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Summary. In this paper I present the Kronecker-Capelli theorem which
states that a system of linear equations has a solution if and only if the rank of
its coefficient matrix is equal to the rank of its augmented matrix.
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The terminology and notation used in this paper are introduced in the following
papers: [9], [24], [1], [2], [10], [25], [6], [8], [7], [3], [23], [21], [13], [5], [11], [12],
[26], [15], [27], [19], [16], [22], [20], [28], [4], [17], [14], and [18].

1. Preliminaries

For simplicity, we follow the rules: x denotes a set, i, j, k, l, m, n denote
natural numbers, K denotes a field, N denotes a without zero finite subset of
N, a, b denote elements of K, A, B, B1, B2, X, X1, X2 denote matrices over K,
A′ denotes a matrix over K of dimension m × n, B′ denotes a matrix over K
of dimension m × k, and M denotes a square matrix over K of dimension n.
We now state a number of propositions:

(1) If widthA = lenB, then (a ·A) ·B = a · (A ·B).
(2) 1K ·A = A and a · (b ·A) = (a · b) ·A.
(3) Let K be a non empty additive loop structure and f , g, h, w be finite
sequences of elements of K. If len f = len g and lenh = lenw, then f a

h+ g a w = (f + g) a (h+ w).

(4) Let K be a non empty multiplicative magma, f , g be finite sequences of
elements of K, and a be an element of K. Then a · (f a g) = (a ·f)a (a ·g).
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(5) Let f be a function and p1, p2, f1, f2 be finite sequences. If rng p1 ⊆
dom f and rng p2 ⊆ dom f and f1 = f ·p1 and f2 = f ·p2, then f ·(p1ap2) =
f1

a f2.

(6) Let f be a finite sequence of elements of N and given n. Suppose f is
one-to-one and rng f ⊆ Seg n and for all i, j such that i, j ∈ dom f and
i < j holds f(i) < f(j). Then Sgm rng f = f.

(7) Let K be an Abelian add-associative right zeroed right complementable
non empty additive loop structure, p be a finite sequence of elements of
K, and given i, j. Suppose i, j ∈ dom p and i 6= j and for every k such
that k ∈ dom p and k 6= i and k 6= j holds p(k) = 0K . Then

∑
p = pi+ pj .

(8) If i ∈ Segm, then (Sgm(Seg(n+m) \ Seg n))(i) = n+ i.
(9) Let D be a non empty set, A be a matrix over D, and B3, B4, C1,
C2 be without zero finite subsets of N. Suppose B3 × B4 ⊆ the indices
of A and C1 × C2 ⊆ the indices of A. Let B be a matrix over D of
dimension cardB3 × cardB4 and C be a matrix over D of dimension
cardC1 × cardC2. Suppose that for all natural numbers i, j, b1, b2, c1,
c2 such that 〈〈i, j〉〉 ∈ (B3 × B4) ∩ (C1 × C2) and b1 = (SgmB3)−1(i) and
b2 = (SgmB4)−1(j) and c1 = (SgmC1)−1(i) and c2 = (SgmC2)−1(j) holds
Bb1,b2 = Cc1,c2 . Then there exists a matrixM over D of dimension lenA ×
widthA such that Segm(M,B3, B4) = B and Segm(M,C1, C2) = C and
for all i, j such that 〈〈i, j〉〉 ∈ (the indices ofM)\ (B3×B4∪C1×C2) holds
Mi,j = Ai,j .

(10) Let P , Q, Q′ be without zero finite subsets of N. Suppose P ×Q′ ⊆ the
indices of A. Let given i, j. Suppose i ∈ domA\P and j ∈ SegwidthA\Q
and Ai,j 6= 0K and Q ⊆ Q′ and Line(A, i) · SgmQ′ = cardQ′ 7→ 0K . Then
rk(A) > rk(Segm(A,P,Q)).

(11) For every N such that N ⊆ domA and for every i such that
i ∈ domA \ N holds Line(A, i) = widthA 7→ 0K holds rk(A) =
rk(Segm(A,N, SegwidthA)).

(12) For every N such that N ⊆ SegwidthA and for every i such that
i ∈ SegwidthA \ N holds A�,i = lenA 7→ 0K holds rk(A) =
rk(Segm(A,Seg lenA,N)).

(13) Let V be a vector space over K, U be a finite subset of V , u, v be vectors
of V , and given a. If u, v ∈ U, then Lin((U \{u})∪{u+a ·v}) is a subspace
of Lin(U).

