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Summary. This article describes definitions of inverse trigonometric func-
tions arctan, arccot and their main properties, as well as several differentiation
formulas of arctan and arccot.
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The articles [17], [1], [2], [18], [3], [13], [19], [7], [15], [5], [9], [12], [16], [4], [6],
[8], [11], [14], and [10] provide the notation and terminology for this paper.

1. Function Arctan and Arccot

For simplicity, we adopt the following convention: x, r, s, h denote real
numbers, n denotes an element of N, Z denotes an open subset of R, and f , f1,
f2 denote partial functions from R to R.
The following propositions are true:

(1) ]−π2 ,
π
2 [ ⊆ dom (the function tan).

(2) ]0, π[ ⊆ dom (the function cot).
(3)(i) The function tan is differentiable on ]−π2 ,

π
2 [, and

(ii) for every x such that x ∈ ]−π2 ,
π
2 [ holds (the function tan)

′(x) = 1
(cosx)2 .

(4) The function cot is differentiable on ]0, π[ and for every x such that
x ∈ ]0, π[ holds (the function cot)′(x) = − 1

(sinx)2 .

(5) The function tan is continuous on ]−π2 ,
π
2 [.

(6) The function cot is continuous on ]0, π[.
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(7) The function tan is increasing on ]−π2 ,
π
2 [.

(8) The function cot is decreasing on ]0, π[.

(9) (The function tan)�]−π2 ,
π
2 [ is one-to-one.

(10) (The function cot)�]0, π[ is one-to-one.

Let us mention that (the function tan)�]−π2 ,
π
2 [ is one-to-one and (the func-

tion cot)�]0, π[ is one-to-one.
The partial function the function arctan from R to R is defined as follows:

(Def. 1) The function arctan = ((the function tan)�]−π2 ,
π
2 [)
−1.

The partial function the function arccot from R to R is defined by:
(Def. 2) The function arccot = ((the function cot)�]0, π[)−1.

Let r be a real number. The functor arctan r is defined by:

(Def. 3) arctan r = (the function arctan)(r).

The functor arccot r is defined by:

(Def. 4) arccot r = (the function arccot)(r).

Let r be a real number. Then arctan r is a real number. Then arccot r is a
real number.
We now state two propositions:

(11) rng (the function arctan) = ]−π2 ,
π
2 [.

(12) rng (the function arccot) = ]0, π[.

Let us mention that the function arctan is one-to-one and the function arccot
is one-to-one.
Let r be a real number. Then tan r is a real number. Then cot r is a real

number.
Next we state a number of propositions:

(13) For every real number x such that x ∈ ]−π2 ,
π
2 [ holds (the function

tan)(x) = tanx.

(14) For every real number x such that x ∈ ]0, π[ holds (the function cot)(x) =
cotx.

(15) For every real number x such that cosx 6= 0 holds (the function tan)(x) =
tanx.

(16) For every real number x such that (the function sin)(x) 6= 0 holds (the
function cot)(x) = cotx.

(17) tan(−π4 ) = −1.
(18) cot(π4 ) = 1 and cot(

3
4 · π) = −1.

(19) For every real number x such that x ∈ [−π4 ,
π
4 ] holds tanx ∈ [−1, 1].

(20) For every real number x such that x ∈ [π4 ,
3
4 · π] holds cotx ∈ [−1, 1].

(21) rng((the function tan)�[−π4 ,
π
4 ]) = [−1, 1].

(22) rng((the function cot)�[π4 ,
3
4 · π]) = [−1, 1].
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(23) [−1, 1] ⊆ dom (the function arctan).
(24) [−1, 1] ⊆ dom (the function arccot).
Let us observe that (the function tan)�[−π4 ,

π
4 ] is one-to-one and (the function

cot)�[π4 ,
3
4 · π] is one-to-one.

The following propositions are true:

(25) (The function arctan)�[−1, 1] = ((the function tan)�[−π4 ,
π
4 ])
−1.

(26) (The function arccot)�[−1, 1] = ((the function cot)�[π4 ,
3
4 · π])

−1.

(27) ((The function tan)�[−π4 ,
π
4 ] qua function) ·((the function arctan)�[−1, 1]) =

id[−1,1].

