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Summary. In this article we prove the Monotone Convergence Theorem
[16].
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The notation and terminology used in this paper have been introduced in the
following articles: [10], [20], [2], [7], [21], [6], [8], [9], [1], [17], [18], [3], [4], [5],
[13], [14], [15], [19], [11], [12], and [22].

1. PRELIMINARIES

For simplicity, we adopt the following rules: X is a non empty set, S is a
o-field of subsets of X, M is a o-measure on S, E is an element of S, F, G are
sequences of partial functions from X into R, I is a sequence of extended reals,
f, g are partial functions from X to R, s1, s2, 3 are sequences of extended reals,
p is an extended real number, n, m are natural numbers, x is an element of X,
and z, D are sets.

Next we state a number of propositions:

(1) If f is without 400 and g is without +oo, then dom(f + g) = dom f N
dom g.

(2) If fis without 400 and ¢ is without —oo, then dom(f — g) = dom f N
dom g.
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3
4

(3) If f is without —oo and g is without —oo, then f 4+ g is without —oc.
(4)
(5) If f is without —oo and g is without +oo, then f — g is without —oc.
(6)
(7)

If f is without +o00 and g is without +o0, then f + g is without +o0.

6

7)(i) If s; is convergent to finite number, then there exists a real number

If f is without +o00 and ¢ is without —oo, then f — g is without +oo.

g such that lim s; = ¢ and for every real number p such that 0 < p there
exists a natural number n such that for every natural number m such that
n < m holds [s;(m) — lims;| < p,

(ii)  if s1 is convergent to +o0, then lim s; = 400, and

(iii)  if s1 is convergent to —oo, then lim s; = —o0.

(8) If s1 is non-negative, then s; is not convergent to —oo.

(9) If s1 is convergent and for every natural number & holds s;(k) < p, then
lim sy < p.
(10) If s; is convergent and for every natural number k holds p < s;(k), then
p < lim s;.
(11) Suppose that
(

i So is convergent,

i

)

) s3 is convergent,
(ili)  s9 is non-negative,
)

)

(iv s3 is non-negative, and
(v)  for every natural number k holds s1(k) = so(k) + s3(k).
Then s; is non-negative and convergent and lim s; = lim s + lim s3.
(12) Suppose for every natural number n holds G(n) = F(n)[D and = € D.
Then
(i) if F#x is convergent to +o0o, then G#x is convergent to 400,
(ii)  if F#x is convergent to —oo, then G#x is convergent to —oo,
(ili) if F'#a is convergent to finite number, then G#x is convergent to finite
number, and
(iv) if F#x is convergent, then G#x is convergent.

(13) If E = dom f and f is measurable on E and f is non-negative and
M(E NEQ-dom(f,+00)) # 0, then [ fdM = +oc.
(14) fXEg(dM:M(E) andeE,X[EdM:M(E).
)

(15) Suppose that
(i) FE Cdomf,
(i) E Cdomy,
(iii)  f is measurable on E,
(iv) g is measurable on E,
(v)  f is non-negative, and
(vi)  for every element x of X such that z € E holds f(z) < g(z).

Then [ f[EdM < [ g[EdM.



THE LEBESGUE MONOTONE CONVERGENCE THEOREM 169

2. SELECTED PROPERTIES OF EXTENDED REAL SEQUENCE

Let f be an extended real-valued function and let = be a set. Then f(x) is
an element of R.

Let s be an extended real-valued function. The functor (3-5_;s(a))ken
yields a sequence of extended reals and is defined by:

(Def. 1) (360 s(a))ken(0) = s(0) and for every natural number n holds
(Xa=o s(a))ren(n +1) = (Xa=o 5(@))sen(n) + s(n +1).
Let s be an extended real-valued function. We say that s is summable if and
only if:
(Def. 2)  (3-h—p s(a))ken is convergent.

Let s be an extended real-valued function. The functor > s yielding an
extended real number is defined as follows:

(Def. 3) > s =1lm((>h_( s())ken)-
Next we state several propositions:
(16) If s; is non-negative, then (}5_q(s1)(a))xen is non-negative and
(>h—o(s1)(@))ken is non-decreasing.
(17) If for every natural number n holds 0 < si(n), then for every natural

number m holds 0 < (3-5_(51)(®))ken(m).

(18) If F has the same dom and for every natural number n holds G(n) =
F(n)ID, then G has the same dom.

(19) Suppose that

(i) D Cdom F(0),

(ii)  for every natural number n holds G(n) = F(n)[D, and

(iii)  for every element x of X such that x € D holds F#ux is convergent.

Then lim F[D = lim G.

(20) Suppose F' has the same dom and F C dom F'(0) and for every natural
number m holds F(m) is measurable on F and G(m) = F(m)[E. Then
G(n) is measurable on E.

(21) Suppose that

(i) FE Cdom F(0),

(ii) G has the same dom,
(iii)  for every element x of X such that x € E holds F'#x is summable, and
(iv)  for every natural number n holds G(n) = F(n)|E.