(14) Let V be a vector space over K, U be a finite subset of V , u, v be
vectors of V , and given a. Suppose u, v ∈ U and if u = v, then a 6= −1K
or u = 0V . Then Lin((U \ {u}) ∪ {u+ a · v}) = Lin(U).
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2. Selected Properties of Joining Operation of two Matrices

Let D be a non empty set, let n, m, k be natural numbers, let A be a matrix
over D of dimension n × m, and let B be a matrix over D of dimension n × k.
Then A_ B is a matrix over D of dimension n × (widthA+widthB).
We now state a number of propositions:

(15) Let D be a non empty set, A be a matrix over D of dimension n × m,
B be a matrix over D of dimension n × k, and given i. If i ∈ Seg n, then
Line(A_ B, i) = Line(A, i) a Line(B, i).

(16) Let D be a non empty set, A be a matrix over D of dimension n × m,
B be a matrix over D of dimension n × k, and given i. If i ∈ SegwidthA,
then (A_ B)�,i = A�,i.

(17) Let D be a non empty set, A be a matrix over D of dimension n × m,
B be a matrix over D of dimension n × k, and given i. If i ∈ SegwidthB,
then (A_ B)�,widthA+i = B�,i.

(18) Let D be a non empty set, A be a matrix over D of dimension n
× m, B be a matrix over D of dimension n × k, and p3, p4 be fi-
nite sequences of elements of D. If len p3 = widthA and len p4 =
widthB, then ReplaceLine(A _ B, i, p3 a p4) = (ReplaceLine(A, i, p3)) _

ReplaceLine(B, i, p4).

(19) Let D be a non empty set, A be a matrix over D of dimension n ×
m, and B be a matrix over D of dimension n × k. Then Segm(A _
B,Seg n,SegwidthA) = A and Segm(A _ B,Seg n,Seg(widthA +
widthB) \ SegwidthA) = B.

(20) For all matrices A, B over K such that lenA = lenB holds rk(A) ≤
rk(A_ B) and rk(B) ≤ rk(A_ B).

(21) For all matrices A, B over K such that lenA = lenB and lenA = rk(A)
holds rk(A) = rk(A_ B).

(22) For all matrices A, B over K such that lenA = lenB and widthA = 0
holds A_ B = B and B _ A = B.

(23) For all matrices A, B over K such that B = 0(lenA)×mK holds rk(A) =
rk(A_ B).

(24) Let A, B be matrices over K. Suppose rk(A) = rk(A_ B) and lenA =
lenB. Let given N . Suppose N ⊆ domA and for every i such that i ∈ N
holds Line(A, i) = widthA 7→ 0K . Let given i. If i ∈ N, then Line(B, i) =
widthB 7→ 0K .
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3. Basic Properties of two Transformations which Transform
Finite Sequences to Matrices

For simplicity, we follow the rules:D is a non empty set, b3 is a finite sequence
of elements of D, b, f , g are finite sequences of elements ofK, andM1 is a matrix
over D.
Let D be a non empty set and let b be a finite sequence of elements of D.

The functor LineVec2Mx b yielding a matrix over D of dimension 1 × len b is
defined by:

(Def. 1) LineVec2Mx b = 〈b〉.
The functor ColVec2Mx b yielding a matrix over D of dimension len b × 1 is
defined by:

(Def. 2) ColVec2Mx b = 〈b〉T.
One can prove the following propositions:

(25) M1 = LineVec2Mx b3 iff Line(M1, 1) = b3 and lenM1 = 1.

(26) If lenM1 6= 0 or len b3 6= 0, then M1 = ColVec2Mx b3 iff (M1)�,1 = b3
and widthM1 = 1.

(27) If len f = len g, then LineVec2Mx f +LineVec2Mx g = LineVec2Mx(f +
g).

(28) If len f = len g, then ColVec2Mx f +ColVec2Mx g = ColVec2Mx(f + g).

(29) a · LineVec2Mx f = LineVec2Mx(a · f).
(30) a · ColVec2Mx f = ColVec2Mx(a · f).
(31) LineVec2Mx(k 7→ 0K) = 01×kK .
(32) ColVec2Mx(k 7→ 0K) = 0k×1K .

4. Basis Properties of the Solution of Linear Equations

Let us consider K and let us consider A, B. The set of solutions of A and
B is a set and is defined as follows:

(Def. 3) The set of solutions of A and B = {X : lenX = widthA ∧ widthX =
widthB ∧ A ·X = B}.
We now state a number of propositions:

(33) If the set of solutions of A and B is non empty, then lenA = lenB.

(34) If X ∈ the set of solutions of A and B and i ∈ SegwidthX and X�,i =
lenX 7→ 0K , then B�,i = lenB 7→ 0K .

