Jordan Matrix Decomposition

Karol Pąk
Institute of Computer Science
University of Białystok
Poland

Summary. In this paper I present the Jordan Matrix Decomposition Theorem which states that an arbitrary square matrix M over an algebraically closed field can be decomposed into the form

$$M = SJS^{-1}$$

where S is an invertible matrix and J is a matrix in a Jordan canonical form, i.e. a special type of block diagonal matrix in which each block consists of Jordan blocks (see [13]).

MML identifier: MATRIXJ2, version: 7.9.01 4.101.1015

The terminology and notation used here are introduced in the following articles: [11], [2], [3], [12], [34], [7], [10], [8], [4], [28], [33], [30], [18], [6], [14], [15], [36], [23], [37], [35], [9], [29], [32], [31], [5], [19], [24], [22], [17], [1], [21], [20], [16], [25], [27], and [26].

1. JORDAN BLOCKS

We follow the rules: i, j, m, n, k denote natural numbers, K denotes a field, and a, λ denote elements of K.

Let us consider K, λ , n. The Jordan block of λ and n yields a matrix over K and is defined by the conditions (Def. 1).

(Def. 1)(i) len (the Jordan block of λ and n) = n,

- (ii) width (the Jordan block of λ and n) = n, and
- (iii) for all i, j such that $\langle i, j \rangle \in$ the indices of the Jordan block of λ and n holds if i = j, then (the Jordan block of λ and n) $_{i,j} = \lambda$ and if i + 1 = j, then (the Jordan block of λ and n) $_{i,j} = \mathbf{1}_K$ and if $i \neq j$ and $i + 1 \neq j$, then (the Jordan block of λ and n) $_{i,j} = 0_K$.

Let us consider K, λ , n. Then the Jordan block of λ and n is an upper triangular matrix over K of dimension n.

The following propositions are true:

- (1) The diagonal of the Jordan block of λ and $n = n \mapsto \lambda$.
- (2) Det (the Jordan block of λ and n) = power_K(λ , n).
- (3) The Jordan block of λ and n is invertible iff n = 0 or $\lambda \neq 0_K$.
- (4) If $i \in \operatorname{Seg} n$ and $i \neq n$, then Line(the Jordan block of λ and n, i) = $\lambda \cdot \operatorname{Line}(I_K^{n \times n}, i) + \operatorname{Line}(I_K^{n \times n}, i + 1)$.
- (5) Line(the Jordan block of λ and n, n) = $\lambda \cdot \text{Line}(I_K^{n \times n}, n)$.
- (6) Let F be an element of (the carrier of K)ⁿ such that $i \in \operatorname{Seg} n$. Then
- (i) if $i \neq n$, then Line(the Jordan block of λ and n, i) $F = \lambda \cdot F_i + F_{i+1}$, and
- (ii) if i = n, then Line(the Jordan block of λ and n, i) $F = \lambda \cdot F_i$.
- (7) Let F be an element of (the carrier of K)ⁿ such that $i \in \operatorname{Seg} n$. Then
- (i) if i = 1, then (the Jordan block of λ and $n)_{\square,i} \cdot F = \lambda \cdot F_i$, and
- (ii) if $i \neq 1$, then (the Jordan block of λ and $n)_{\square,i} \cdot F = \lambda \cdot F_i + F_{i-1}$.
- (8) Suppose $\lambda \neq 0_K$. Then there exists a square matrix M over K of dimension n such that
- (i) (the Jordan block of λ and n) = M, and
- (ii) for all i, j such that $\langle i, j \rangle \in$ the indices of M holds if i > j, then $M_{i,j} = 0_K$ and if $i \leq j$, then $M_{i,j} = -\text{power}_K(-\lambda^{-1}, (j i) + 1)$.
- (9) (The Jordan block of λ and n) + $a \cdot I_K^{n \times n}$ = the Jordan block of $\lambda + a$ and n.