(28) ((The function cot)�[π4 ,
3
4 ·π] qua function) ·((the function arccot)�[−1, 1]) =

id[−1,1].

(29) ((The function tan)�[−π4 ,
π
4 ]) · ((the function arctan)�[−1, 1]) = id[−1,1].

(30) ((The function cot)�[π4 ,
3
4 · π]) · ((the function arccot)�[−1, 1]) = id[−1,1].

(31) (The function arctan qua function) ·((the function tan)�]−π2 ,
π
2 [) =

id]−π2 ,
π
2 [
.

(32) (The function arccot) ·((the function cot)�]0, π[) = id]0,π[.
(33) (The function arctan qua function) ·((the function tan)�]−π2 ,

π
2 [) =

id]−π2 ,
π
2 [
.

(34) (The function arccot qua function) ·((the function cot)�]0, π[) = id]0,π[.
(35) If −π2 < r <

π
2 , then arctan tan r = r.

(36) If 0 < r < π, then arccot cot r = r.

(37) arctan(−1) = −π4 .
(38) arccot(−1) = 34 · π.
(39) arctan 1 = π4 .

(40) arccot 1 = π4 .

(41) tan 0 = 0.

(42) cot(π2 ) = 0.

(43) arctan 0 = 0.

(44) arccot 0 = π2 .

(45) The function arctan is increasing on (the function tan) ◦]−π2 ,
π
2 [.

(46) The function arccot is decreasing on (the function cot) ◦]0, π[.

(47) The function arctan is increasing on [−1, 1].
(48) The function arccot is decreasing on [−1, 1].
(49) For every real number x such that x ∈ [−1, 1] holds arctanx ∈ [−π4 ,

π
4 ].

(50) For every real number x such that x ∈ [−1, 1] holds arccotx ∈ [π4 ,
3
4 · π].

(51) If −1 ≤ r ≤ 1, then tan arctan r = r.
(52) If −1 ≤ r ≤ 1, then cot arccot r = r.
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(53) The function arctan is continuous on [−1, 1].
(54) The function arccot is continuous on [−1, 1].
(55) rng((the function arctan)�[−1, 1]) = [−π4 ,

π
4 ].

(56) rng((the function arccot)�[−1, 1]) = [π4 ,
3
4 · π].

(57) If −1 ≤ r ≤ 1 and arctan r = −π4 , then r = −1.
(58) If −1 ≤ r ≤ 1 and arccot r = 34 · π, then r = −1.
(59) If −1 ≤ r ≤ 1 and arctan r = 0, then r = 0.
(60) If −1 ≤ r ≤ 1 and arccot r = π2 , then r = 0.
(61) If −1 ≤ r ≤ 1 and arctan r = π4 , then r = 1.
(62) If −1 ≤ r ≤ 1 and arccot r = π4 , then r = 1.
(63) If −1 ≤ r ≤ 1, then −π4 ≤ arctan r ≤

π
4 .

(64) If −1 ≤ r ≤ 1, then π4 ≤ arccot r ≤
3
4 · π.

(65) If −1 < r < 1, then −π4 < arctan r <
π
4 .

(66) If −1 < r < 1, then π4 < arccot r <
3
4 · π.

(67) If −1 ≤ r ≤ 1, then arctan r = −arctan(−r).
(68) If −1 ≤ r ≤ 1, then arccot r = π − arccot(−r).
(69) If −1 ≤ r ≤ 1, then cot arctan r = 1r .
(70) If −1 ≤ r ≤ 1, then tan arccot r = 1r .
(71) The function arctan is differentiable on (the function tan) ◦]−π2 ,

π
2 [.

(72) The function arccot is differentiable on (the function cot) ◦]0, π[.

(73) The function arctan is differentiable on ]−1, 1[.
(74) The function arccot is differentiable on ]−1, 1[.
(75) If −1 ≤ r ≤ 1, then (the function arctan)′(r) = 1

1+r2 .

(76) If −1 ≤ r ≤ 1, then (the function arccot)′(r) = − 1
1+r2 .

(77) The function arctan is continuous on (the function tan) ◦]−π2 ,
π
2 [.

(78) The function arccot is continuous on (the function cot) ◦]0, π[.

(79) dom (the function arctan) is open.

(80) dom (the function arccot) is open.

