i) 1

2·(m−n) ((the function sin) ·((m−n)�+0))−
1

2·(m+n) ((the function sin)
·((m+ n)�+0)) is differentiable on R, and

(ii) for every x holds ( 1
2·(m−n) ((the function sin) ·((m − n)�+0)) −

1
2·(m+n) ((the function sin) ·((m+ n)�+0)))

′
�R(x) = sin(m · x) · sin(n · x).

(7) Suppose m+ n 6= 0 and m− n 6= 0. Then
(i) − 1

2·(m+n) ((the function cos) · ((m+ n)�+0)) −
1

2·(m−n) ((the function
cos) ·((m− n)�+0)) is differentiable on R, and

(ii) for every x holds (− 1
2·(m+n) ((the function cos) · ((m+ n)�+0)) −

1
2·(m−n) ((the function cos) ·((m− n)�+0)))

′
�R(x) = sin(m · x) · cos(n · x).

(8) Suppose n 6= 0. Then
(i) 1

n2
((the function sin) ·(n�+0))−( 1n�+0) ((the function cos) ·(n�+0))

is differentiable on R, and
(ii) for every x holds ( 1

n2
((the function sin) ·(n�+0))−( 1n�+0) ((the func-

tion cos) ·(n�+0)))′�R(x) = x · sin(n · x).
(9) Suppose n 6= 0. Then
(i) 1

n2
((the function cos) ·(n�+0))+( 1n�+0) ((the function sin) ·(n�+0))

is differentiable on R, and
(ii) for every x holds ( 1

n2
((the function cos) ·(n�+0))+( 1n�+0) ((the func-

tion sin) ·(n�+0)))′�R(x) = x · cos(n · x).
(10)(i) (1�+0) (the function cosh)−the function sinh is differentiable on R,
and

(ii) for every x holds ((1�+0) (the function cosh)−the function
sinh)′�R(x) = x · sinhx.

(11)(i) (1�+0) (the function sinh)−the function cosh is differentiable on R,
and
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(ii) for every x holds ((1�+0) (the function sinh)−the function
cosh)′�R(x) = x · coshx.

(12) If a · (n + 1) 6= 0, then 1
a·(n+1) (a�+b)

n+1 is differentiable on R and for
every x holds ( 1

a·(n+1) (a�+b)
n+1)′�R(x) = (a · x+ b)n.

2. Integrability Formulas

Next we state a number of propositions:

(13)
∫
A

(the function sin)2(x)dx =
1
2
· supA− 1

4
· sin(2 · supA)− (1

2
· inf A−

1
4
· sin(2 · inf A)).

(14)
∫
[0,π]

(the function sin)2(x)dx =
π

2
.

(15)
∫
[0,2·π]

(the function sin)2(x)dx = π.

(16)
∫
A

(the function cos)2(x)dx = (
1
2
· supA+ 1

4
· sin(2 · supA))− (1

2
· inf A+

1
4
· sin(2 · inf A)).

(17)
∫
[0,π]

(the function cos)2(x)dx =
π

2
.

(18)
∫
[0,2·π]

(the function cos)2(x)dx = π.

(19)
∫
A

((the function sin)n (the function cos))(x)dx =
1
n+ 1

·(sin supA)n+1−

1
n+ 1

· (sin inf A)n+1.

(20)
∫
[0,π]

((the function sin)n (the function cos))(x)dx = 0.

(21)
∫
[0,2·π]

((the function sin)n (the function cos))(x)dx = 0.

(22)
∫
A

((the function cos)n (the function sin))(x)dx = (− 1
n+ 1

)·(cos supA)n+1−

(− 1
n+ 1

) · (cos inf A)n+1.
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(23)
∫
[0,2·π]

((the function cos)n (the function sin))(x)dx = 0.

(24)
∫

[−π2 ,
π
2 ]

((the function cos)n (the function sin))(x)dx = 0.

(25) Suppose m+ n 6= 0 and m− n 6= 0. Then∫
A

(((the function cos) · (m�+0)) ((the function cos) · (n�+0)))(x)dx =

(
1

2 · (m+ n)
· sin((m + n) · supA) + 1

2 · (m− n)
· sin((m − n) · supA)) −

(
1

2 · (m+ n)
· sin((m+ n) · inf A) + 1

2 · (m− n)
· sin((m− n) · inf A)).

