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Summary. In this paper I present selected properties of triangular ma-

trices and basic properties of the rank of matrices over a field.

I define a submatrix as a matrix formed by selecting certain rows and columns

from a bigger matrix. That is in my considerations, as an array, it is cut down

to those entries constrained by row and column. Then I introduce the concept

of the rank of a m× n matrix A by the condition: A has the rank r if and only

if, there is a r × r submatrix of A with a non-zero determinant, and for every

k × k submatrix of A with a non-zero determinant we have k ≤ r.
At the end, I prove that the rank defined by the size of the biggest submatrix

with a non-zero determinant of a matrix A, is the same as the maximal number

of linearly independent rows of A.
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The articles [27], [10], [37], [23], [1], [2], [12], [38], [39], [7], [8], [3], [4], [24],

[36], [31], [15], [6], [13], [28], [14], [41], [30], [19], [34], [42], [9], [22], [16], [11],

[25], [40], [18], [20], [26], [33], [21], [17], [35], [32], [29], [43], and [5] provide the

terminology and notation for this paper.

1. Triangular Matrices

For simplicity, we use the following convention: x, X, Y are sets, D is a

non empty set, i, j, k, m, n, m′, n′ are elements of N, i0, j0, n0, m0 are non

zero elements of N, K is a field, a, b are elements of K, p is a finite sequence of

elements of K, and M is a matrix over K of dimension n.

Next we state a number of propositions:
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(1) For every matrix A over D of dimension n × m holds if n = 0, then

m = 0 iff lenA = n and widthA = m.

(2) The following statements are equivalent

(i) M is a lower triangular matrix over K of dimension n,

(ii) MT is an upper triangular matrix over K of dimension n.

(3) The diagonal of M = the diagonal of MT.

(4) Let p1 be an element of the permutations of n-element set. Suppose

p1 6= idseq(n). Then there exists i such that i ∈ Seg n and p1(i) > i and

there exists j such that j ∈ Seg n and p1(j) < j.

(5) Let M be a matrix over K of dimension n and p1 be an element of the

permutations of n-element set. Suppose that

(i) p1 6= idseq(n), and

(ii) M is a lower triangular matrix over K of dimension n or an upper

triangular matrix over K of dimension n.

Then (the product on paths of M)(p1) = 0K .

(6) Let M be a matrix over K of dimension n and I be an element of

the permutations of n-element set. If I = idseq(n), then the diagonal of

M = I -PathM.

(7) Let M be an upper triangular matrix over K of dimension n. Then

DetM = (the multiplication of K)~ (the diagonal of M).

(8) Let M be a lower triangular matrix over K of dimension n. Then

DetM = (the multiplication of K)~ (the diagonal of M).

(9) For every finite set X and for every n holds

{Y ;Y ranges over subsets of X: cardY = n} =
(

cardX
n

)
.

(10) 2Set Segn =
(n

2

)
.

(11) Let R be an element of the permutations of n-element set. If R =

Rev(idseq(n)), then R is even iff
(n

2

)
mod 2 = 0.

(12) Let M be a matrix over K of dimension n and R be a permutation of

Seg n. Suppose R = Rev(idseq(n)) and for all i, j such that i ∈ Seg n

and j ∈ Seg n and i + j ≤ n holds Mi,j = 0K . Then M · R is an upper

triangular matrix over K of dimension n.

(13) Let M be a matrix over K of dimension n and R be a permutation of

Seg n. Suppose R = Rev(idseq(n)) and for all i, j such that i ∈ Seg n

and j ∈ Seg n and i + j > n+ 1 holds Mi,j = 0K . Then M · R is a lower

triangular matrix over K of dimension n.

(14) Let M be a matrix over K of dimension n and R be an element of the

permutations of n-element set. Suppose that

(i) R = Rev(idseq(n)), and

(ii) for all i, j such that i ∈ Seg n and j ∈ Seg n and i + j ≤ n holds

Mi,j = 0K or for all i, j such that i ∈ Seg n and j ∈ Segn and i+j > n+1
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holds Mi,j = 0K .

Then DetM = (−1)sgn(R)(the multiplication of K � (R -PathM)).

(15) Let M be a matrix over K of dimension n and M1, M2 be upper trian-

gular matrices over K of dimension n. Suppose M = M1 ·M2. Then

(i) M is an upper triangular matrix over K of dimension n, and

(ii) the diagonal of M = (the diagonal of M1) • (the diagonal of M2).

(16) LetM be a matrix over K of dimension n andM1, M2 be lower triangular

matrices over K of dimension n. Suppose M = M1 ·M2. Then

(i) M is a lower triangular matrix over K of dimension n, and

(ii) the diagonal of M = (the diagonal of M1) • (the diagonal of M2).

2. The Rank of Matrices

Let D be a non empty set, let M be a matrix over D, let n, m be natural

numbers, let n1 be an element of Nn, and let m1 be an element of Nm. The

functor Segm(M,n1,m1) yielding a matrix over D of dimension n ×m is defined

as follows:

(Def. 1) For all natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices of

Segm(M,n1,m1) holds (Segm(M,n1,m1))i,j = Mn1(i),m1(j).

For simplicity, we follow the rules: A denotes a matrix over D, A′ denotes a

matrix over D of dimension n′ × m′, M ′ denotes a matrix over K of dimension

n′ × m′, n1, n2, n3 denote elements of Nn, m1, m2 denote elements of Nm, and

M denotes a matrix over K.