2. Several Differentiation Formulas of Arctan and Arccot

We now state a number of propositions:

(81) Suppose Z ⊆ ]−1, 1[. Then the function arctan is differentiable on Z and
for every x such that x ∈ Z holds (the function arctan)′�Z(x) = 1

1+x2 .

(82) Suppose Z ⊆ ]−1, 1[. Then the function arccot is differentiable on Z and
for every x such that x ∈ Z holds (the function arccot)′�Z(x) = − 1

1+x2 .
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(83) Suppose Z ⊆ ]−1, 1[. Then
(i) r the function arctan is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (r the function arctan)′�Z(x) = r

1+x2 .

(84) Suppose Z ⊆ ]−1, 1[. Then
(i) r the function arccot is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (r the function arccot)′�Z(x) = − r

1+x2 .

(85) Suppose f is differentiable in x and −1 < f(x) < 1. Then (the func-
tion arctan) ·f is differentiable in x and ((the function arctan) ·f)′(x) =
f ′(x)
1+f(x)2 .

(86) Suppose f is differentiable in x and −1 < f(x) < 1. Then (the func-
tion arccot) ·f is differentiable in x and ((the function arccot) ·f)′(x) =
− f ′(x)
1+f(x)2 .

(87) Suppose Z ⊆ dom((the function arctan) ·f) and for every x such that
x ∈ Z holds f(x) = r · x+ s and −1 < f(x) < 1. Then
(i) (the function arctan) ·f is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arctan) ·f)′�Z(x) =

r
1+(r·x+s)2 .

(88) Suppose Z ⊆ dom((the function arccot) ·f) and for every x such that
x ∈ Z holds f(x) = r · x+ s and −1 < f(x) < 1. Then
(i) (the function arccot) ·f is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arccot) ·f)′�Z(x) =
− r
1+(r·x+s)2 .

(89) Suppose Z ⊆ dom((the function ln) ·(the function arctan)) and Z ⊆
]−1, 1[ and for every x such that x ∈ Z holds arctanx > 0. Then
(i) (the function ln) ·(the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function ln) ·(the function
arctan))′�Z(x) =

1
(1+x2)·arctanx .

(90) Suppose Z ⊆ dom((the function ln) ·(the function arccot)) and Z ⊆
]−1, 1[ and for every x such that x ∈ Z holds arccotx > 0. Then
(i) (the function ln) ·(the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function ln) ·(the function
arccot))′�Z(x) = − 1

(1+x2)·arccotx .

(91) Suppose Z ⊆ dom((�n) · the function arctan) and Z ⊆ ]−1, 1[. Then
(i) (�n) · the function arctan is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((�n) · the function arctan)′�Z(x) =
n·(arctanx)n−1

1+x2 .

(92) Suppose Z ⊆ dom((�n) · the function arccot) and Z ⊆ ]−1, 1[. Then
(i) (�n) · the function arccot is differentiable on Z, and
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(ii) for every x such that x ∈ Z holds ((�n) · the function arccot)′�Z(x) =
−n·(arccotx)

n−1

1+x2 .

(93) Suppose Z ⊆ dom(12 ((�
2) · the function arctan)) and Z ⊆ ]−1, 1[. Then

(i) 1
2 ((�

2) · the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (12 ((�

2)·the function arctan))′�Z(x) =
arctanx
1+x2 .

(94) Suppose Z ⊆ dom(12 ((�
2) · the function arccot)) and Z ⊆ ]−1, 1[. Then

(i) 1
2 ((�

2) · the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (12 ((�

2)·the function arccot))′�Z(x) =
−arccotx1+x2 .

(95) Suppose Z ⊆ ]−1, 1[. Then
(i) idZ the function arctan is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (idZ the function arctan)′�Z(x) =
arctanx+ x

1+x2 .

(96) Suppose Z ⊆ ]−1, 1[. Then
(i) idZ the function arccot is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (idZ the function arccot)′�Z(x) =
arccotx− x

1+x2 .

(97) Suppose Z ⊆ dom(f the function arctan) and Z ⊆ ]−1, 1[ and for every
x such that x ∈ Z holds f(x) = r · x+ s. Then
(i) f the function arctan is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (f the function arctan)′�Z(x) =
r · arctanx+ r·x+s1+x2 .