(35) Suppose X ∈ the set of solutions of A and B. Then a · X ∈ the set of
solutions of A and a ·B and X ∈ the set of solutions of a ·A and a ·B.

(36) If a 6= 0K , then the set of solutions of A and B = the set of solutions of
a ·A and a ·B.
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(37) Suppose X1 ∈ the set of solutions of A and B1 and X2 ∈ the set of
solutions of A and B2 and widthB1 = widthB2. Then X1 +X2 ∈ the set
of solutions of A and B1 +B2.

(38) If X ∈ the set of solutions of A′ and B′, then X ∈ the set of solutions of
RLine(A′, i, a · Line(A′, i)) and RLine(B′, i, a · Line(B′, i)).

(39) Suppose X ∈ the set of solutions of A′ and B′ and j ∈ Segm and i 6= j.
Then X ∈ the set of solutions of RLine(A′, i,Line(A′, i) + a · Line(A′, j))
and RLine(B′, i,Line(B′, i) + a · Line(B′, j)).

(40) Suppose j ∈ Segm and if i = j, then a 6= −1K . Then the set of solutions
ofA′ andB′ = the set of solutions of RLine(A′, i,Line(A′, i)+a·Line(A′, j))
and RLine(B′, i,Line(B′, i) + a · Line(B′, j)).

(41) If X ∈ the set of solutions of A and B and i ∈ domA and Line(A, i) =
widthA 7→ 0K , then Line(B, i) = widthB 7→ 0K .

(42) Let n1 be an element of Nn. Suppose rng n1 ⊆ domA and n >
0. Then the set of solutions of A and B ⊆ the set of solutions of
Segm(A,n1,SgmSegwidthA) and Segm(B,n1,SgmSegwidthB).

(43) Let n1 be an element of Nn. Suppose rng n1 ⊆ domA = domB and
n > 0 and for every i such that i ∈ domA \ rng n1 holds Line(A, i) =
widthA 7→ 0K and Line(B, i) = widthB 7→ 0K . Then the set of solutions
of A and B = the set of solutions of Segm(A,n1,SgmSegwidthA) and
Segm(B,n1,SgmSegwidthB).

(44) Let given N . Suppose N ⊆ domA and N is non empty. Then the set
of solutions of A and B ⊆ the set of solutions of Segm(A,N, SegwidthA)
and Segm(B,N,SegwidthB).

(45) Let given N . Suppose N ⊆ domA and N is non empty and domA =
domB and for every i such that i ∈ domA \ N holds Line(A, i) =
widthA 7→ 0K and Line(B, i) = widthB 7→ 0K . Then the set of solu-
tions of A and B = the set of solutions of Segm(A,N, SegwidthA) and
Segm(B,N,SegwidthB).

(46) Suppose i ∈ domA and lenA > 1. Then the set of solutions of A and
B ⊆ the set of solutions of the deleting of i-row in A and the deleting of i
-row in B.

(47) Let given A, B, i. Suppose i ∈ domA and lenA > 1 and Line(A, i) =
widthA 7→ 0K and i ∈ domB and Line(B, i) = widthB 7→ 0K . Then the
set of solutions of A and B = the set of solutions of the deleting of i-row
in A and the deleting of i -row in B.

(48) Let A be a matrix over K of dimension n × m, B be a matrix over K
of dimension n × k, and P be a function from Seg n into Seg n. Then
(i) the set of solutions of A and B ⊆ the set of solutions of A ·P and B ·P,
and
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(ii) if P is one-to-one, then the set of solutions of A and B = the set of
solutions of A · P and B · P.

(49) Let A be a matrix over K of dimension n × m and given N . Suppose
cardN = n and N ⊆ Segm and Segm(A,Seg n,N) = In×nK and n > 0.
Then there exists a matrix M2 over K of dimension m−′ n × m such that
(i) Segm(M2,Seg(m−′ n),Segm \N) = I(m−

′n)×(m−′n)
K ,

(ii) Segm(M2,Seg(m−′ n), N) = −(Segm(A,Seg n,Segm \N))T, and
(iii) for every l and for every matrixM over K of dimensionm × l such that
for every i such that i ∈ Seg l holds there exists j such that j ∈ Seg(m−′n)
andM�,i = Line(M2, j) orM�,i = m 7→ 0K holdsM ∈ the set of solutions
of A and 0n×lK .

