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Jordan Matrix Decomposition
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Summary. In this paper I present the Jordan Matrix Decomposition The-
orem which states that an arbitrary square matrix M over an algebraically closed
field can be decomposed into the form

M=S8J8"*

where S is an invertible matrix and J is a matrix in a Jordan canonical form, i.e.

a special type of block diagonal matrix in which each block consists of Jordan
blocks (see [13]).
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The terminology and notation used here are introduced in the following articles:
[11], 2], [3], [12], [34], [7], [10], [8], [4], [28], [33], [30], [18], [6], [14], [15], [36],

(23], [37], [35], 9], [29], [32], [31]; [5], [19]; [24], [22], [17], [1], [21], [20], [16], [25],
[27], and [26].

1. JorDAN BLOCKS

We follow the rules: i, j, m, n, k denote natural numbers, K denotes a field,
and a, A denote elements of K.
Let us consider K, A, n. The Jordan block of A and n yields a matrix over
K and is defined by the conditions (Def. 1).
(Def. 1)(i)  len (the Jordan block of A and n) = n,
(ii)  width (the Jordan block of A and n) = n, and
(iii)  for all 4, j such that (i, j) € the indices of the Jordan block of A and n
holds if ¢ = j, then (the Jordan block of A and n); ; = A and if i +1 = j,
then (the Jordan block of A and n);; = 1x and if ¢ # j and 7 + 1 # j,
then (the Jordan block of A and n); ; = Ok.
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Let us consider K, A, n. Then the Jordan block of A and n is an upper
triangular matrix over K of dimension n.
The following propositions are true:
1) The diagonal of the Jordan block of A and n =n+— A.
2) Det (the Jordan block of A and n) = powerg (A, n).
3) The Jordan block of A and n is invertible iff n = 0 or A # Ok
4) If i € Segn and i # n, then Line(the Jordan block of A and n, i) =
A - Line(I",4) + Line(I™", i + 1).
(5) Line(the Jordan block of A and n, n) = A - Line(Ix*", n).
(6) Let F be an element of (the carrier of K)™ such that ¢ € Segn. Then
(i) if ¢ # n, then Line(the Jordan block of A and n, i) - F = X - F; + Fj41,
and
(ii)  if 4 = n, then Line(the Jordan block of A and n, i) - F = X\ - F;.
(7) Let F be an element of (the carrier of K)" such that ¢ € Segn. Then
(i) if ¢ =1, then (the Jordan block of X\ and n)g, - F' = X\ - F;, and
(ii) if ¢ # 1, then (the Jordan block of A and n)g,; - F = X+ F; + Fi_1.
(8) Suppose A # 0. Then there exists a square matrix M over K of dimen-
sion n such that
(i)  (the Jordan block of A and n)~ = M, and
(ii)  for all ¢, j such that (i, j) € the indices of M holds if i > j, then
M; ; =0 and if i < j, then M, j = —power(—A~1, (j —"4) + 1).
(9) (The Jordan block of X and n) + a - I*" = the Jordan block of X + a
and n.

(
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2. FINITE SEQUENCES OF JORDAN BLOCKS

Let us consider K and let G be a finite sequence of elements
of ((the carrier of K)*)*. We say that G is Jordan-block-yielding if and only
if:

(Def. 2) For every i such that ¢ € dom G there exist A\, n such that G(i) = the
Jordan block of A and n.

Let us consider K. Observe that there exists a finite sequence of elements of
((the carrier of K)*)* which is Jordan-block-yielding.

Let us consider K. One can verify that every finite sequence of elements
of ((the carrier of K)*)* which is Jordan-block-yielding is also square-matrix-
yielding.

Let us consider K. A finite sequence of Jordan blocks of K is a Jordan-block-
yielding finite sequence of elements of ((the carrier of K)*)".

Let us consider K, A. A finite sequence of Jordan blocks of K is said to be
a finite sequence of Jordan blocks of A and K if:
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(Def. 3) For every i such that ¢ € domit there exists n such that it(i) = the
Jordan block of A and n.

Next we state two propositions:
(10) 0 is a finite sequence of Jordan blocks of A and K.

(11) (the Jordan block of A and n) is a finite sequence of Jordan blocks of A
and K.

Let us consider K, A. Observe that there exists a finite sequence of Jordan
blocks of A and K which is non-empty.

Let us consider K. Note that there exists a finite sequence of Jordan blocks
of K which is non-empty.

Next we state the proposition

(12) Let J be a finite sequence of Jordan blocks of A and K. Then J®len J +—
ae I}(GHJXLGHJ is a finite sequence of Jordan blocks of A + a and K.