(98) Suppose Z ⊆ dom(f the function arccot) and Z ⊆ ]−1, 1[ and for every
x such that x ∈ Z holds f(x) = r · x+ s. Then
(i) f the function arccot is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (f the function arccot)′�Z(x) =
r · arccotx− r·x+s1+x2 .

(99) Suppose Z ⊆ dom(12 ((the function arctan) ·f)) and for every x such
that x ∈ Z holds f(x) = 2 · x and −1 < f(x) < 1. Then
(i) 1

2 ((the function arctan) ·f) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (12 ((the function arctan) ·f))

′
�Z(x) =

1
1+(2·x)2 .

(100) Suppose Z ⊆ dom(12 ((the function arccot) ·f)) and for every x such that
x ∈ Z holds f(x) = 2 · x and −1 < f(x) < 1. Then
(i) 1

2 ((the function arccot) ·f) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (12 ((the function arccot) ·f))

′
�Z(x) =

− 1
1+(2·x)2 .

(101) Suppose Z ⊆ dom(f1 + f2) and for every x such that x ∈ Z holds
f1(x) = 1 and f2 = �2. Then f1 + f2 is differentiable on Z and for every
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x such that x ∈ Z holds (f1 + f2)′�Z(x) = 2 · x.
(102) Suppose Z ⊆ dom(12 ((the function ln) ·(f1 + f2))) and f2 = �2 and for

every x such that x ∈ Z holds f1(x) = 1. Then
(i) 1

2 ((the function ln) ·(f1 + f2)) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (12 ((the function ln) ·(f1 +
f2)))′�Z(x) =

x
1+x2 .

(103) Suppose that
(i) Z ⊆ dom(idZ the function arctan−12 ((the function ln) ·(f1 + f2))),
(ii) Z ⊆ ]−1, 1[,
(iii) f2 = �2, and
(iv) for every x such that x ∈ Z holds f1(x) = 1.
Then

(v) idZ the function arctan−12 ((the function ln) ·(f1+ f2)) is differentiable
on Z, and

(vi) for every x such that x ∈ Z holds (idZ the function arctan−12 ((the
function ln) ·(f1 + f2)))′�Z(x) = arctanx.

(104) Suppose that
(i) Z ⊆ dom(idZ the function arccot+12 ((the function ln) ·(f1 + f2))),
(ii) Z ⊆ ]−1, 1[,
(iii) f2 = �2, and
(iv) for every x such that x ∈ Z holds f1(x) = 1.
Then

(v) idZ the function arccot+12 ((the function ln) ·(f1+ f2)) is differentiable
on Z, and

(vi) for every x such that x ∈ Z holds (idZ the function arccot+12 ((the
function ln) ·(f1 + f2)))′�Z(x) = arccotx.

(105) Suppose Z ⊆ dom(idZ ((the function arctan) ·f)) and for every x such
that x ∈ Z holds f(x) = xr and −1 < f(x) < 1. Then
(i) idZ ((the function arctan) ·f) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (idZ ((the function arctan)
·f))′�Z(x) = arctan(xr ) +

x
r·(1+(x

r
)2) .

(106) Suppose Z ⊆ dom(idZ ((the function arccot) ·f)) and for every x such
that x ∈ Z holds f(x) = xr and −1 < f(x) < 1. Then
(i) idZ ((the function arccot) ·f) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (idZ ((the function arccot) ·f))′�Z(x) =
arccot(xr )−

x
r·(1+(x

r
)2) .

(107) Suppose Z ⊆ dom(f1 + f2) and for every x such that x ∈ Z holds
f1(x) = 1 and f2 = (�2) · f and for every x such that x ∈ Z holds
f(x) = xr . Then f1 + f2 is differentiable on Z and for every x such that
x ∈ Z holds (f1 + f2)′�Z(x) = 2·xr2 .
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(108) Suppose that
(i) Z ⊆ dom( r2 ((the function ln) ·(f1 + f2))),
(ii) for every x such that x ∈ Z holds f1(x) = 1,
(iii) r 6= 0,
(iv) f2 = (�2) · f, and
(v) for every x such that x ∈ Z holds f(x) = xr .
Then

(vi) r
2 ((the function ln) ·(f1 + f2)) is differentiable on Z, and

(vii) for every x such that x ∈ Z holds ( r2 ((the function ln) ·(f1 +
f2)))′�Z(x) =

x
r·(1+(x

r
)2) .