Let x be an element of X. If x € E, then G#x is summable.
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3. PARTIAL SUMS OF FUNCTIONAL SEQUENCE AND THEIR PROPERTIES

Let X be a non empty set and let F' be a sequence of partial functions from
X into R. The functor (3-5_, F(a))xen yields a sequence of partial functions
from X into R and is defined as follows:
(Def. 4) (h_gF(a))ken(0) = F(0) and for every natural number n holds
(XCb=0 F(@))ren(n + 1) = X a=0 F())ren(n) + F(n + 1).
Let X be a set and let F be a sequence of partial functions from X into R.
We say that F' is additive if and only if:
(Def. 5) For all natural numbers n, m such that n # m and for every set z such
that z € dom F(n) N'dom F'(m) holds F(n)(z) # +oo or F(m)(z) # —oo.
Next we state a number of propositions:
(22) If z € dom(}i_oF(a))ken(n) and m < n, then z €
dom(>5_g F(a))ken(m) and z € dom F'(m).
(23) If z € dom(} i  F(a))ken(n) and (3or_o F(a))ken(n)(z) = +00, then
there exists a natural number m such that m <n and F(m)(z) = +occ.
(24) 1If F is additive and z € dom(>_h_o F'(@))ken(n) and
(>or_o F(a))ken(n)(z) = 400 and m < n, then F(m)(z) # —oo.
(25) If z € dom(} h_ F(a))ken(n) and (3r_y F(a))ken(n)(z) = —oo, then
there exists a natural number m such that m <n and F(m)(z) = —oc.
(26) If F is additive and z € dom (> h_o F'(a))ken(n) and
(>or_o F(a))ken(n)(z) = —oo and m < n, then F(m)(z) # +oc.
(27) If F is additive, then (XF_oF(a))wen(n) 1({—00}) N F(n +
D)7 4o0}) = D20 (S F(@ () (roeDVF(0+1) o))~
(28) If F is additive, then dom(>"h_q F(a))ren(n) = ({dom F(k); k ranges
over elements of N: k < n}.
(29) If F is additive and has the same dom, then dom(>_5_ F(«))xen(n) =
dom F'(0).
(30) If for every natural number n holds F(n) is non-negative, then F' is
additive.
(31) If F is additive and for every n holds G(n) = F(n)[D, then G is additive.
(32) If F is additive and has the same dom and D C dom F'(0) and x € D,
then (S0 _o(F#a)(a) wer (1) = (o F(@) werder) ().
(33) Suppose F' is additive and has the same dom and D C dom F(0) and
z € D. Then
(i)  (Ch_o(F#x)(a))ken is convergent to finite number iff
(>a=0 F(a))wen#x is convergent to finite number,
(i)  (OCh_o(F#x)(a))ken is convergent to +oo iff (3 h_o F(a))xen#e is
convergent to 400,
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(iii)  (OCh_o(F#zx)(a))ken is convergent to —oo iff (3 h_, F(a))xen#x is
convergent to —oo, and

(iv)  (OCh_o(F#z)(a))ken is convergent iff (3°F_ F(a))xen#x is conver-
gent.

(34) If F is additive and has the same dom and dom f C dom F(0) and
x € dom f and F#zx is summable and f(z) = Y F#ux, then f(x) =
m((X6=0 F())nentfe).

(35) Suppose that for every natural number m holds F'(m) is simple function
in S. Then F is additive and (3>°5_y F(®))xen(n) is simple function in S.

(36) If for every natural number m holds F(m) is non-negative, then
(>h_o F(a))ken(n) is non-negative.

(37) If F has the same dom and x € dom F'(0) and for every natural number
k holds F(k) is non-negative and n < m, then (}5_, F(a))xen(n)(z) <
(X6=0 F(@))ren(m)(z).

(38) Suppose F' has the same dom and x € dom F'(0) and for every natural
number m holds F'(m) is non-negative. Then (3>°5_y F(a))xen#2 is non-
decreasing and (3 h_ F(a))sen#x is convergent.

(39) If for every natural number m holds F(m) is without —oo, then
(>2F _o F(a))ken(n) is without —oo.

(40) If for every natural number m holds F(m) is without +oo, then
b o F(a))ren(n) is without +oo.

(41) Suppose that for every natural number n holds F'(n) is measurable on

E and F(n) is without —oco. Then (>°5_ F'(a))ken(m) is measurable on
E.

(42) Suppose that
(i)
(ii) G is additive and has the same dom,
(ili) « € dom F(0) NdomG(0), and
) for every natural number k and for every element y of X such that

y € dom F'(0) Ndom G(0) holds F(k)(y) < G(k)(y).

Then (Y% F(0))wen(n)(@) < (g G(0) uen(n) (@).

(43) Let X be a non empty set and F' be a sequence of partial functions from
X into R. If F is additive and has the same dom, then (3°F_q F(a))xen
has the same dom.

(44) Suppose that

(i) domF(0) =E,
(ii)  F' is additive and has the same dom,

F' is additive and has the same dom,

(iv

(iii)  for every natural number n holds (3} h_y F(®))ken(n) is measurable on
E. and
(iv) for every element = of X such that x € E holds F#z is summable.
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Then lim((>°5_y F(a))ken) is measurable on E.