(26) Suppose m+ n 6= 0 and m− n 6= 0. Then∫
A

(((the function sin) · (m�+0)) ((the function sin) · (n�+0)))(x)dx =

1
2 · (m− n)

· sin((m − n) · supA) − 1
2 · (m+ n)

· sin((m + n) · supA) −

(
1

2 · (m− n)
· sin((m− n) · inf A)− 1

2 · (m+ n)
· sin((m+ n) · inf A)).

(27) Suppose m+ n 6= 0 and m− n 6= 0. Then∫
A

(((the function sin) · (m�+0)) ((the function cos) · (n�+0)))(x)dx =

− 1
2 · (m+ n)

· cos((m+ n) · supA) − 1
2 · (m− n)

· cos((m − n) · supA) −

(− 1
2 · (m+ n)

· cos((m+ n) · inf A)− 1
2 · (m− n)

· cos((m− n) · inf A)).

(28) If n 6= 0, then
∫
A

((1�+0) ((the function sin) · (n�+0)))(x)dx = 1
n2
·

sin(n · supA)− 1
n
· supA · cos(n · supA)− ( 1

n2
· sin(n · inf A)− 1

n
· inf A ·

cos(n · inf A)).

(29) If n 6= 0, then
∫
A

((1�+0) ((the function cos) · (n�+0)))(x)dx = ( 1
n2
·

cos(n · supA) + 1
n
· supA · sin(n · supA))− ( 1

n2
· cos(n · inf A) + 1

n
· inf A ·

sin(n · inf A)).

(30)
∫
A

((1�+0) (the function sinh))(x)dx = supA · cosh supA− sinh supA−

(inf A · cosh inf A− sinh inf A).

(31)
∫
A

((1�+0) (the function cosh))(x)dx = supA · sinh supA− cosh supA−

(inf A · sinh inf A− cosh inf A).
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(32) If a · (n+1) 6= 0, then
∫
A

(a�+b)n(x)dx =
1

a · (n+ 1)
· (a · supA+b)n+1−

1
a · (n+ 1)

· (a · inf A+ b)n+1.

3. Addenda

In the sequel f , f1, f2, f3, g are partial functions from R to R.
The following propositions are true:

(33) If Z ⊆ dom(12 f) and f = �2, then 12 f is differentiable on Z and for
every x such that x ∈ Z holds (12 f)

′
�Z(x) = x.

(34) If A ⊆ Z = dom(12 (�
2)), then

∫
A

idZ(x)dx =
1
2
· (supA)2 − 1

2
· (inf A)2.

(35) Suppose A ⊆ Z and for every x such that x ∈ Z holds g(x) = x and
g(x) 6= 0 and f(x) = − 1

x2
and Z = dom g and dom f = Z and f�A is

continuous. Then
∫
A

f(x)dx = (supA)−1 − (inf A)−1.

(36) Suppose that
(i) A ⊆ Z,
(ii) f1 = �2,
(iii) for every x such that x ∈ Z holds f2(x) = 1 and x 6= 0 and f(x) =

2·x
(1+x2)2 ,

(iv) dom( f1f2+f1 ) = Z,
(v) Z = dom f, and
(vi) f�A is continuous.

Then
∫
A

f(x)dx = (
f1
f2 + f1

)(supA)− ( f1
f2 + f1

)(inf A).

(37) Suppose Z ⊆ dom((the function tan)+(the function sec)) and for every
x such that x ∈ Z holds 1 + sinx 6= 0 and 1− sinx 6= 0. Then
(i) (the function tan)+(the function sec) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function tan)+(the function
sec))′�Z(x) =

1
1−sinx .

(38) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds 1 + sinx 6= 0 and 1 − sinx 6= 0 and
f(x) = 1

1−sinx ,

(iii) dom((the function tan)+(the function sec)) = Z,
(iv) Z = dom f, and
(v) f�A is continuous.
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Then
∫
A

f(x)dx = (tan supA+ sec supA)− (tan inf A+ sec inf A).