(50) Let A be a matrix over K of dimension n × m, B be a matrix over K of
dimension n × l, and given N . Suppose cardN = n and N ⊆ Segm and
n > 0 and Segm(A,Seg n,N) = In×nK . Then there exists a matrix X over

K of dimension m × l such that Segm(X, Segm \ N,Seg l) = 0(m−
′n)×l

K

and Segm(X,N,Seg l) = B and X ∈ the set of solutions of A and B.
(51) Let A be a matrix over K of dimension 0 × n and B be a matrix over
K of dimension 0 × m. Then the set of solutions of A and B = {∅}.

(52) For every matrix B over K such that the set of solutions of 0n×kK and B

is non empty holds B = 0n×(widthB)K .

(53) Let A be a matrix over K of dimension n × k and B be a matrix over
K of dimension n × m. Suppose n > 0. Suppose x ∈ the set of solutions
of A and B. Then x is a matrix over K of dimension k × m.

(54) Suppose n > 0 and k > 0. Then the set of solutions of 0n×kK and 0n×mK =
{X : X ranges over matrices over K of dimension k ×m}.

(55) If n > 0 and the set of solutions of 0n×0K and 0n×mK is non empty, then
m = 0.

(56) The set of solutions of 0n×0K and 0n×0K = {∅}.

5. Gaussian Eliminations

In this article we present several logical schemes. The scheme GAUSS1 deals
with a field A, natural numbers B, C, D, a matrix E over A of dimension B ×
C, a matrix F over A of dimension B × D, a 4-ary functor F yielding a matrix
over A of dimension B × D, and a binary predicate P, and states that:

There exists a matrix A′ over A of dimension B × C and there
exists a matrix B′ over A of dimension B × D and there exists a
without zero finite subset N of N such that
N ⊆ Seg C and rk(E) = rk(A′) and rk(E) = cardN and

P[A′, B′] and Segm(A′,Seg cardN,N) is diagonal and for every i
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such that i ∈ Seg cardN holds A′i,(SgmN)i 6= 0A and for every i
such that i ∈ domA′ and i > cardN holds Line(A′, i) = C 7→ 0A
and for all i, j such that i ∈ Seg cardN and j ∈ SegwidthA′ and
j < (SgmN)(i) holds A′i,j = 0A

provided the parameters meet the following requirements:
• P[E ,F ], and
• Let A′ be a matrix over A of dimension B × C and B′ be a
matrix over A of dimension B × D. Suppose P[A′, B′]. Let given
i, j. Suppose i 6= j and j ∈ domA′. Let a be an element of A.
Then P[RLine(A′, i,Line(A′, i) + a · Line(A′, j)),F(B′, i, j, a)].

The scheme GAUSS2 deals with a field A, natural numbers B, C, D, a matrix
E over A of dimension B × C, a matrix F over A of dimension B × D, a 4-ary
functor F yielding a matrix over A of dimension B × D, and a binary predicate
P, and states that:

There exists a matrix A′ over A of dimension B × C and there
exists a matrix B′ over A of dimension B × D and there exists a
without zero finite subset N of N such that
N ⊆ Seg C and rk(E) = rk(A′) and rk(E) = cardN and

P[A′, B′] and Segm(A′,Seg cardN,N) = IcardN×cardNA and for
every i such that i ∈ domA′ and i > cardN holds Line(A′, i) =
C 7→ 0A and for all i, j such that i ∈ Seg cardN and j ∈
SegwidthA′ and j < (SgmN)(i) holds A′i,j = 0A

provided the parameters satisfy the following conditions:
• P[E ,F ], and
• Let A′ be a matrix over A of dimension B × C and B′ be a matrix
over A of dimension B × D. Suppose P[A′, B′]. Let a be an ele-
ment of A and given i, j. If j ∈ domA′ and if i = j, then a 6= −1A,
then P[RLine(A′, i,Line(A′, i) + a · Line(A′, j)),F(B′, i, j, a)].

6. The Main Theorem

We now state the proposition

(57) Let A, B be matrices over K. Suppose lenA = lenB and if widthA = 0,
then widthB = 0. Then rk(A) = rk(A _ B) if and only if the set of
solutions of A and B is non empty.

7. Space of Solutions of Linear Equations

Let us consider K, let A be a matrix over K, and let b be a finite sequence
of elements of K. The set of solutions of A and b is defined by:
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(Def. 4) The set of solutions of A and b = {f : ColVec2Mx f ∈ the set of solutions
of A and ColVec2Mx b}.
We now state two propositions:

(58) For every x such that x ∈ the set of solutions of A and ColVec2Mx b
there exists f such that x = ColVec2Mx f and len f = widthA.

(59) For every f such that ColVec2Mx f ∈ the set of solutions of A and
ColVec2Mx b holds len f = widthA.