(45) Suppose that for every natural number n holds F'(n) is integrable on M.
Let m be a natural number. Then (3°5_ F(«))xen(m) is integrable on
M.

(46) Suppose that
(i) E =domF(0),
(ii) F is additive and has the same dom, and
(iii)  for every natural number n holds F'(n) is measurable on E and F'(n)
is non-negative and I(n) = [ F(n)dM.
Then [(X5_q F(0))een(m) dM = (S5 I(a))ecri(m).

4. SEQUENCE OF MEASURABLE FUNCTIONS

Next we state two propositions:

(47) Suppose that

) E Cdomf,

) f is non-negative,

(ili)  f is measurable on F,

) Fis additive,
) for every n holds F'(n) is simple function in S and F'(n) is non-negative

and E C dom F(n), and

(vi)  for every x such that x € E holds F#x is summable and f(z) =
> F#ux.
Then there exists a sequence I of extended reals such that for every n
holds I(n) = [ F(n)[EdM and I is summable and [ f[EdM =>"1I.

(48) Suppose E C dom f and f is non-negative and f is measurable on E.
Then there exists a sequence g of partial functions from X into R such
that

(i) g is additive,
(ii)  for every natural number n holds g(n) is simple function in S and g(n)
is non-negative and g(n) is measurable on F,
(iii)  for every element z of X such that z € E holds g#x is summable and
f(z) = ¥ g, and
(iv)  there exists a sequence I of extended reals such that for every natural
number n holds I(n) = [ g(n)|EdM and I is summable and [ f[EdM =
S I
Let X be a non empty set. Observe that there exists a sequence of partial
functions from X into R which is additive and has the same dom.
Let C, D, X be non empty sets, let F' be a function from C' x D into X —R,
let ¢ be an element of C, and let d be an element of D. Then F(c, d) is a partial
function from X to R.
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Let C, D, X be non empty sets, let F' be a function from C x D into X,
and let ¢ be an element of C. The functor curry(F,c) yields a function from D
into X and is defined as follows:

(Def. 6) For every element d of D holds (curry(F,c))(d) = F(c, d).

Let C, D, X be non empty sets, let F' be a function from C x D into X,
and let d be an element of D. The functor curry’(F,d) yields a function from C
into X and is defined as follows:

(Def. 7) For every element ¢ of C' holds (curry’(F,d))(c) = F(c, d).

Let X, Y be sets, let F' be a function from N x N into XY, and let n be a
natural number. The functor curry(F, n) yielding a sequence of partial functions
from X into Y is defined by:

(Def. 8) For every natural number m holds (curry(F,n))(m) = F(n, m).

The functor curry’(F,n) yields a sequence of partial functions from X into YV
and is defined by:

(Def. 9) For every natural number m holds (curry’(F,n))(m) = F(m, n).

Let X be a non empty set, let F' be a function from N into (X-5R)N, and
let n be a natural number. Then F'(n) is a sequence of partial functions from X
into R.
The following four propositions are true:
(49) Suppose E = dom F(0) and F has the same dom and for every natural
number n holds F'(n) is non-negative and F'(n) is measurable on E. Then
there exists a function F} from N into (X -R)N such that for every natural
number n holds
(i)  for every natural number m holds Fi(n)(m) is simple function in .S and
dom Fi(n)(m) = dom F(n),

(ii)  for every natural number m holds Fj(n)(m) is non-negative,

(iii)  for all natural numbers j, k such that j < k and for every element x of
X such that z € dom F(n) holds F;(n)(j)(z) < Fi(n)(k)(x), and

(iv) for every element x of X such that z € dom F(n) holds Fi(n)#x is
convergent and lim(Fy(n)#zx) = F(n)(z).

(50) Suppose that

(i) FE =dom F(0),

(ii)  F is additive and has the same dom, and

(iii)  for every natural number n holds F'(n) is measurable on E and F'(n)
is non-negative.
Then there exists a sequence I of extended reals such that for every natural
number n holds
I(n) = J P(n)dM and [(S%5_y F(a))eer(n) AM = (S5_o I(a))sen(n).

(51) Suppose that

(i) E Cdom F(0),
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(
(

(ii)  F is additive and has the same dom,

iii)  for every natural number n holds F'(n) is non-negative and F(n) is
measurable on F, and

iv)  for every element x of X such that z € E holds F#x is summable.
Then there exists a sequence I of extended reals such that for every
natural number n holds I(n) = [ F(n)[EdM and I is summable and

JUim((3G=0 F())ren) [EAM =301

(52) Suppose that

(

[13]
[14]
[15]
[16]

[17]
[18]

)  E =domF(0),

) F(0) is non-negative,
iii)  F has the same dom,

) for every natural number n holds F'(n) is measurable on F,

) for all natural numbers n, m such that n < m and for every element x
of X such that z € E holds F(n)(z) < F(m)(x), and
vi)  for every element x of X such that € E holds F'#x is convergent.
Then there exists a sequence I of extended reals such that for every natural
number n holds I(n) = [ F(n)dM and I is convergent and [lim F dM =
lim /.
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