(39) Suppose Z ⊆ dom((the function tan)−(the function sec)) and for every
x such that x ∈ Z holds 1 + sinx 6= 0 and 1− sinx 6= 0. Then
(i) (the function tan)−(the function sec) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function tan)−(the function
sec))′�Z(x) =

1
1+sinx .

(40) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds 1 + sinx 6= 0 and 1 − sinx 6= 0 and
f(x) = 1

1+sinx ,

(iii) dom((the function tan)−(the function sec)) = Z,
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = tan supA− sec supA− (tan inf A− sec inf A).

(41) Suppose Z ⊆ dom(−the function cot+ the function cosec) and for every
x such that x ∈ Z holds 1 + cosx 6= 0 and 1− cosx 6= 0. Then
(i) −the function cot + the function cosec is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (−the function cot + the function
cosec)′�Z(x) =

1
1+cosx .

(42) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds 1 + cosx 6= 0 and 1− cosx 6= 0 and
f(x) = 1

1+cosx ,

(iii) dom(−the function cot + the function cosec) = Z,
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (−cot supA+ cosec supA)− (−cot inf A+ cosec inf A).

(43) Suppose Z ⊆ dom(−the function cot− the function cosec) and for every
x such that x ∈ Z holds 1 + cosx 6= 0 and 1− cosx 6= 0. Then
(i) −the function cot− the function cosec is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (−the function cot − the function
cosec)′�Z(x) =

1
1−cosx .

(44) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds 1 + cosx 6= 0 and 1− cosx 6= 0 and
f(x) = 1

1−cosx ,

(iii) dom(−the function cot− the function cosec) = Z,
(iv) Z = dom f, and
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(v) f�A is continuous.

Then
∫
A

f(x)dx = −cot supA− cosec supA− (−cot inf A− cosec inf A).

(45) Suppose that
(i) A ⊆ Z,
(ii) Z ⊆ ]−1, 1[,
(iii) for every x such that x ∈ Z holds f(x) = 1

1+x2 ,

(iv) dom (the function arctan) = Z,
(v) Z = dom f, and
(vi) f�A is continuous.

Then
∫
A

f(x)dx = arctan supA− arctan inf A.

(46) Suppose that
(i) A ⊆ Z,
(ii) Z ⊆ ]−1, 1[,
(iii) for every x such that x ∈ Z holds f(x) = r

1+x2 ,

(iv) dom(r the function arctan) = Z,
(v) Z = dom f, and
(vi) f�A is continuous.

Then
∫
A

f(x)dx = r · arctan supA− r · arctan inf A.

(47) Suppose that
(i) A ⊆ Z,
(ii) Z ⊆ ]−1, 1[,
(iii) for every x such that x ∈ Z holds f(x) = − 1

1+x2 ,

(iv) dom (the function arccot) = Z,
(v) Z = dom f, and
(vi) f�A is continuous.

Then
∫
A

f(x)dx = arccot supA− arccot inf A.

(48) Suppose that
(i) A ⊆ Z,
(ii) Z ⊆ ]−1, 1[,
(iii) for every x such that x ∈ Z holds f(x) = − r

1+x2 ,

(iv) dom(r the function arccot) = Z,
(v) Z = dom f, and
(vi) f�A is continuous.

Then
∫
A

f(x)dx = r · arccot supA− r · arccot inf A.

(49) Suppose Z ⊆ dom((idZ + the function cot)−the function cosec) and for
every x such that x ∈ Z holds 1 + cosx 6= 0 and 1− cosx 6= 0. Then
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(i) (idZ + the function cot)−the function cosec is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((idZ+the function cot)−the function
cosec)′�Z(x) =

cosx
1+cosx .

(50) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds 1 + cosx 6= 0 and 1− cosx 6= 0 and
f(x) = cosx

1+cosx ,

(iii) dom((idZ + the function cot)−the function cosec) = Z,
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (supA+cot supA)− cosec supA− ((inf A+cot inf A)−

cosec inf A).

(51) Suppose Z ⊆ dom(idZ + the function cot+the function cosec) and for
every x such that x ∈ Z holds 1 + cosx 6= 0 and 1− cosx 6= 0. Then
(i) idZ + the function cot+the function cosec is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (idZ +the function cot+the function
cosec)′�Z(x) =

cosx
cosx−1 .

