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Summary. The paper includes elements of the theory of matroids [23].
The formalization is done according to [12].

MML identifier: MATROID0, version: 7.9.03 4.108.1028

The articles [7], [22], [17], [15], [8], [5], [6], [19], [9], [3], [2], [4], [1], [21], [11],
[20], [18], [16], [10], [13], and [14] provide the terminology and notation for this
paper.

1. Definition by Independent Sets

A subset family structure is a topological structure.
LetM be a subset family structure and let A be a subset ofM . We introduce

A is independent as a synonym of A is open. We introduce A is dependent as
an antonym of A is open.
Let M be a subset family structure. The family of M yielding a family of

subsets of M is defined as follows:

(Def. 1) The family of M = the topology of M .

Let M be a subset family structure and let A be a subset of M . Let us
observe that A is independent if and only if:

(Def. 2) A ∈ the family of M .
Let M be a subset family structure. We say that M is subset-closed if and

only if:

(Def. 3) The family of M is subset-closed.

1This article was done under the Agreement of Cooperation between Białystok Technical
University and Shinshu University.
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We say that M has exchange property if and only if the condition (Def. 4) is
satisfied.

(Def. 4) Let A, B be finite subsets of M . Suppose A ∈ the family of M and
B ∈ the family of M and cardB = cardA + 1. Then there exists an
element e of M such that e ∈ B \A and A ∪ {e} ∈ the family of M .
One can check that there exists a subset family structure which is strict, non

empty, non void, finite, and subset-closed and has exchange property.
LetM be a non void subset family structure. One can verify that there exists

a subset of M which is independent.
Let M be a subset-closed subset family structure. One can verify that the

family of M is subset-closed.
We now state the proposition

(1) LetM be a non void subset-closed subset family structure, A be an inde-
pendent subset of M , and B be a set. If B ⊆ A, then B is an independent
subset of M .

Let M be a non void subset-closed subset family structure. Note that there
exists a subset of M which is finite and independent.
A matroid is a non empty non void subset-closed subset family structure

with exchange property.
One can prove the following proposition

(2) For every subset-closed subset family structure M holds M is non void
iff ∅ ∈ the family of M .
Let M be a non void subset-closed subset family structure. Note that

∅the carrier of M is independent.
The following proposition is true

(3) Let M be a non void subset family structure. Then M is subset-closed
if and only if for all subsets A, B of M such that A is independent and
B ⊆ A holds B is independent.
Let M be a non void subset-closed subset family structure, let A be an

independent subset of M , and let B be a set. One can check the following
observations:

∗ A ∩B is independent,
∗ B ∩A is independent, and
∗ A \B is independent.
Next we state the proposition

(4) Let M be a non void non empty subset family structure. Then M has
exchange property if and only if for all finite subsets A, B of M such that
A is independent and B is independent and cardB = cardA + 1 there
exists an element e of M such that e ∈ B \A and A∪ {e} is independent.
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Let A be a set. We introduce A is finite-membered as a synonym of A has
finite elements.
Let A be a set. Let us observe that A is finite-membered if and only if:

(Def. 5) For every set B such that B ∈ A holds B is finite.
Let M be a subset family structure. We say that M is finite-membered if

and only if:

(Def. 6) The family of M is finite-membered.

Let M be a subset family structure. We say that M is finite-degree if and
only if the conditions (Def. 7) are satisfied.

(Def. 7)(i) M is finite-membered, and
(ii) there exists a natural number n such that for every finite subset A of
M such that A is independent holds cardA ≤ n.
Let us note that every subset family structure which is finite-degree is also

finite-membered and every subset family structure which is finite is also finite-
degree.

2. Examples

Let us note that there exists a set which is mutually-disjoint and non empty
and has non empty elements.
The following propositions are true:

(5) For all finite sets A, B such that cardA < cardB there exists a set x
such that x ∈ B \A.

(6) For every mutually-disjoint non empty set P with non empty elements
holds every choice function of P is one-to-one.

Let us mention that every discrete subset family structure is non void and
subset-closed and has exchange property.
Next we state the proposition

(7) Every non empty discrete topological structure is a matroid.

Let P be a set. The functor ProdMatroidP yields a strict subset family
structure and is defined by the conditions (Def. 8).