2. Finite Sequences of Jordan Blocks

Let us consider K and let G be a finite sequence of elements of ((the carrier of K)*)*. We say that G is Jordan-block-yielding if and only if:

(Def. 2) For every i such that $i \in \text{dom } G$ there exist λ , n such that $G(i) = \text{the Jordan block of } \lambda$ and n.

Let us consider K. Observe that there exists a finite sequence of elements of ((the carrier of K)*)* which is Jordan-block-yielding.

Let us consider K. One can verify that every finite sequence of elements of ((the carrier of K)*)* which is Jordan-block-yielding is also square-matrix-yielding.

Let us consider K. A finite sequence of Jordan blocks of K is a Jordan-block-yielding finite sequence of elements of ((the carrier of K)*)*.

Let us consider K, λ . A finite sequence of Jordan blocks of K is said to be a finite sequence of Jordan blocks of λ and K if:

(Def. 3) For every i such that $i \in \text{dom it there exists } n$ such that $\text{it}(i) = \text{the Jordan block of } \lambda$ and n.

Next we state two propositions:

- (10) \emptyset is a finite sequence of Jordan blocks of λ and K.
- (11) \langle the Jordan block of λ and $n\rangle$ is a finite sequence of Jordan blocks of λ and K.

Let us consider K, λ . Observe that there exists a finite sequence of Jordan blocks of λ and K which is non-empty.

Let us consider K. Note that there exists a finite sequence of Jordan blocks of K which is non-empty.

Next we state the proposition

(12) Let J be a finite sequence of Jordan blocks of λ and K. Then $J \oplus \text{len } J \mapsto a \bullet I_K^{\text{Len } J \times \text{Len } J}$ is a finite sequence of Jordan blocks of $\lambda + a$ and K.

Let us consider K and let J_1 , J_2 be fininte sequences of Jordan blocks of K. Then $J_1 \cap J_2$ is a finite sequence of Jordan blocks of K.

Let us consider K, let J be a finite sequence of Jordan blocks of K, and let us consider n. Then $J \upharpoonright n$ is a finite sequence of Jordan blocks of K. Then $J \upharpoonright n$ is a finite sequence of Jordan blocks of K.

Let us consider K, λ and let J_1 , J_2 be finite sequences of Jordan blocks of λ and K. Then $J_1 \cap J_2$ is a finite sequence of Jordan blocks of λ and K.

Let us consider K, λ , let J be a finite sequence of Jordan blocks of λ and K, and let us consider n. Then $J \upharpoonright n$ is a finite sequence of Jordan blocks of λ and K. Then $J \upharpoonright n$ is a finite sequence of Jordan blocks of λ and K.

3. Nilpotent Transformations

Let K be a double loop structure, let V be a non empty vector space structure over K, and let f be a function from V into V. We say that f is nilpotent if and only if:

(Def. 4) There exists n such that for every vector v of V holds $f^n(v) = 0_V$.

We now state the proposition

(13) Let K be a double loop structure, V be a non empty vector space structure over K, and f be a function from V into V. Then f is nilpotent if and only if there exists n such that $f^n = \operatorname{ZeroMap}(V, V)$.

Let K be a double loop structure and let V be a non empty vector space structure over K. Observe that there exists a function from V into V which is nilpotent.

Let R be a ring and let V be a left module over R. Observe that there exists a function from V into V which is nilpotent and linear.

Next we state the proposition

(14) Let V be a vector space over K and f be a linear transformation from V to V. Then $f \upharpoonright \ker f^n$ is a nilpotent linear transformation from $\ker f^n$ to $\ker f^n$.

Let K be a double loop structure, let V be a non empty vector space structure over K, and let f be a nilpotent function from V into V. The degree of nilpotence of f yielding a natural number is defined by the conditions (Def. 5).

- (Def. 5)(i) $f^{\text{the degree of nilpotence of } f} = \text{ZeroMap}(V, V)$, and
 - (ii) for every k such that $f^k = \text{ZeroMap}(V, V)$ holds the degree of nilpotence of $f \leq k$.