(52) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds 1 + cosx 6= 0 and 1− cosx 6= 0 and
f(x) = cosx

cosx−1 ,

(iii) dom(idZ + the function cot+the function cosec) = Z,
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (supA+ cot supA+ cosec supA)− (inf A+ cot inf A+

cosec inf A).

(53) Suppose Z ⊆ dom((idZ − the function tan)+the function sec) and for
every x such that x ∈ Z holds 1 + sinx 6= 0 and 1− sinx 6= 0. Then
(i) (idZ − the function tan)+the function sec is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((idZ−the function tan)+the function
sec)′�Z(x) =

sinx
sinx+1 .

(54) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds 1 + sinx 6= 0 and 1 − sinx 6= 0 and
f(x) = sinx

1+sinx ,

(iii) Z ⊆ dom((idZ − the function tan)+the function sec),
(iv) Z = dom f, and
(v) f�A is continuous.
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Then
∫
A

f(x)dx = ((supA− tan supA)+sec supA)− ((inf A− tan inf A)+

sec inf A).

(55) Suppose Z ⊆ dom(idZ−the function tan−the function sec) and for every
x such that x ∈ Z holds 1 + sinx 6= 0 and 1− sinx 6= 0. Then
(i) idZ − the function tan−the function sec is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (idZ − the function tan−the function
sec)′�Z(x) =

sinx
sinx−1 .

(56) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds 1 + sinx 6= 0 and 1 − sinx 6= 0 and
f(x) = sinx

sinx−1 ,

(iii) Z ⊆ dom(idZ − the function tan−the function sec),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = supA − tan supA − sec supA − (inf A − tan inf A −

sec inf A).

(57) Suppose Z ⊆ dom((the function tan)−idZ). Then (the function
tan)−idZ is differentiable on Z and for every x such that x ∈ Z holds
((the function tan)−idZ)′�Z(x) = (tanx)2.

(58) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds (the function cos)(x) > 0 and
f(x) = (tanx)2,

(iii) Z ⊆ dom((the function tan)−idZ),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = tan supA− supA− (tan inf A− inf A).

(59) Suppose Z ⊆ dom(−the function cot − idZ). Then −the function cot −
idZ is differentiable on Z and for every x such that x ∈ Z holds
(−the function cot− idZ)′�Z(x) = (cotx)2.

(60) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds (the function sin)(x) > 0 and
f(x) = (cotx)2,

(iii) Z ⊆ dom(−the function cot− idZ),
(iv) Z = dom f, and
(v) f�A is continuous.
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Then
∫
A

f(x)dx = −cot supA− supA− (−cot inf A− inf A).

(61) Suppose A ⊆ Z and for every x such that x ∈ Z holds f(x) = 1
(cosx)2 and

cosx 6= 0 and dom (the function tan) = Z = dom f and f�A is continuous.
Then

∫
A

f(x)dx = tan supA− tan inf A.

(62) Suppose A ⊆ Z and for every x such that x ∈ Z holds f(x) = − 1
(sinx)2

and sinx 6= 0 and dom (the function cot) = Z = dom f and f�A is conti-
nuous. Then

∫
A

f(x)dx = cot supA− cot inf A.

(63) Suppose A ⊆ Z and for every x such that x ∈ Z holds f(x) = sinx−(cosx)
2

(cosx)2

and Z ⊆ dom((the function sec)−idZ) and Z = dom f and f�A is conti-
nuous. Then

∫
A

f(x)dx = sec supA− supA− (sec inf A− inf A).

(64) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = cosx−(sinx)

2

(sinx)2 ,

(iii) Z ⊆ dom(−the function cosec− idZ),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = −cosec supA− supA− (−cosec inf A− inf A).

The following propositions are true:

(65) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds sinx > 0,
(iii) Z ⊆ dom((the function ln) ·(the function sin)),
(iv) Z = dom (the function cot), and
(v) (the function cot)�A is continuous.

Then
∫
A

(the function cot)(x)dx = ln sin supA− ln sin inf A.