Let us consider K and let Jy, Jo be fininte sequences of Jordan blocks of K.
Then J; ~ Js is a finite sequence of Jordan blocks of K.

Let us consider K, let J be a finite sequence of Jordan blocks of K, and let
us consider n. Then J|n is a finite sequence of Jordan blocks of K. Then J, is
a finite sequence of Jordan blocks of K.

Let us consider K, A and let Jy, Jo be finite sequences of Jordan blocks of
A and K. Then J; ~ Jo is a finite sequence of Jordan blocks of A and K.

Let us consider K, A, let J be a finite sequence of Jordan blocks of A and
K, and let us consider n. Then J[n is a finite sequence of Jordan blocks of A
and K. Then J, is a finite sequence of Jordan blocks of A and K.

3. NILPOTENT TRANSFORMATIONS

Let K be a double loop structure, let V' be a non empty vector space structure
over K, and let f be a function from V into V. We say that f is nilpotent if
and only if:

(Def. 4) There exists n such that for every vector v of V" holds f"(v) = Oy.
We now state the proposition

(13) Let K be a double loop structure, V' be a non empty vector space struc-
ture over K, and f be a function from V into V. Then f is nilpotent if
and only if there exists n such that f™ = ZeroMap(V, V).

Let K be a double loop structure and let V' be a non empty vector space
structure over K. Observe that there exists a function from V into V which is
nilpotent.

Let R be a ring and let V' be a left module over R. Observe that there exists
a function from V into V which is nilpotent and linear.

Next we state the proposition
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(14) Let V be a vector space over K and f be a linear transformation from
V to V. Then f]ker f™ is a nilpotent linear transformation from ker f™ to
ker ™.

Let K be a double loop structure, let V' be a non empty vector space structure
over K, and let f be a nilpotent function from V into V. The degree of nilpotence
of f yielding a natural number is defined by the conditions (Def. 5).

(Def 5)(1) fthe degree of nilpotence of f __ ZeroMap(V, V), and
(i) for every k such that f* = ZeroMap(V, V') holds the degree of nilpotence
of f <k.

Let K be a double loop structure, let V' be a non empty vector space structure
over K, and let f be a nilpotent function from V into V. We introduce deg f as
a synonym of the degree of nilpotence of f.

One can prove the following propositions:

(15) Let K be a double loop structure, V' be a non empty vector space struc-
ture over K, and f be a nilpotent function from V into V. Then deg f =0
if and only if Qy = {0y }.

(16) Let K be a double loop structure, V' be a non empty vector space struc-
ture over K, and f be a nilpotent function from V into V. Then there
exists a vector v of V such that for every i such that ¢ < deg f holds
fi(v) # Oy

(17) Let K be a field, V be a vector space over K, W be a subspace of V,
and f be a nilpotent function from V into V. Suppose f[W is a function
from W into W. Then f[W is a nilpotent function from W into W.

(18) Let K be a field, V' be a vector space over K, W be a subspace of V, f
be a nilpotent linear transformation from V' to V, and f; be a nilpotent
function from im(f™) into im(f™). If f1 = flim(f™) and n < deg f, then
deg f1 +n = deg f.

For simplicity, we adopt the following convention: V;, V5 denote finite di-
mensional vector spaces over K, Wy, Wy denote subspaces of Vi, U, Uy denote
subspaces of V5, b1 denotes an ordered basis of V7, By denotes a finite sequence
of elements of V7, by denotes an ordered basis of Vo, By denotes a finite sequence
of elements of V5, b3 denotes an ordered basis of W7, by denotes an ordered basis
of Wy, B3 denotes a finite sequence of elements of Uy, and B4 denotes a finite
sequence of elements of Us.

Next we state a number of propositions:

(19) Let M be a matrix over K of dimension lenb; x len By, M; be a ma-
trix over K of dimension lenbs X len B3, and Ms be a matrix over K
of dimension lenbs x len By such that by = b3 ~ by and By = B3 ™ By
and M = the Og-block diagonal of (M7, Ms) and width M; = len B3 and
width My = len B4. Then
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(i) if i € dombs, then (Mx2Tran(M, by, B2))((b1)i) =
(Mx2Tran(Mj, bs, B3))((b3)i), and

(ii) if ¢ € domby, then (Mx2Tran(M, by, B2))((b1)itients) =
(MXQTran(MQ, b4, B4>)(<b4)z)

(20) Let M be a matrix over K of dimension lenb; X len By and F' be a fi-
nite sequence of matrices over K. Suppose M = the 0x-block diagonal of
F. Let given i, m. Suppose ¢ € domb; and m = min(Len F,4). Then
(Mx2Tran(M, by, B2))((b1);) = Y lmlt(Line(F(m),i —" Y Len(F[(m —'
1)), (B2 22 Width(F'[m)) 5~ wiawn(Fi(m-1))) and
len((BQ[ZWidth(F[m))LZ Width(F[(m—1))) = Width F'(m).