Let K be a double loop structure, let V be a non empty vector space structure over K, and let f be a nilpotent function from V into V. We introduce deg f as a synonym of the degree of nilpotence of f.

One can prove the following propositions:

- (15) Let K be a double loop structure, V be a non empty vector space structure over K, and f be a nilpotent function from V into V. Then deg f = 0 if and only if $\Omega_V = \{0_V\}$.
- (16) Let K be a double loop structure, V be a non empty vector space structure over K, and f be a nilpotent function from V into V. Then there exists a vector v of V such that for every i such that $i < \deg f$ holds $f^i(v) \neq 0_V$.
- (17) Let K be a field, V be a vector space over K, W be a subspace of V, and f be a nilpotent function from V into V. Suppose $f \upharpoonright W$ is a function from W into W. Then $f \upharpoonright W$ is a nilpotent function from W into W.
- (18) Let K be a field, V be a vector space over K, W be a subspace of V, f be a nilpotent linear transformation from V to V, and f_1 be a nilpotent function from $\operatorname{im}(f^n)$ into $\operatorname{im}(f^n)$. If $f_1 = f \upharpoonright \operatorname{im}(f^n)$ and $n \leq \deg f$, then $\deg f_1 + n = \deg f$.

For simplicity, we adopt the following convention: V_1 , V_2 denote finite dimensional vector spaces over K, W_1 , W_2 denote subspaces of V_1 , U_1 , U_2 denote subspaces of V_2 , b_1 denotes an ordered basis of V_1 , B_1 denotes a finite sequence of elements of V_1 , b_2 denotes an ordered basis of V_2 , B_2 denotes a finite sequence of elements of V_2 , b_3 denotes an ordered basis of W_1 , b_4 denotes an ordered basis of W_2 , B_3 denotes a finite sequence of elements of U_1 , and U_2 denotes a finite sequence of elements of U_2 .

Next we state a number of propositions:

(19) Let M be a matrix over K of dimension $\operatorname{len} b_1 \times \operatorname{len} B_2$, M_1 be a matrix over K of dimension $\operatorname{len} b_3 \times \operatorname{len} B_3$, and M_2 be a matrix over K of dimension $\operatorname{len} b_4 \times \operatorname{len} B_4$ such that $b_1 = b_3 \cap b_4$ and $B_2 = B_3 \cap B_4$ and $M = \operatorname{the} 0_K$ -block diagonal of $\langle M_1, M_2 \rangle$ and width $M_1 = \operatorname{len} B_3$ and width $M_2 = \operatorname{len} B_4$. Then