(66) Suppose that
(i) A ⊆ Z,
(ii) Z ⊆ ]−1, 1[,
(iii) for every x such that x ∈ Z holds f(x) = arcsinx√

1−x2 ,

(iv) Z ⊆ dom(12 (the function arcsin)
2),

(v) Z = dom f, and
(vi) f�A is continuous.
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Then
∫
A

f(x)dx =
1
2
· (arcsin supA)2 − 1

2
· (arcsin inf A)2.

(67) Suppose that
(i) A ⊆ Z,
(ii) Z ⊆ ]−1, 1[,
(iii) for every x such that x ∈ Z holds f(x) = −arccosx√

1−x2 ,

(iv) Z ⊆ dom(12 (the function arccos)
2),

(v) Z = dom f, and
(vi) f�A is continuous.

Then
∫
A

f(x)dx =
1
2
· (arccos supA)2 − 1

2
· (arccos inf A)2.

(68) A ⊆ Z ⊆ ]−1, 1[ and f = f1 − f2 and f2 = �2 and for every x such that
x ∈ Z holds f1(x) = 1 and f(x) > 0 and x 6= 0 and dom (the function
arcsin) = Z ⊆ dom(idZ (the function arcsin)+f

1
2 ).

(69) Suppose that A ⊆ Z ⊆ ]−1, 1[ and f = f1 − f2 and f2 = �2 and for
every x such that x ∈ Z holds f1(x) = a2 and f(x) > 0 and f3(x) = xa and
−1 < f3(x) < 1 and x 6= 0 and a > 0 and dom((the function arcsin) ·f3) =
Z ⊆ dom(idZ ((the function arcsin) ·f3) + (�

1
2 ) · f) and ((the function

arcsin) ·f3)�A is continuous. Then
∫
A

((the function arcsin) · f3)(x)dx =

(supA · arcsin(supA
a
) + f(supA)

1
2 )− (inf A · arcsin( inf A

a
) + f(inf A)

1
2 ).

(70) Suppose that A ⊆ Z ⊆ ]−1, 1[ and f = f1 − f2 and f2 = �2 and for
every x such that x ∈ Z holds f1(x) = 1 and f(x) > 0 and x 6= 0 and
dom (the function arccos) = Z ⊆ dom(idZ (the function arccos)−(�

1
2 ) ·f).

Then
∫
A

(the function arccos)(x)dx = supA · arccos supA − f(supA)
1
2 −

(inf A · arccos inf A− f(inf A)
1
2 ).

(71) Suppose that A ⊆ Z ⊆ ]−1, 1[ and f = f1 − f2 and f2 = �2 and for
every x such that x ∈ Z holds f1(x) = a2 and f(x) > 0 and f3(x) = xa and
−1 < f3(x) < 1 and x 6= 0 and a > 0 and dom((the function arccos) ·f3) =
Z = dom(idZ ((the function arccos) ·f3) − (�

1
2 ) · f) and ((the function

arccos) ·f3)�A is continuous. Then
∫
A

((the function arccos) · f3)(x)dx =

supA · arccos(supA
a
)− f(supA)

1
2 − (inf A · arccos( inf A

a
)− f(inf A)

1
2 ).

(72) Suppose that
(i) A ⊆ Z,
(ii) Z ⊆ ]−1, 1[,
(iii) f2 = �2,
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(iv) for every x such that x ∈ Z holds f1(x) = 1,
(v) Z = dom (the function arctan), and
(vi) Z = dom(idZ the function arctan−12 ((the function ln) ·(f1 + f2))).

Then
∫
A

(the function arctan)(x)dx = supA · arctan supA − 1
2
· ln(1 +

(supA)2)− (inf A · arctan inf A− 1
2
· ln(1 + (inf A)2)).

(73) Suppose that
(i) A ⊆ Z,
(ii) Z ⊆ ]−1, 1[,
(iii) f2 = �2,
(iv) for every x such that x ∈ Z holds f1(x) = 1,
(v) dom (the function arccot) = Z, and
(vi) Z = dom(idZ the function arccot+12 ((the function ln) ·(f1 + f2))).

Then
∫
A

(the function arccot)(x)dx = (supA · arccot supA + 1
2
· ln(1 +

(supA)2))− (inf A · arccot inf A+ 1
2
· ln(1 + (inf A)2)).
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