(109) Suppose that
(i) Z ⊆ dom(idZ ((the function arctan) ·f)− r2 ((the function ln) ·(f1+f2))),
(ii) r 6= 0,
(iii) for every x such that x ∈ Z holds f(x) = xr and −1 < f(x) < 1,
(iv) for every x such that x ∈ Z holds f1(x) = 1,
(v) f2 = (�2) · f, and
(vi) for every x such that x ∈ Z holds f(x) = xr .
Then

(vii) idZ ((the function arctan) ·f)− r2 ((the function ln) ·(f1 + f2)) is diffe-
rentiable on Z, and

(viii) for every x such that x ∈ Z holds (idZ ((the function arctan) ·f) −
r
2 ((the function ln) ·(f1 + f2)))

′
�Z(x) = arctan(

x
r ).

(110) Suppose that
(i) Z ⊆ dom(idZ ((the function arccot) ·f)+ r2 ((the function ln) ·(f1+f2))),
(ii) r 6= 0,
(iii) for every x such that x ∈ Z holds f(x) = xr and −1 < f(x) < 1,
(iv) for every x such that x ∈ Z holds f1(x) = 1,
(v) f2 = (�2) · f, and
(vi) for every x such that x ∈ Z holds f(x) = xr .
Then

(vii) idZ ((the function arccot) ·f) + r2 ((the function ln) ·(f1 + f2)) is diffe-
rentiable on Z, and

(viii) for every x such that x ∈ Z holds (idZ ((the function arccot) ·f)+ r2 ((the
function ln) ·(f1 + f2)))′�Z(x) = arccot(xr ).

(111) Suppose Z ⊆ dom((the function arctan) · 1f ) and for every x such that
x ∈ Z holds f(x) = x and −1 < ( 1f )(x) < 1. Then
(i) (the function arctan) · 1f is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arctan) · 1f )

′
�Z(x) =

− 1
1+x2 .
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(112) Suppose Z ⊆ dom((the function arccot) · 1f ) and for every x such that
x ∈ Z holds f(x) = x and −1 < ( 1f )(x) < 1. Then
(i) (the function arccot) · 1f is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arccot) · 1f )

′
�Z(x) =

1
1+x2 .

(113) Suppose that
(i) Z ⊆ dom((the function arctan) ·f),
(ii) f = f1 + h f2,
(iii) for every x such that x ∈ Z holds −1 < f(x) < 1,
(iv) for every x such that x ∈ Z holds f1(x) = r + s · x, and
(v) f2 = �2.
Then

(vi) (the function arctan) ·(f1 + h f2) is differentiable on Z, and
(vii) for every x such that x ∈ Z holds ((the function arctan) ·(f1 +
h f2))′�Z(x) =

s+2·h·x
1+(r+s·x+h·x2)2 .

(114) Suppose that
(i) Z ⊆ dom((the function arccot) ·f),
(ii) f = f1 + h f2,
(iii) for every x such that x ∈ Z holds −1 < f(x) < 1,
(iv) for every x such that x ∈ Z holds f1(x) = r + s · x, and
(v) f2 = �2.
Then

(vi) (the function arccot) ·(f1 + h f2) is differentiable on Z, and
(vii) for every x such that x ∈ Z holds ((the function arccot) ·(f1 +
h f2))′�Z(x) = − s+2·h·x

1+(r+s·x+h·x2)2 .

(115) Suppose Z ⊆ dom((the function arctan) ·(the function exp)) and for
every x such that x ∈ Z holds expx < 1. Then
(i) (the function arctan) ·(the function exp) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arctan) ·(the function
exp))′�Z(x) =

expx
1+(expx)2 .

(116) Suppose Z ⊆ dom((the function arccot) ·(the function exp)) and for
every x such that x ∈ Z holds expx < 1. Then
(i) (the function arccot) ·(the function exp) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arccot) ·(the function
exp))′�Z(x) = −

expx
1+(expx)2 .

