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Summary. In this paper I present the Kronecker-Capelli theorem which
states that a system of linear equations has a solution if and only if the rank of
its coefficient matrix is equal to the rank of its augmented matrix.
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The terminology and notation used in this paper are introduced in the following
papers: [9], [24], [1], [2], [10], [25], [6], 8], [7], [3], [23], [21], [13], [5], [11], [12],
[26], [15], [27], [19], [16], [22], [20], [28], [4], [17], [14], and [18].

1. PRELIMINARIES

For simplicity, we follow the rules: x denotes a set, ¢, j, k, [, m, n denote
natural numbers, K denotes a field, N denotes a without zero finite subset of
N, a, b denote elements of K, A, B, By, Bs, X, X1, Xo denote matrices over K,
A’ denotes a matrix over K of dimension m x n, B’ denotes a matrix over K
of dimension m x k, and M denotes a square matrix over K of dimension n.

We now state a number of propositions:

(1) If widthA =len B, then (a-A)-B=a-(A-B).

(2) 1x-A=Aanda-(b-A)=(a-b)- A

(3) Let K be a non empty additive loop structure and f, g, h, w be finite
sequences of elements of K. If len f = leng and lenh = lenw, then f 7
h+g-w=(f+g) " (h+w).

(4) Let K be a non empty multiplicative magma, f, g be finite sequences of
elements of K, and a be an element of K. Then a-(f"g) = (a-f) " (a-g).
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(5) Let f be a function and p1, p2, f1, f2 be finite sequences. If rngp; C
dom f and rng po C dom f and f1 = f-p1 and fa = f-po, then f-(p1"p2) =
17 fa

(6) Let f be a finite sequence of elements of N and given n. Suppose f is
one-to-one and rng f C Segn and for all ¢, j such that i, j € dom f and
i < j holds f(i) < f(j). Then Sgmrng f = f.

(7) Let K be an Abelian add-associative right zeroed right complementable
non empty additive loop structure, p be a finite sequence of elements of
K, and given 4, j. Suppose i, j € domp and i # j and for every k such
that k € domp and k # i and k # j holds p(k) = Og. Then > p = p; +p;.

(8) 1If i € Segm, then (Sgm(Seg(n 4+ m) \ Segn))(i) = n +i.

(9) Let D be a non empty set, A be a matrix over D, and Bs, By, C1,
(5 be without zero finite subsets of N. Suppose B3 x Bsy C the indices
of A and Cy; x Cy C the indices of A. Let B be a matrix over D of
dimension card Bg x card By and C' be a matrix over D of dimension
card C; x card Cy. Suppose that for all natural numbers i, j, b1, bo, c1,
c2 such that (i, j) € (B3 x By) N (Cy x C3) and by = (Sgm B3)~!(i) and
by = (Sgm By)~1(j) and ¢; = (Sgm C71)~1(7) and ¢ = (Sgm C3)~!(5) holds
By, v, = C¢, c,- Then there exists a matrix M over D of dimension len A x
width A such that Segm(M, B3, By) = B and Segm(M, C;,C2) = C and
for all 4, j such that (i, j) € (the indices of M)\ (Bs x B4UC} x C3) holds
MiJ = AZ'J‘.

(10) Let P, @, Q" be without zero finite subsets of N. Suppose P x @’ C the
indices of A. Let given i, j. Suppose i € dom A\ P and j € Segwidth A\ @
and A; ; # Ox and Q C Q" and Line(A,7) - Sgm Q' = card Q" — Ox. Then
rk(A) > rk(Segm(A4, P, Q)).

(11) For every N such that N C domA and for every i such that
i € domA \ N holds Line(A,i) = widthA — O holds rk(4) =
rk(Segm(A, N, Seg width A)).

(12) For every N such that N C Segwidth A and for every i such that
i € SegwidthA \ N holds Ag; = lenA +— Og holds rk(A) =
rk(Segm(A, Seglen A, N)).

(13) Let V be a vector space over K, U be a finite subset of V', u, v be vectors
of V, and given a. If u, v € U, then Lin((U \ {u})U{u+a-v}) is a subspace
of Lin(U).

