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Summary. This article describes definitions of inverse trigonometric func-
tions arcsec and arccosec, as well as their main properties.
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The papers [1], [2], [16], [3], [12], [17], [13], [5], [8], [11], [14], [4], [6], [7], [10],
[15], and [9] provide the notation and terminology for this paper.
In this paper x, r denote real numbers.
The following propositions are true:

(1) [0, π2 [⊆ dom (the function sec).
(2) ]π2 , π] ⊆ dom (the function sec).
(3) [−π2 , 0[⊆ dom (the function cosec).
(4) ]0, π2 ] ⊆ dom (the function cosec).
(5) The function sec is differentiable on ]0, π2 [ and for every x such that
x ∈ ]0, π2 [ holds (the function sec)

′(x) = sinx
(cosx)2 .

(6) The function sec is differentiable on ]π2 , π[ and for every x such that
x ∈ ]π2 , π[ holds (the function sec)

′(x) = sinx
(cosx)2 .

(7)(i) The function cosec is differentiable on ]−π2 , 0[, and
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(ii) for every x such that x ∈ ]−π2 , 0[ holds (the function cosec)
′(x) =

− cosx
(sinx)2 .

(8)(i) The function cosec is differentiable on ]0, π2 [, and
(ii) for every x such that x ∈ ]0, π2 [ holds (the function cosec)

′(x) =
− cosx
(sinx)2 .

(9) The function sec is continuous on ]0, π2 [.

(10) The function sec is continuous on ]π2 , π[.

(11) The function cosec is continuous on ]−π2 , 0[.
(12) The function cosec is continuous on ]0, π2 [.

(13) The function sec is increasing on ]0, π2 [.

(14) The function sec is increasing on ]π2 , π[.

(15) The function cosec is decreasing on ]−π2 , 0[.
(16) The function cosec is decreasing on ]0, π2 [.

(17) The function sec is increasing on [0, π2 [.

(18) The function sec is increasing on ]π2 , π].

(19) The function cosec is decreasing on [−π2 , 0[.
(20) The function cosec is decreasing on ]0, π2 ].

(21) (The function sec)�[0, π2 [ is one-to-one.

(22) (The function sec)�]π2 , π] is one-to-one.

(23) (The function cosec)�[−π2 , 0[ is one-to-one.
(24) (The function cosec)�]0, π2 ] is one-to-one.

One can verify the following observations:

∗ (the function sec)�[0, π2 [ is one-to-one,
∗ (the function sec)�]π2 , π] is one-to-one,
∗ (the function cosec)�[−π2 , 0[ is one-to-one, and
∗ (the function cosec)�]0, π2 ] is one-to-one.
The partial function the 1st part of arcsec from R to R is defined as follows:

(Def. 1) The 1st part of arcsec = ((the function sec)�[0, π2 [)
−1.

The partial function the 2nd part of arcsec from R to R is defined as follows:
(Def. 2) The 2nd part of arcsec = ((the function sec)�]π2 , π])

−1.

The partial function the 1st part of arccosec from R to R is defined by:
(Def. 3) The 1st part of arccosec = ((the function cosec)�[−π2 , 0[)

−1.

The partial function the 2nd part of arccosec from R to R is defined by:
(Def. 4) The 2nd part of arccosec = ((the function cosec)�]0, π2 ])

−1.

Let r be a real number. The functor arcsec1 r is defined by:

(Def. 5) arcsec1 r = (the 1st part of arcsec)(r).

The functor arcsec2 r is defined as follows:
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(Def. 6) arcsec2 r = (the 2nd part of arcsec)(r).

The functor arccosec1 r is defined as follows:

(Def. 7) arccosec1 r = (the 1st part of arccosec)(r).

The functor arccosec2 r is defined by:

(Def. 8) arccosec2 r = (the 2nd part of arccosec)(r).

Let r be a real number. Then arcsec1 r is a real number. Then arcsec2 r is
a real number. Then arccosec1 r is a real number. Then arccosec2 r is a real
number.
We now state four propositions:

(25) rng (the 1st part of arcsec) = [0, π2 [.