(Def. 8)(i) The carrier of ProdMatroidP =
⋃
P, and

(ii) the family of ProdMatroidP = {A ⊆
⋃
P :

∧
D : set (D ∈ P ⇒∨

d : set A ∩D ⊆ {d})}.
Let P be a non empty set with non empty elements. One can verify that

ProdMatroidP is non empty.
Next we state the proposition

(8) Let P be a set and A be a subset of ProdMatroidP. Then A is indepen-
dent if and only if for every element D of P there exists an element d of
D such that A ∩D ⊆ {d}.
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Let P be a set. One can verify that ProdMatroidP is non void and subset-
closed.
Next we state two propositions:

(9) Let P be a mutually-disjoint set and x be a subset of ProdMatroidP.
Then there exists a function f from x into P such that for every set a
such that a ∈ x holds a ∈ f(a).

(10) Let P be a mutually-disjoint set, x be a subset of ProdMatroidP, and f
be a function from x into P . Suppose that for every set a such that a ∈ x
holds a ∈ f(a). Then x is independent if and only if f is one-to-one.

Let P be a mutually-disjoint set. Observe that ProdMatroidP has exchange
property.
Let X be a finite set and let P be a subset of 2X . One can check that

ProdMatroidP is finite.
Let X be a set. Observe that every partition of X is mutually-disjoint.
One can check that there exists a matroid which is finite and strict.
Let M be a finite-membered non void subset family structure. Observe that

every independent subset of M is finite.
Let F be a field and let V be a vector space over F . The matroid of linearly

independent subsets of V is a strict subset family structure and is defined by
the conditions (Def. 9).

(Def. 9)(i) The carrier of the matroid of linearly independent subsets of V = the
carrier of V , and

(ii) the family of the matroid of linearly independent subsets of V = {A ⊆
V : A is linearly independent}.
Let F be a field and let V be a vector space over F . Note that the matroid

of linearly independent subsets of V is non empty, non void, and subset-closed.
Let F be a field and let V be a vector space over F . Observe that there

exists a subset of V which is linearly independent and empty.
The following three propositions are true:

(11) Let F be a field, V be a vector space over F , and A be a subset of the
matroid of linearly independent subsets of V . Then A is independent if
and only if A is a linearly independent subset of V .

(12) Let F be a field, V be a vector space over F , and A, B be finite subsets
of V . Suppose B ⊆ A. Let v be a vector of V . Suppose v ∈ Lin(A) and
v /∈ Lin(B). Then there exists a vector w of V such that w ∈ A \ B and
w ∈ Lin((A \ {w}) ∪ {v}).

(13) Let F be a field, V be a vector space over F , and A be a subset of V .
Suppose A is linearly independent. Let a be an element of V . If a 6∈ the
carrier of Lin(A), then A ∪ {a} is linearly independent.
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Let F be a field and let V be a vector space over F . Observe that the matroid
of linearly independent subsets of V has exchange property.
Let F be a field and let V be a finite dimensional vector space over F . Note

that the matroid of linearly independent subsets of V is finite-membered.

3. Maximal Independent Subsets, Ranks, and Basis

Let M be a subset family structure and let A, C be subsets of M . We say
that A is maximal independent in C if and only if:

(Def. 10) A is independent and A ⊆ C and for every subset B of M such that B
is independent and B ⊆ C and A ⊆ B holds A = B.
The following propositions are true:

(14) Let M be a non void finite-degree subset family structure and C, A be
subsets of M . Suppose A ⊆ C and A is independent. Then there exi-
sts an independent subset B of M such that A ⊆ B and B is maximal
independent in C.

(15) Let M be a non void finite-degree subset-closed subset family structure
and C be a subset of M . Then there exists an independent subset of M
which is maximal independent in C.

(16) LetM be a non empty non void subset-closed finite-degree subset family
structure. ThenM is a matroid if and only if for every subset C ofM and
for all independent subsets A, B ofM such that A is maximal independent
in C and B is maximal independent in C holds cardA = cardB.

Let M be a finite-degree matroid and let C be a subset of M . The functor
RnkC yields a natural number and is defined by:

(Def. 11) RnkC =
⋃
{cardA;A ranges over independent subsets of M : A ⊆ C}.