(14) Let V be a vector space over K, U be a finite subset of V, u, v be
vectors of V', and given a. Suppose u, v € U and if u = v, then a # —1k
or u = Oy. Then Lin((U \ {u}) U{u+ a-v}) = Lin(U).
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2. SELECTED PROPERTIES OF JOINING OPERATION OF TWO MATRICES

Let D be a non empty set, let n, m, k be natural numbers, let A be a matrix
over D of dimension n x m, and let B be a matrix over D of dimension n x k.
Then A ™ B is a matrix over D of dimension n x (width A + width B).

We now state a number of propositions:

(15) Let D be a non empty set, A be a matrix over D of dimension n x m,
B be a matrix over D of dimension n x k, and given i. If ¢ € Segn, then
Line(A ™ B, i) = Line(A, i) ~ Line(B, 7).

(16) Let D be a non empty set, A be a matrix over D of dimension n x m,
B be a matrix over D of dimension n x k, and given i. If ¢ € Segwidth A,
then (A ™ B)D,i = Ap;.

(17) Let D be a non empty set, A be a matrix over D of dimension n x m,
B be a matrix over D of dimension n X k, and given i. If ¢ € Seg width B,
then (A ™ B)Owidth A+ = B

(18) Let D be a non empty set, A be a matrix over D of dimension n
X m, B be a matrix over D of dimension n x k, and p3, ps be fi-
nite sequences of elements of D. If lenps = widthA and lenpy =
width B, then ReplaceLine(A — B,i,ps ~ p4) = (ReplaceLine(A,i,p3))
ReplaceLine(B, i, p4).

(19) Let D be a non empty set, A be a matrix over D of dimension n x
m, and B be a matrix over D of dimension n x k. Then Segm(A ™
B,Segn,SegwidthA) = A and Segm(A — B,Segn,Seg(width A +
width B) \ Seg width A) = B.

(20) For all matrices A, B over K such that len A = len B holds rk(A) <
rk(A ™ B) and rk(B) <rk(A ™ B).

(21) For all matrices A, B over K such that len A = len B and len A = rk(A)
holds rk(A) = rk(A ™ B).

(22) For all matrices A, B over K such that len A = len B and width A = 0
holds A~ B=Band B~ A=B.

(23) For all matrices A, B over K such that B = Ogl(enA)Xm holds rk(A) =
rk(A ™ B).

(24) Let A, B be matrices over K. Suppose rk(A) =1k(A ™ B) and len A =
len B. Let given N. Suppose N C dom A and for every i such that i € N
holds Line(A, i) = width A — Og. Let given i. If i« € N, then Line(B,i) =
width B — 0.



84 KAROL PAK

3. BASIC PROPERTIES OF TWO TRANSFORMATIONS WHICH TRANSFORM
FINITE SEQUENCES TO MATRICES

For simplicity, we follow the rules: D is a non empty set, bs is a finite sequence
of elements of D, b, f, g are finite sequences of elements of K, and M is a matrix
over D.

Let D be a non empty set and let b be a finite sequence of elements of D.
The functor LineVec2Mx b yielding a matrix over D of dimension 1 x lenb is

defined by:
(Def. 1) LineVec2Mx b = (b).

The functor ColVec2Mx b yielding a matrix over D of dimension lenbd x 1 is
defined by:

(Def. 2) ColVec2Mx b = (b)T.
One can prove the following propositions:

(25) M; = LineVec2Mx bg iff Line(Mi,1) = bs and len M; = 1.

(26) If len My # 0 or lenbs # 0, then My = ColVec2Mx b3 iff (M1)m; = b3
and width M7 = 1.

(27) If len f = len g, then LineVec2Mx f + LineVec2Mx g = LineVec2Mx( f +
9)-

(28) Iflen f = leng, then ColVec2Mx f + ColVec2Mx g = ColVec2Mx(f + g).

(29) a-LineVec2Mx f = LineVec2Mx(a - f).

(30) a- ColVec2Mx f = ColVec2Mx(a - f).

(31) LineVec2Mx(k — Of) = 032,

(32) ColVec2Mx(k — 0x) = 051,

4. BASIS PROPERTIES OF THE SOLUTION OF LINEAR EQUATIONS

Let us consider K and let us consider A, B. The set of solutions of A and
B is a set and is defined as follows:
(Def. 3) The set of solutions of A and B ={X :len X = widthA A width X =
widthB A A-X = B}.
We now state a number of propositions:
(33) If the set of solutions of A and B is non empty, then len A = len B.
(34) If X € the set of solutions of A and B and i € Segwidth X and X, =
len X +— Og, then Bo; =len B — Ok
(35) Suppose X € the set of solutions of A and B. Then a - X € the set of
solutions of A and a - B and X € the set of solutions of a - A and a - B.