(26) rng (the 2nd part of arcsec) = ]π2 , π].

(27) rng (the 1st part of arccosec) = [−π2 , 0[.
(28) rng (the 2nd part of arccosec) = ]0, π2 ].

One can check the following observations:

∗ the 1st part of arcsec is one-to-one,
∗ the 2nd part of arcsec is one-to-one,
∗ the 1st part of arccosec is one-to-one, and
∗ the 2nd part of arccosec is one-to-one.
Let t1 be a real number. Then sec t1 is a real number. Then cosec t1 is a real

number.
We now state a number of propositions:

(29) sin(π4 ) =
1√
2
and cos(π4 ) =

1√
2
.

(30) sin(−π4 ) = −
1√
2
and cos(−π4 ) =

1√
2
and sin(34 · π) =

1√
2
and cos(34 · π) =

− 1√
2
.

(31) sec 0 = 1 and sec(π4 ) =
√
2 and sec(34 · π) = −

√
2 and secπ = −1.

(32) cosec(−π2 ) = −1 and cosec(−
π
4 ) = −

√
2 and cosec(π4 ) =

√
2 and

cosec(π2 ) = 1.

(33) For every set x such that x ∈ [0, π4 ] holds secx ∈ [1,
√
2].

(34) For every set x such that x ∈ [34 · π, π] holds secx ∈ [−
√
2,−1].

(35) For every set x such that x ∈ [−π2 ,−
π
4 ] holds cosecx ∈ [−

√
2,−1].

(36) For every set x such that x ∈ [π4 ,
π
2 ] holds cosecx ∈ [1,

√
2].

(37) The function sec is continuous on [0, π2 [.

(38) The function sec is continuous on ]π2 , π].

(39) The function cosec is continuous on [−π2 , 0[.
(40) The function cosec is continuous on ]0, π2 ].

(41) rng((the function sec)�[0, π4 ]) = [1,
√
2].

(42) rng((the function sec)�[34 · π, π]) = [−
√
2,−1].
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(43) rng((the function cosec)�[−π2 ,−
π
4 ]) = [−

√
2,−1].

(44) rng((the function cosec)�[π4 ,
π
2 ]) = [1,

√
2].

(45) [1,
√
2] ⊆ dom (the 1st part of arcsec).

(46) [−
√
2,−1] ⊆ dom (the 2nd part of arcsec).

(47) [−
√
2,−1] ⊆ dom (the 1st part of arccosec).

(48) [1,
√
2] ⊆ dom (the 2nd part of arccosec).

One can check the following observations:

∗ (the function sec)�[0, π4 ] is one-to-one,
∗ (the function sec)�[34 · π, π] is one-to-one,
∗ (the function cosec)�[−π2 ,−

π
4 ] is one-to-one, and

∗ (the function cosec)�[π4 ,
π
2 ] is one-to-one.

One can prove the following propositions:

(49) (The 1st part of arcsec)�[1,
√
2] = ((the function sec)�[0, π4 ])

−1.

(50) (The 2nd part of arcsec)�[−
√
2,−1] = ((the function sec)�[34 · π, π])

−1.

(51) (The 1st part of arccosec)�[−
√
2,−1] = ((the function cosec)�[−π2 ,−

π
4 ])
−1.

(52) (The 2nd part of arccosec)�[1,
√
2] = ((the function cosec)�[π4 ,

π
2 ])
−1.

(53) ((The function sec)�[0, π4 ] qua function) ·((the 1st part of arcsec)�[1,
√
2]) =

id[1,
√
2].

(54) ((The function sec)�[34 · π, π] qua function) ·((the 2nd part of
arcsec)�[−

√
2,−1]) = id[−√2,−1].

(55) ((The function cosec)�[−π2 ,−
π
4 ] qua function) ·((the 1st part of

arccosec)�[−
√
2,−1]) = id[−√2,−1].

(56) ((The function cosec)�[π4 ,
π
2 ] qua function) ·((the 2nd part of

arccosec)�[1,
√
2]) = id[1,

√
2].