Let us consider K, let A be a matrix over K, and let b be a finite sequence
of elements of K. Then the set of solutions of A and b is a subset of the widthA-
dimension vector space over K.
Let us consider K, let A be a matrix over K, and let k be an element of N.

Note that the set of solutions of A and k 7→ 0K is linearly closed.
We now state two propositions:

(60) If the set of solutions of A and b is non empty and widthA = 0, then
lenA = 0.

(61) If widthA 6= 0 or lenA = 0, then the set of solutions of A and lenA 7→ 0K
is non empty.

Let us consider K and let A be a matrix over K. Let us assume that if
widthA = 0, then lenA = 0. The space of solutions of A is a strict subspace of
the widthA-dimension vector space over K and is defined by:

(Def. 5) The carrier of the space of solutions of A = the set of solutions of A and
lenA 7→ 0K .
The following propositions are true:

(62) Let A be a matrix over K and b be a finite sequence of elements of K.
Suppose the set of solutions of A and b is non empty. Then the set of
solutions of A and b is a coset of the space of solutions of A.

(63) Let given A. Suppose if widthA = 0, then lenA = 0 and rk(A) = 0.
Then the space of solutions of A = the widthA-dimension vector space
over K.

(64) For every A such that the space of solutions of A = the widthA-
dimension vector space over K holds rk(A) = 0.

(65) Let given i, j. Suppose j ∈ Segm and n > 0 and if i = j, then
a 6= −1K . Then the space of solutions of A′ = the space of solutions
of RLine(A′, i,Line(A′, i) + a · Line(A′, j)).

(66) Let given N . Suppose N ⊆ domA and N is non empty and widthA > 0
and for every i such that i ∈ domA \ N holds Line(A, i) = widthA 7→
0K . Then the space of solutions of A = the space of solutions of
Segm(A,N, SegwidthA).

(67) Let A be a matrix over K of dimension n × m and given N . Suppose
cardN = n and N ⊆ Segm and Segm(A,Seg n,N) = In×nK and n > 0
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and m −′ n > 0. Then there exists a matrix M2 over K of dimension
m−′n × m such that Segm(M2,Seg(m−′n),Segm\N) = I(m−

′n)×(m−′n)
K

and Segm(M2,Seg(m −′ n), N) = −(Segm(A,Seg n,Segm \N))T and
Lin(lines(M2)) = the space of solutions of A.

(68) For every A such that if widthA = 0, then lenA = 0 holds dim(the space
of solutions of A) = widthA− rk(A).

(69) LetM be a matrix over K of dimension n ×m and given i, j, a. Suppose
M is without repeated line and j ∈ domM and if i = j, then a 6= −1K .
Then Lin(lines(M)) = Lin(lines(RLine(M, i,Line(M, i)+a ·Line(M, j)))).

(70) Let W be a subspace of the m-dimension vector space over K. Then
there exists a matrix A over K of dimension dim(W ) × m and there
exists a without zero finite subset N of N such that N ⊆ Segm and
dim(W ) = cardN and Segm(A,Seg dim(W ), N) = Idim(W )×dim(W )K and
rk(A) = dim(W ) and lines(A) is a basis of W .

(71) Let W be a strict subspace of the m-dimension vector space over K.
Suppose dim(W ) < m. Then there exists a matrix A over K of dimension
m −′ dim(W ) × m and there exists a without zero finite subset N of N
such that cardN = m−′ dim(W ) and N ⊆ Segm and Segm(A,Seg(m−′

dim(W )), N) = I(m−
′dim(W ))×(m−′dim(W ))

K and W = the space of solutions
of A.

(72) Let A, B be matrices over K. Suppose widthA = lenB and if widthA =
0, then lenA = 0 and if widthB = 0, then lenB = 0. Then the space of
solutions of B is a subspace of the space of solutions of A ·B.

(73) For all matrices A, B overK such that widthA = lenB holds rk(A·B) ≤
rk(A) and rk(A ·B) ≤ rk(B).

(74) Let A be a matrix over K of dimension n × n and B be a matrix over
K. Suppose DetA 6= 0K and widthA = lenB and if widthB = 0, then
lenB = 0. Then the space of solutions of B = the space of solutions of
A ·B.

(75) Let A be a matrix over K of dimension n × n and B be a matrix over
K. If widthA = lenB and DetA 6= 0K , then rk(A ·B) = rk(B).

(76) Let A be a matrix over K of dimension n × n and B be a matrix over
K. If lenA = widthB and DetA 6= 0K , then rk(B ·A) = rk(B).
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