(36) If a # Ok, then the set of solutions of A and B = the set of solutions of
a-Aanda-B.
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(37) Suppose X7 € the set of solutions of A and By and Xy € the set of
solutions of A and By and width B; = width By. Then X7 + X5 € the set
of solutions of A and B + Bs.

(38) If X € the set of solutions of A" and B’, then X € the set of solutions of
RLine(A’, i, a - Line(A’,4)) and RLine(B’, 4, a - Line(B’,7)).

(39) Suppose X € the set of solutions of A" and B’ and j € Segm and i # j.
Then X € the set of solutions of RLine(A’, 7, Line(A’,7) + a - Line(4’, j))
and RLine(B’,i, Line(B’,i) + a - Line(B’, j)).

(40) Suppose j € Segm and if i = j, then a # —1f. Then the set of solutions
of A" and B’ = the set of solutions of RLine(A’, 7, Line(A’, i)+a-Line(A’, j))
and RLine(B’, i, Line(B’,i) + a - Line(B’, j)).

(41) 1If X € the set of solutions of A and B and ¢ € dom A and Line(A, i) =
width A — O, then Line(B, i) = width B — O.

(42) Let n; be an element of N". Suppose rmgn; C domA and n >
0. Then the set of solutions of A and B C the set of solutions of
Segm(A,ny,Sgm Seg width A) and Segm(B, n1, Sgm Seg width B).

(43) Let nj be an element of N™. Suppose rngn; € dom A = dom B and
n > 0 and for every ¢ such that i € dom A \ rngn; holds Line(A4,7) =
width A — Ox and Line(B,7) = width B +— 0. Then the set of solutions
of A and B = the set of solutions of Segm(A,ni, Sgm Seg width A) and
Segm(B, n1, Sgm Seg width B).

(44) Let given N. Suppose N C dom A and N is non empty. Then the set
of solutions of A and B C the set of solutions of Segm(A, N, Seg width A)
and Segm(B, N, Seg width B).

(45) Let given N. Suppose N C dom A and N is non empty and dom A =
dom B and for every i such that ¢ € domA \ N holds Line(4,i) =
width A — 0Og and Line(B,i) = width B — 0g. Then the set of solu-
tions of A and B = the set of solutions of Segm(A, N, Segwidth A) and
Segm(B, N, Seg width B).

(46) Suppose i € dom A and len A > 1. Then the set of solutions of A and
B C the set of solutions of the deleting of i-row in A and the deleting of ¢
-row in B.

(47) Let given A, B, i. Suppose i € dom A and len A > 1 and Line(A,i) =
width A — Og and i € dom B and Line(B,?) = width B +— Og. Then the
set of solutions of A and B = the set of solutions of the deleting of i-row
in A and the deleting of ¢ -row in B.

(48) Let A be a matrix over K of dimension n x m, B be a matrix over K
of dimension n x k, and P be a function from Segn into Segn. Then

(i)  the set of solutions of A and B C the set of solutions of A- P and B - P,
and
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(ii) if P is one-to-one, then the set of solutions of A and B = the set of
solutions of A- P and B - P.

(49) Let A be a matrix over K of dimension n x m and given N. Suppose
card N = n and N C Segm and Segm(A,Segn, N) = IZ" and n > 0.
Then there exists a matrix My over K of dimension m —'n x m such that

(i)  Segm(Ms,Seg(m —' n),Segm \ N) = Ié(m_,n)x(m_ln),
(i)  Segm(Msy, Seg(m —'n), N) = —(Segm(A, Segn, Segm \ N))T, and
(iii) for every [ and for every matrix M over K of dimension m x [ such that
for every 7 such that i € Seg! holds there exists j such that j € Seg(m—'n)
and Mpn; = Line(Ma, j) or Mo, = m +— O holds M € the set of solutions
of A and 07,

(50) Let A be a matrix over K of dimension n X m, B be a matrix over K of
dimension n x [, and given N. Suppose card N = n and N C Segm and
n > 0 and Segm(A, Segn, N) = I;¥*". Then there exists a matrix X over
K of dimension m x [ such that Segm(X,Segm \ IV, Segl) = O%n*ln)Xl
and Segm(X, N,Seg!) = B and X € the set of solutions of A and B.