(57) ((The function sec)�[0, π4 ]) · ((the 1st part of arcsec)�[1,
√
2]) = id[1,

√
2].

(58) ((The function sec)�[34 · π, π]) · ((the 2nd part of arcsec)�[−
√
2,−1]) =

id[−
√
2,−1].

(59) ((The function cosec)�[−π2 ,−
π
4 ])·((the 1st part of arccosec)�[−

√
2,−1]) =

id[−
√
2,−1].

(60) ((The function cosec)�[π4 ,
π
2 ]) · ((the 2nd part of arccosec)�[1,

√
2]) =

id[1,
√
2].

(61) (The 1st part of arcsec qua function) ·((the function sec)�[0, π2 [) =
id[0,π2 [.

(62) (The 2nd part of arcsec qua function) ·((the function sec)�]π2 , π]) =
id]π2 ,π].

(63) (The 1st part of arccosec qua function) ·((the function cosec)�[−π2 , 0[) =
id[−π2 ,0[.
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(64) (The 2nd part of arccosec qua function) ·((the function cosec)�]0, π2 ]) =
id]0,π2 ].

(65) (The 1st part of arcsec) ·((the function sec)�[0, π2 [) = id[0,π2 [.
(66) (The 2nd part of arcsec) ·((the function sec)�]π2 , π]) = id]π2 ,π].
(67) (The 1st part of arccosec) ·((the function cosec)�[−π2 , 0[) = id[−π2 ,0[.
(68) (The 2nd part of arccosec) ·((the function cosec)�]0, π2 ]) = id]0,π2 ].
(69) If 0 ≤ r < π2 , then arcsec1 sec r = r.
(70) If π2 < r ≤ π, then arcsec2 sec r = r.
(71) If −π2 ≤ r < 0, then arccosec1 cosec r = r.
(72) If 0 < r ≤ π2 , then arccosec2 cosec r = r.
(73) arcsec1 1 = 0 and arcsec1

√
2 = π4 .

(74) arcsec2(−
√
2) = 34 · π and arcsec2(−1) = π.

(75) arccosec1(−1) = −π2 and arccosec1(−
√
2) = −π4 .

(76) arccosec2
√
2 = π4 and arccosec2 1 =

π
2 .

(77) The 1st part of arcsec is increasing on (the function sec) ◦[0, π2 [.

(78) The 2nd part of arcsec is increasing on (the function sec) ◦]π2 , π].

(79) The 1st part of arccosec is decreasing on (the function cosec) ◦[−π2 , 0[.
(80) The 2nd part of arccosec is decreasing on (the function cosec) ◦]0, π2 ].

(81) The 1st part of arcsec is increasing on [1,
√
2].

(82) The 2nd part of arcsec is increasing on [−
√
2,−1].

(83) The 1st part of arccosec is decreasing on [−
√
2,−1].

(84) The 2nd part of arccosec is decreasing on [1,
√
2].

(85) For every set x such that x ∈ [1,
√
2] holds arcsec1 x ∈ [0, π4 ].

(86) For every set x such that x ∈ [−
√
2,−1] holds arcsec2 x ∈ [34 · π, π].

(87) For every set x such that x ∈ [−
√
2,−1] holds arccosec1 x ∈ [−π2 ,−

π
4 ].

(88) For every set x such that x ∈ [1,
√
2] holds arccosec2 x ∈ [π4 ,

π
2 ].

(89) If 1 ≤ r ≤
√
2, then sec arcsec1 r = r.

(90) If −
√
2 ≤ r ≤ −1, then sec arcsec2 r = r.

(91) If −
√
2 ≤ r ≤ −1, then cosec arccosec1 r = r.

(92) If 1 ≤ r ≤
√
2, then cosec arccosec2 r = r.

(93) The 1st part of arcsec is continuous on [1,
√
2].

(94) The 2nd part of arcsec is continuous on [−
√
2,−1].

(95) The 1st part of arccosec is continuous on [−
√
2,−1].

(96) The 2nd part of arccosec is continuous on [1,
√
2].