- (i) if $i \in \text{dom } b_3$, then $(\text{Mx2Tran}(M, b_1, B_2))((b_1)_i) = (\text{Mx2Tran}(M_1, b_3, B_3))((b_3)_i)$, and
- (ii) if $i \in \text{dom } b_4$, then $(\text{Mx2Tran}(M, b_1, B_2))((b_1)_{i+\text{len } b_3}) = (\text{Mx2Tran}(M_2, b_4, B_4))((b_4)_i)$.
- (20) Let M be a matrix over K of dimension len $b_1 \times \text{len } B_2$ and F be a finite sequence of matrices over K. Suppose $M = \text{the } 0_K$ -block diagonal of F. Let given i, m. Suppose $i \in \text{dom } b_1$ and $m = \min(\text{Len } F, i)$. Then $(\text{Mx2Tran}(M, b_1, B_2))((b_1)_i) = \sum \text{lmlt}(\text{Line}(F(m), i -' \sum \text{Len}(F \upharpoonright (m -' 1))), (B_2 \upharpoonright \sum \text{Width}(F \upharpoonright m))_{|\sum \text{Width}(F \upharpoonright (m -' 1))})$ and $\text{len}((B_2 \upharpoonright \sum \text{Width}(F \upharpoonright m))_{|\sum \text{Width}(F \upharpoonright (m -' 1))}) = \text{width } F(m)$.
- (21) If len $B_1 \in \text{dom } B_1$, then $\sum \text{lmlt}(\text{Line}(\text{the Jordan block of } \lambda \text{ and len } B_1, \text{len } B_1), B_1) = \lambda \cdot (B_1)_{\text{len } B_1}$.
- (22) If $i \in \text{dom } B_1$ and $i \neq \text{len } B_1$, then $\sum \text{lmlt}(\text{Line}(\text{the Jordan block of } \lambda \text{ and len } B_1, i), B_1) = \lambda \cdot (B_1)_i + (B_1)_{i+1}$.
- (23) Let M be a matrix over K of dimension len $b_1 \times \text{len } B_2$. Suppose M = the Jordan block of λ and n. Let given i such that $i \in \text{dom } b_1$. Then
 - (i) if $i = \text{len } b_1$, then $(\text{Mx2Tran}(M, b_1, B_2))((b_1)_i) = \lambda \cdot (B_2)_i$, and
- (ii) if $i \neq \text{len } b_1$, then $(\text{Mx2Tran}(M, b_1, B_2))((b_1)_i) = \lambda \cdot (B_2)_i + (B_2)_{i+1}$.
- (24) Let J be a finite sequence of Jordan blocks of λ and K and M be a matrix over K of dimension len $b_1 \times \text{len } B_2$. Suppose $M = \text{the } 0_K\text{-block}$ diagonal of J. Let given i, m such that $i \in \text{dom } b_1$ and $m = \min(\text{Len } J, i)$. Then
 - (i) if $i = \sum \text{Len}(J \upharpoonright m)$, then $(\text{Mx2Tran}(M, b_1, B_2))((b_1)_i) = \lambda \cdot (B_2)_i$, and
 - (ii) if $i \neq \sum \text{Len}(J \upharpoonright m)$, then $(\text{Mx2Tran}(M, b_1, B_2))((b_1)_i) = \lambda \cdot (B_2)_i + (B_2)_{i+1}$.
- (25) Let J be a finite sequence of Jordan blocks of 0_K and K and M be a matrix over K of dimension len $b_1 \times \text{len } b_1$. Suppose $M = \text{the } 0_K\text{-block}$ diagonal of J. Let given m. If for every i such that $i \in \text{dom } J$ holds $\text{len } J(i) \leq m$, then $(\text{Mx2Tran}(M, b_1, b_1))^m = \text{ZeroMap}(V_1, V_1)$.
- (26) Let J be a finite sequence of Jordan blocks of λ and K and M be a matrix over K of dimension len $b_1 \times \text{len } b_1$. Suppose $M = \text{the } 0_K$ -block diagonal of J. Then $\text{Mx2Tran}(M, b_1, b_1)$ is nilpotent if and only if $\text{len } b_1 = 0$ or $\lambda = 0_K$.
- (27) Let J be a finite sequence of Jordan blocks of 0_K and K and M be a matrix over K of dimension len $b_1 \times \text{len } b_1$. Suppose $M = \text{the } 0_K\text{-block}$ diagonal of J and len $b_1 > 0$. Let F be a nilpotent function from V_1 into V_1 . Suppose $F = \text{Mx2Tran}(M, b_1, b_1)$. Then there exists i such that $i \in \text{dom } J$ and len J(i) = deg F and for every i such that $i \in \text{dom } J$ holds len $J(i) \leq \text{deg } F$.
- (28) Let given V_1 , V_2 , b_1 , b_2 , λ . Suppose len $b_1 = \text{len } b_2$. Let F be a linear