(51) Let A be a matrix over K of dimension 0 x n and B be a matrix over
K of dimension 0 x m. Then the set of solutions of A and B = {0}.

(52) For every matrix B over K such that the set of solutions of 0% and B

is non empty holds B = OnKx (width B)

(53) Let A be a matrix over K of dimension n x k and B be a matrix over
K of dimension n x m. Suppose n > 0. Suppose x € the set of solutions

of A and B. Then z is a matrix over K of dimension & X m.
nxk

(54) Suppose n > 0 and k > 0. Then the set of solutions of 0% and 07" =
{X : X ranges over matrices over K of dimension k xm}.

(55) If n > 0 and the set of solutions of 07°° and 0% is non empty, then
m = 0.
(56) The set of solutions of 072°? and 07%° = {(}.

5. GAUSSIAN ELIMINATIONS

In this article we present several logical schemes. The scheme GAUSS1 deals
with a field A, natural numbers B, C, D, a matrix £ over A of dimension B X
C, a matrix F over A of dimension B x D, a 4-ary functor F yielding a matrix
over A of dimension B x D, and a binary predicate P, and states that:

There exists a matrix A’ over A of dimension B x C and there
exists a matrix B’ over A of dimension B X D and there exists a
without zero finite subset N of N such that

N C SegC and rk(€) = rk(A’) and rk(£) = card N and
P[A’, B'] and Segm(A’, Seg card N, N) is diagonal and for every i
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such that ¢ € Segcard N holds Ag,(ngN)i # 04 and for every 1
such that i € dom A" and ¢ > card N holds Line(A’,i) =C — 04
and for all 7, j such that ¢ € Segcard N and j € Segwidth A" and
j < (Sgm N)(i) holds A; ; =04
provided the parameters meet the following requirements:
o P[E,F], and
e Let A’ be a matrix over A of dimension B x C and B’ be a
matrix over A of dimension B x D. Suppose P[A’, B']. Let given
i, j. Suppose i # j and j € dom A’. Let a be an element of A.
Then P[RLine(A’, 4, Line(A’,4) + a - Line(A’, j)), F(B', i, j, a)].
The scheme GAUSS2 deals with a field A, natural numbers B, C, D, a matrix
& over A of dimension B x C, a matrix F over A of dimension B x D, a 4-ary
functor F yielding a matrix over A of dimension B x D, and a binary predicate
P, and states that:
There exists a matrix A’ over A of dimension B x C and there
exists a matrix B’ over A of dimension B x D and there exists a
without zero finite subset N of N such that
N C SegC and rk(€) = rk(A’) and rk(£) = card N and
P[A’, B] and Segm(A’,Segcard N, N) = [GrdNxcardN anq for
every i such that ¢ € dom A" and ¢ > card N holds Line(4’,4) =
C — 04 and for all 4, j such that ¢ € Segcard N and j €
Seg width A" and j < (Sgm N)(i) holds A} ; = 04
provided the parameters satisfy the following conditions:
e P[E,F], and
e Let A’ be a matrix over A of dimension B x C and B’ be a matrix
over A of dimension B x D. Suppose P[A’, B']. Let a be an ele-
ment of A and given 4, j. If j € dom A" and if i = j, then a # —1 4,
then P[RLine(A’, i, Line(A’, i) + a - Line(A', 5)), F(B',1i, j,a)].

6. THE MAIN THEOREM

We now state the proposition

(57) Let A, B be matrices over K. Suppose len A = len B and if width A = 0,
then width B = 0. Then rk(A) = rk(A © B) if and only if the set of
solutions of A and B is non empty.

7. SPACE OF SOLUTIONS OF LINEAR EQUATIONS

Let us consider K, let A be a matrix over K, and let b be a finite sequence
of elements of K. The set of solutions of A and b is defined by:
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(Def. 4) The set of solutions of A and b = {f : ColVec2Mx f € the set of solutions
of A and ColVec2Mx b}.

We now state two propositions:

(58) For every x such that = € the set of solutions of A and ColVec2Mx b
there exists f such that z = ColVec2Mx f and len f = width A.

(59) For every f such that ColVec2Mx f € the set of solutions of A and
ColVec2Mx b holds len f = width A.