(97) rng((the 1st part of arcsec)�[1,
√
2]) = [0, π4 ].

(98) rng((the 2nd part of arcsec)�[−
√
2,−1]) = [34 · π, π].

(99) rng((the 1st part of arccosec)�[−
√
2,−1]) = [−π2 ,−

π
4 ].
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(100) rng((the 2nd part of arccosec)�[1,
√
2]) = [π4 ,

π
2 ].

(101) If 1 ≤ r ≤
√
2 and arcsec1 r = 0, then r = 1 and if 1 ≤ r ≤

√
2 and

arcsec1 r = π4 , then r =
√
2.

(102) If −
√
2 ≤ r ≤ −1 and arcsec2 r = 34 · π, then r = −

√
2 and if −

√
2 ≤

r ≤ −1 and arcsec2 r = π, then r = −1.
(103) If −

√
2 ≤ r ≤ −1 and arccosec1 r = −π2 , then r = −1 and if −

√
2 ≤ r ≤

−1 and arccosec1 r = −π4 , then r = −
√
2.

(104) If 1 ≤ r ≤
√
2 and arccosec2 r = π4 , then r =

√
2 and if 1 ≤ r ≤

√
2 and

arccosec2 r = π2 , then r = 1.

(105) If 1 ≤ r ≤
√
2, then 0 ≤ arcsec1 r ≤ π4 .

(106) If −
√
2 ≤ r ≤ −1, then 34 · π ≤ arcsec2 r ≤ π.

(107) If −
√
2 ≤ r ≤ −1, then −π2 ≤ arccosec1 r ≤ −

π
4 .

(108) If 1 ≤ r ≤
√
2, then π4 ≤ arccosec2 r ≤

π
2 .

(109) If 1 < r <
√
2, then 0 < arcsec1 r < π4 .

(110) If −
√
2 < r < −1, then 34 · π < arcsec2 r < π.

(111) If −
√
2 < r < −1, then −π2 < arccosec1 r < −

π
4 .

(112) If 1 < r <
√
2, then π4 < arccosec2 r <

π
2 .

(113) If 1 ≤ r ≤
√
2, then sin arcsec1 r =

√
r2−1
r and cos arcsec1 r = 1r .

(114) If −
√
2 ≤ r ≤ −1, then sin arcsec2 r = −

√
r2−1
r and cos arcsec2 r = 1r .

(115) If −
√
2 ≤ r ≤ −1, then sin arccosec1 r = 1

r and cos arccosec1 r =

−
√
r2−1
r .

(116) If 1 ≤ r ≤
√
2, then sin arccosec2 r = 1r and cos arccosec2 r =

√
r2−1
r .

(117) If 1 < r <
√
2, then cosec arcsec1 r = r√

r2−1 .

(118) If −
√
2 < r < −1, then cosec arcsec2 r = − r√

r2−1 .

(119) If −
√
2 < r < −1, then sec arccosec1 r = − r√

r2−1 .

(120) If 1 < r <
√
2, then sec arccosec2 r = r√

r2−1 .

(121) The 1st part of arcsec is differentiable on (the function sec) ◦]0, π2 [.

(122) The 2nd part of arcsec is differentiable on (the function sec) ◦]π2 , π[.

(123) The 1st part of arccosec is differentiable on (the function cosec) ◦]−π2 , 0[.
(124) The 2nd part of arccosec is differentiable on (the function cosec) ◦]0, π2 [.

(125) (The function sec) ◦]0, π2 [ is open.

(126) (The function sec) ◦]π2 , π[ is open.

(127) (The function cosec) ◦]−π2 , 0[ is open.
(128) (The function cosec) ◦]0, π2 [ is open.

(129) The 1st part of arcsec is continuous on (the function sec) ◦]0, π2 [.

(130) The 2nd part of arcsec is continuous on (the function sec) ◦]π2 , π[.
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(131) The 1st part of arccosec is continuous on (the function cosec) ◦]−π2 , 0[.
(132) The 2nd part of arccosec is continuous on (the function cosec) ◦]0, π2 [.
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