One can prove the following propositions:

(17) Let M be a finite-degree matroid, C be a subset of M , and A be an
independent subset of M . If A ⊆ C, then cardA ≤ RnkC.

(18) Let M be a finite-degree matroid and C be a subset of M . Then there
exists an independent subsetA ofM such thatA ⊆ C and cardA = RnkC.

(19) Let M be a finite-degree matroid, C be a subset of M , and A be an
independent subset of M . Then A is maximal independent in C if and
only if A ⊆ C and cardA = RnkC.

(20) For every finite-degree matroid M and for every finite subset C of M
holds RnkC ≤ cardC.

(21) Let M be a finite-degree matroid and C be a finite subset of M . Then
C is independent if and only if cardC = RnkC.

Let M be a finite-degree matroid. The functor RnkM yielding a natural
number is defined by:
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(Def. 12) RnkM = Rnk(ΩM ).

Let M be a non void finite-degree subset family structure. An independent
subset of M is said to be a basis of M if:

(Def. 13) It is maximal independent in ΩM .

One can prove the following propositions:

(22) For every finite-degree matroid M and for all bases B1, B2 of M holds
cardB1 = cardB2.

(23) For every finite-degree matroid M and for every independent subset A
of M there exists a basis B of M such that A ⊆ B.
We follow the rules: M is a finite-degree matroid, A, B, C are subsets of M ,

and e, f are elements of M .
Next we state four propositions:

(24) If A ⊆ B, then RnkA ≤ RnkB.
(25) Rnk(A ∪B) + Rnk(A ∩B) ≤ RnkA+RnkB.
(26) RnkA ≤ Rnk(A ∪B) and Rnk(A ∪ {e}) ≤ RnkA+ 1.
(27) If Rnk(A ∪ {e}) = Rnk(A ∪ {f}) and Rnk(A ∪ {f}) = RnkA, then
Rnk(A ∪ {e, f}) = RnkA.

4. Dependence on a Set, Spans, and Cycles

Let M be a finite-degree matroid, let e be an element of M , and let A be a
subset of M . We say that e is dependent on A if and only if:

(Def. 14) Rnk(A ∪ {e}) = RnkA.
We now state two propositions:

(28) If e ∈ A, then e is dependent on A.
(29) If A ⊆ B and e is dependent on A, then e is dependent on B.
Let M be a finite-degree matroid and let A be a subset of M . The functor

SpanA yielding a subset of M is defined as follows:

(Def. 15) SpanA = {e ∈M : e is dependent on A}.
Next we state several propositions:

(30) e ∈ SpanA iff Rnk(A ∪ {e}) = RnkA.
(31) A ⊆ SpanA.
(32) If A ⊆ B, then SpanA ⊆ SpanB.
(33) Rnk SpanA = RnkA.

(34) If e is dependent on SpanA, then e is dependent on A.

(35) Span SpanA = SpanA.

(36) If f 6∈ SpanA and f ∈ Span(A ∪ {e}), then e ∈ Span(A ∪ {f}).
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Let M be a subset family structure and let A be a subset of M . We say that
A is cycle if and only if:

(Def. 16) A is dependent and for every element e of M such that e ∈ A holds
A \ {e} is independent.
Next we state the proposition

(37) If A is cycle, then A is non empty and finite.

Let us consider M . Note that every subset of M which is cycle is also non
empty and finite.
One can prove the following propositions:

(38) A is cycle iff A is non empty and for every e such that e ∈ A holds A\{e}
is maximal independent in A.

(39) If A is cycle, then RnkA+ 1 = A.

(40) If A is cycle and e ∈ A, then e is dependent on A \ {e}.
(41) If A is cycle and B is cycle and A ⊆ B, then A = B.
(42) If for every B such that B ⊆ A holds B is not cycle, then A is indepen-
dent.

(43) If A is cycle and B is cycle and A 6= B and e ∈ A ∩B, then there exists
C such that C is cycle and C ⊆ (A ∪B) \ {e}.

(44) If A is independent and B is cycle and C is cycle and B ⊆ A ∪ {e} and
C ⊆ A ∪ {e}, then B = C.
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