Let us consider K, let A be a matrix over K, and let b be a finite sequence
of elements of K. Then the set of solutions of A and b is a subset of the width A-
dimension vector space over K.

Let us consider K, let A be a matrix over K, and let k£ be an element of N.
Note that the set of solutions of A and k +— O is linearly closed.

We now state two propositions:

(60) If the set of solutions of A and b is non empty and width A = 0, then
len A = 0.

(61) Ifwidth A # 0orlen A = 0, then the set of solutions of A and len A — O
is non empty.

Let us consider K and let A be a matrix over K. Let us assume that if
width A = 0, then len A = 0. The space of solutions of A is a strict subspace of
the width A-dimension vector space over K and is defined by:

(Def. 5) The carrier of the space of solutions of A = the set of solutions of A and
len A +— O.

The following propositions are true:

(62) Let A be a matrix over K and b be a finite sequence of elements of K.
Suppose the set of solutions of A and b is non empty. Then the set of
solutions of A and b is a coset of the space of solutions of A.

(63) Let given A. Suppose if width A = 0, then len A = 0 and rk(A) = 0.
Then the space of solutions of A = the width A-dimension vector space
over K.

(64) For every A such that the space of solutions of A = the width A-
dimension vector space over K holds rk(A) = 0.

(65) Let given 4, j. Suppose j € Segm and n > 0 and if i = j, then
a # —1g. Then the space of solutions of A’ = the space of solutions
of RLine(A’, 4, Line(A’,4) + a - Line(A’, j)).

(66) Let given N. Suppose N C dom A and N is non empty and width A > 0
and for every ¢ such that ¢ € dom A \ N holds Line(A4,7) = width A —
Ox. Then the space of solutions of A = the space of solutions of
Segm(A, N, Seg width A).

(67) Let A be a matrix over K of dimension n x m and given N. Suppose
card N = n and N C Segm and Segm(A,Segn,N) = I" and n > 0
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and m —' n > 0. Then there exists a matrix My over K of dimension

m—'"n x m such that Segm(Ms, Seg(m —'n),Segm\ N) = Ié(m_,n)x(m_,n)
and Segm(My, Seg(m —' n),N) = —(Segm(A,Segn,Segm \ N))*T and
Lin(lines(M3)) = the space of solutions of A.

(68) For every A such that if width A = 0, then len A = 0 holds dim(the space

of solutions of A) = width A — rk(A).

(69) Let M be a matrix over K of dimension n x m and given 4, j, a. Suppose
M is without repeated line and j € dom M and if i = j, then a # —1k.
Then Lin(lines(M)) = Lin(lines(RLine(M, i, Line(M, i) +a - Line(M, 7)))).

(70) Let W be a subspace of the m-dimension vector space over K. Then
there exists a matrix A over K of dimension dim(WW) x m and there
exists a without zero finite subset NV of N such that N C Segm and
dim(W) = card N and Segm(A, Segdim(W),N) = I?(lm(W)Xdlm ") and
rk(A) = dim(W) and lines(A) is a basis of W.

(71) Let W be a strict subspace of the m-dimension vector space over K.
Suppose dim(W) < m. Then there exists a matrix A over K of dimension
m —" dim(W) x m and there exists a without zero finite subset N of N
such that card N = m —' dim(W) and N C Segm and Segm(A, Seg(m —'
dlm(W)), N) _ I}{mf’dim(W))X(mf’dim(W))
of A.

(72) Let A, B be matrices over K. Suppose width A = len B and if width A =
0, then len A = 0 and if width B = 0, then len B = 0. Then the space of
solutions of B is a subspace of the space of solutions of A - B.

(73) For all matrices A, B over K such that width A = len B holds rk(A-B) <
rk(A) and rk(A - B) < rk(B).

(74) Let A be a matrix over K of dimension n x n and B be a matrix over
K. Suppose Det A # 0x and width A = len B and if width B = 0, then
len B = 0. Then the space of solutions of B = the space of solutions of
A- B.

(75) Let A be a matrix over K of dimension n x n and B be a matrix over
K. If width A = len B and Det A # Ok, then rk(A - B) = rk(B).

(76) Let A be a matrix over K of dimension n x n and B be a matrix over

K. If len A = width B and Det A # Ok, then rk(B - A) = rk(B).

and W = the space of solutions
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