(21) If lenB; € domBj, then ) lmlt(Line(the Jordan block of A and
len Bl,len Bl), Bl) =\ (Bl)lenBl'

(22) If i € dom B; and i # len By, then ) lmlt(Line(the Jordan block of A
and lenBl, ) Bl) =X ( ) + (Bl)i+1~

(23) Let M be a matrix over K of dimension len by x len By. Suppose M = the
Jordan block of A and n. Let given 7 such that ¢ € dom b;. Then

(i) if i =lenby, then (Mx2Tran(M, by, B2))((b1)i) = A\ - (B2);, and
(i) if i # lenby, then (Mx2Tran(M, by, B2))((b1)i) = X+ (B2)i + (B2)i+1-

(24) Let J be a finite sequence of Jordan blocks of A and K and M be a
matrix over K of dimension lenb; X len By. Suppose M = the 0x-block
diagonal of J. Let given i, m such that ¢ € domb; and m = min(Len J, ).
Then

(i) if i =) Len(J[m), then (Mx2Tran(M, b1, B2))((b1):) = A - (B2)i, and
(i) if ¢ # Y Len(J[m), then (Mx2Tran(M, b1, B2))((b1):) = A - (B2)i +
(B2)i+1-

(25) Let J be a finite sequence of Jordan blocks of O and K and M be a
matrix over K of dimension lenb; x lenb;. Suppose M = the 0x-block
diagonal of J. Let given m. If for every ¢ such that ¢ € domJ holds
len J(i) < m, then (Mx2Tran(M,by,b1))" = ZeroMap(Vy, V4).

(26) Let J be a finite sequence of Jordan blocks of A and K and M be a matrix
over K of dimension lenb; x lenb;. Suppose M = the 0x-block diagonal
of J. Then Mx2Tran(M, b1, b1) is nilpotent if and only if lenb; = 0 or
A=0g.

(27) Let J be a finite sequence of Jordan blocks of 0 and K and M be a
matrix over K of dimension lenb; X lenb;. Suppose M = the 0x-block
diagonal of J and lenb; > 0. Let F' be a nilpotent function from Vj
into V7. Suppose F' = Mx2Tran(M, by, b1). Then there exists ¢ such that
i € dom J and len J(i) = deg F' and for every ¢ such that i € dom J holds
len J(i) < deg F.

(28) Let given Vi, Vi, by, ba, A. Suppose lenb; = lenby. Let F' be a linear
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transformation from V; to V5. Suppose that for every i such that ¢ € dom by
holds F((bl)z) =X (bz)z ort+1 € dom by and F((bl)l) =\ (bg)i—i- (b2)i+1.
Then there exists a non-empty finite sequence J of Jordan blocks of A and
K such that AutMt(F, by, ba) = the Ox-block diagonal of J.

(29) Let Vi be a finite dimensional vector space over K and F' be a nilpotent
linear transformation from V; to V. Then there exists a non-empty finite
sequence J of Jordan blocks of O and K and there exists an ordered basis
by of V1 such that AutMt(F, by, b;) = the Ox-block diagonal of J.

(30) Let V be a vector space over K, F' be a linear transformation from
V to V, V1 be a finite dimensional subspace of V, and F} be a linear
transformation from V; to Vj. Suppose Vi = ker (F + (—\) -idy)" and
F1Vi = Fy. Then there exists a non-empty finite sequence J of Jordan
blocks of A and K and there exists an ordered basis b; of V; such that
AutMt(Fy, by, b1) = the Ox-block diagonal of J.

4. THE MAIN THEOREM

The following two propositions are true:

(31) Let K be an algebraic-closed field, V' be a non trivial finite dimensional
vector space over K, and F' be a linear transformation from V' to V. Then
there exists a non-empty finite sequence J of Jordan blocks of K and there
exists an ordered basis b; of V' such that

(i)  AutMt(F, by, b1) = the Ox-block diagonal of J, and
(ii)  for every scalar A of K holds A is an eigenvalue of F' iff there exists i
such that i € dom J and J(i) = the Jordan block of A and len J(7).

(32) Let K be an algebraic-closed field and M be a square matrix over K of
dimension n. Then there exists a non-empty finite sequence J of Jordan
blocks of K and there exists a square matrix P over K of dimension n
such that > LenJ = n and P is invertible and M = P - the 0x-block
diagonal of J - P~.
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