- transformation from V_1 to V_2 . Suppose that for every i such that $i \in \text{dom } b_1$ holds $F((b_1)_i) = \lambda \cdot (b_2)_i$ or $i+1 \in \text{dom } b_1$ and $F((b_1)_i) = \lambda \cdot (b_2)_i + (b_2)_{i+1}$. Then there exists a non-empty finite sequence J of Jordan blocks of λ and K such that $\text{AutMt}(F, b_1, b_2) = \text{the } 0_K$ -block diagonal of J.
- (29) Let V_1 be a finite dimensional vector space over K and F be a nilpotent linear transformation from V_1 to V_1 . Then there exists a non-empty finite sequence J of Jordan blocks of 0_K and K and there exists an ordered basis b_1 of V_1 such that $\operatorname{AutMt}(F, b_1, b_1) = \operatorname{the } 0_K$ -block diagonal of J.
- (30) Let V be a vector space over K, F be a linear transformation from V to V, V_1 be a finite dimensional subspace of V, and F_1 be a linear transformation from V_1 to V_1 . Suppose $V_1 = \ker (F + (-\lambda) \cdot \mathrm{id}_V)^n$ and $F \upharpoonright V_1 = F_1$. Then there exists a non-empty finite sequence J of Jordan blocks of λ and K and there exists an ordered basis b_1 of V_1 such that $\mathrm{AutMt}(F_1, b_1, b_1) = \mathrm{the} \ 0_K$ -block diagonal of J.

4. The Main Theorem

The following two propositions are true:

- (31) Let K be an algebraic-closed field, V be a non trivial finite dimensional vector space over K, and F be a linear transformation from V to V. Then there exists a non-empty finite sequence J of Jordan blocks of K and there exists an ordered basis b_1 of V such that
 - (i) AutMt(F, b_1 , b_1) = the 0_K -block diagonal of J, and
 - (ii) for every scalar λ of K holds λ is an eigenvalue of F iff there exists i such that $i \in \text{dom } J$ and $J(i) = \text{the Jordan block of } \lambda$ and len J(i).
- (32) Let K be an algebraic-closed field and M be a square matrix over K of dimension n. Then there exists a non-empty finite sequence J of Jordan blocks of K and there exists a square matrix P over K of dimension n such that $\sum \operatorname{Len} J = n$ and P is invertible and $M = P \cdot \operatorname{the} 0_K$ -block diagonal of $J \cdot P^{\smile}$.

REFERENCES

- [1] Jesse Alama. The rank+nullity theorem. Formalized Mathematics, 15(3):137-142, 2007.
- [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [5] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
- [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.

- [8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990
- [9] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
- [10] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [13] Gene H. Golub and J. H. Wilkinson. Ill-conditioned eigensystems and the computation of the Jordan normal form. SIAM Review, vol. 18, nr. 4, pp. 578-619, 1976.
- [14] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475–480, 1991.
- [15] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711–717, 1991.
- [16] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics, 6(4):573–577, 1997.
- [17] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275–278, 1992.
- [18] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- [19] Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339–345, 1996.
- [20] Robert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461–470, 2001.
- [21] Michał Muzalewski. Categories of groups. Formalized Mathematics, 2(4):563-571, 1991.
- [22] Michał Muzalewski. Rings and modules part II. Formalized Mathematics, 2(4):579–585, 1991.
- [23] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
- [24] Karol Pak and Andrzej Trybulec. Laplace expansion. Formalized Mathematics, 15(3):143–150, 2007.
- [25] Karol Pak. Block diagonal matrices. Formalized Mathematics, 16(3):259–267, 2008.
- [26] Karol Pak. Eigenvalues of a linear transformation. Formalized Mathematics, 16(4):289–295, 2008.
- [27] Karol Pak. Linear map of matrices. Formalized Mathematics, 16(3):269–275, 2008.
- [28] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [29] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [30] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [31] Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics, 1(5):877–882, 1990.
- [32] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865–870, 1990.
- [33] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- [34] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [35] Xiaopeng Yue, Xiquan Liang, and Zhongpin Sun. Some properties of some special matrices. Formalized Mathematics, 13(4):541–547, 2005.
- [36] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205–211, 1992.
- [37] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1–8, 1993.

Received July 11, 2008