(117) Suppose that
(i) Z ⊆ dom((the function arctan) ·(the function ln)), and
(ii) for every x such that x ∈ Z holds −1 < (the function ln)(x) and (the
function ln)(x) < 1.
Then
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(iii) (the function arctan) ·(the function ln) is differentiable on Z, and
(iv) for every x such that x ∈ Z holds ((the function arctan) ·(the function
ln))′�Z(x) =

1
x·(1+(the function ln)(x)2) .

(118) Suppose that
(i) Z ⊆ dom((the function arccot) ·(the function ln)), and
(ii) for every x such that x ∈ Z holds −1 < (the function ln)(x) and (the
function ln)(x) < 1.
Then

(iii) (the function arccot) ·(the function ln) is differentiable on Z, and
(iv) for every x such that x ∈ Z holds ((the function arccot) ·(the function
ln))′�Z(x) = − 1

x·(1+(the function ln)(x)2) .

(119) Suppose Z ⊆ dom((the function exp) ·(the function arctan)) and Z ⊆
]−1, 1[. Then
(i) (the function exp) ·(the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function exp) ·(the function
arctan))′�Z(x) =

exp arctanx
1+x2 .

(120) Suppose Z ⊆ dom((the function exp) ·(the function arccot)) and Z ⊆
]−1, 1[. Then
(i) (the function exp) ·(the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function exp) ·(the function
arccot))′�Z(x) = −

exp arccotx
1+x2 .

(121) Suppose Z ⊆ dom((the function arctan)−idZ) and Z ⊆ ]−1, 1[. Then
(i) (the function arctan)−idZ is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arctan)−idZ)′�Z(x) =
− x2

1+x2 .

(122) Suppose Z ⊆ dom(−the function arccot− idZ) and Z ⊆ ]−1, 1[. Then
(i) −the function arccot− idZ is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (−the function arccot− idZ)′�Z(x) =
− x2

1+x2 .

(123) Suppose Z ⊆ ]−1, 1[. Then
(i) (the function exp) (the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function exp) (the function
arctan))′�Z(x) = expx · arctanx+

expx
1+x2 .

(124) Suppose Z ⊆ ]−1, 1[. Then
(i) (the function exp) (the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function exp) (the function
arccot))′�Z(x) = expx · arccotx−

expx
1+x2 .

(125) Suppose Z ⊆ dom(1r ((the function arctan) ·f) − idZ) and for every x
such that x ∈ Z holds f(x) = r · x and r 6= 0 and −1 < f(x) < 1. Then
(i) 1

r ((the function arctan) ·f)− idZ is differentiable on Z, and
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(ii) for every x such that x ∈ Z holds (1r ((the function arctan) ·f) −
idZ)′�Z(x) = −

(r·x)2
1+(r·x)2 .

(126) Suppose Z ⊆ dom((−1r ) ((the function arccot) ·f) − idZ) and for every
x such that x ∈ Z holds f(x) = r · x and r 6= 0 and −1 < f(x) < 1. Then
(i) (−1r ) ((the function arccot) ·f)− idZ is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((−1r ) ((the function arccot) ·f) −
idZ)′�Z(x) = −

(r·x)2
1+(r·x)2 .

(127) Suppose Z ⊆ dom((the function ln) (the function arctan)) and Z ⊆
]−1, 1[. Then
(i) (the function ln) (the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function ln) (the function
arctan))′�Z(x) =

arctanx
x + (the function ln)(x)1+x2 .

(128) Suppose Z ⊆ dom((the function ln) (the function arccot)) and Z ⊆
]−1, 1[. Then
(i) (the function ln) (the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function ln) (the function
arccot))′�Z(x) =

arccotx
x − (the function ln)(x)1+x2 .

(129) Suppose Z ⊆ dom( 1f the function arctan) and Z ⊆ ]−1, 1[ and for every
x such that x ∈ Z holds f(x) = x. Then
(i) 1

f the function arctan is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ( 1f the function arctan)

′
�Z(x) =

−arctanx
x2
+ 1
x·(1+x2) .

(130) Suppose Z ⊆ dom( 1f the function arccot) and Z ⊆ ]−1, 1[ and for every
x such that x ∈ Z holds f(x) = x. Then
(i) 1

f the function arccot is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ( 1f the function arccot)

′
�Z(x) =

−arccotx
x2
− 1
x·(1+x2) .
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