Next we state a number of propositions:

(17) If [: rngn1, rngm1 :] ⊆ the indices of A, then 〈〈i, j〉〉 ∈ the indices of

Segm(A,n1,m1) iff 〈〈n1(i), m1(j)〉〉 ∈ the indices of A.

(18) If [: rngn1, rngm1 :] ⊆ the indices of A and n = 0 iff m = 0, then

(Segm(A,n1,m1))T = Segm(AT,m1, n1).

(19) If [: rngn1, rngm1 :] ⊆ the indices of A and if m = 0, then n = 0, then

Segm(A,n1,m1) = (Segm(AT,m1, n1))T.

(20) For every matrix A over D of dimension 1 holds A = 〈〈A1,1〉〉.
(21) If n = 1 and m = 1, then Segm(A,n1,m1) = 〈〈An1(1),m1(1)〉〉.

(22) For every matrix A over D of dimension 2 holds A =

(
A1,1 A1,2

A2,1 A2,2

)
.

(23) If n = 2 and m = 2, then Segm(A,n1,m1) =(
An1(1),m1(1) An1(1),m1(2)

An1(2),m1(1) An1(2),m1(2)

)
.

(24) If i ∈ Segn and rngm1 ⊆ Seg widthA, then Line(Segm(A,n1,m1), i) =

Line(A,n1(i)) ·m1.
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(25) If i ∈ Segn and j ∈ Seg n and n1(i) = n1(j), then

Line(Segm(A,n1,m1), i) = Line(Segm(A,n1,m1), j).

(26) If i ∈ Seg n and j ∈ Segn and n1(i) = n1(j) and i 6= j, then

Det Segm(M,n1, n2) = 0K .

(27) If n1 is not one-to-one, then Det Segm(M,n1, n2) = 0K .

(28) If j ∈ Segm and rngn1 ⊆ Seg lenA, then (Segm(A,n1,m1))�,j =

A�,m1(j) · n1.

(29) If i ∈ Segm and j ∈ Segm and m1(i) = m1(j), then

(Segm(A,n1,m1))�,i = (Segm(A,n1,m1))�,j .

(30) If i ∈ Segm and j ∈ Segm and m1(i) = m1(j) and i 6= j, then

Det Segm(M,m2,m1) = 0K .

(31) If m1 is not one-to-one, then Det Segm(M,m2,m1) = 0K .

(32) Let n1, n2 be elements of Nn. Suppose n1 is one-to-one and n2 is one-

to-one and rngn1 = rngn2. Then there exists a permutation p1 of Seg n

such that n2 = n1 · p1.

(33) For every function f from Seg n into Seg n such that n2 = n1 · f holds

Segm(A,n2,m1) = Segm(A,n1,m1) · f.
(34) For every function f from Segm into Segm such that m2 = m1 · f holds

(Segm(A,n1,m2))T = (Segm(A,n1,m1))T · f.
(35) Let p1 be an element of the permutations of n-element set. If n2 =

n3 · p1, then Det Segm(M,n2, n1) = (−1)sgn(p1) Det Segm(M,n3, n1) and

Det Segm(M,n1, n2) = (−1)sgn(p1) Det Segm(M,n1, n3).

(36) For all elements n1, n2, n′1, n′2 of Nn such that rngn1 = rngn′1 and

rngn2 = rngn′2 holds Det Segm(M,n1, n2) = Det Segm(M,n′1, n
′
2) or

Det Segm(M,n1, n2) = −Det Segm(M,n′1, n
′
2).

(37) Let F , F1 be finite sequences of elements of D and given n1, m1. Suppose

lenF = widthA′ and F1 = F ·m1 and [: rngn1, rngm1 :] ⊆ the indices of A′.
Let given i, j. If n1

−1({j}) = {i}, then RLine(Segm(A′, n1,m1), i, F1) =

Segm(RLine(A′, j, F ), n1,m1).

(38) Let F be a finite sequence of elements of D and given i, n1. If i /∈
rngn1 and [: rngn1, rngm1 :] ⊆ the indices of A′, then Segm(A′, n1,m1) =

Segm(RLine(A′, i, F ), n1,m1).

(39) If i ∈ Seg n′ and i ∈ rngn1 and [: rngn1, rngm1 :] ⊆ the indices of

A′, then there exists n2 such that rngn2 = (rng n1 \ {i}) ∪ {j} and

Segm(RLine(A′, i,Line(A′, j)), n1,m1) = Segm(A′, n2,m1).

(40) For every finite sequence F of elements of D such that i /∈ Seg lenA′

holds RLine(A′, i, F ) = A′.

Let n, m be natural numbers, let K be a field, let M be a matrix over K of

dimension n × m, and let a be an element of K. Then a ·M is a matrix over
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K of dimension n × m.

We now state two propositions:

(41) If [: rngn1, rngm1 :] ⊆ the indices of M , then a · Segm(M,n1,m1) =

Segm(a ·M,n1,m1).

(42) If n1 = idseq(lenA) and m1 = idseq(widthA), then Segm(A,n1,m1) =

A.

Let us observe that there exists a subset of N which is empty, without zero,

and finite and there exists a subset of N which is non empty, without zero, and

finite.

Let us consider n. Observe that Seg n is without zero.

Let X be a without zero set and let Y be a set. One can verify that X \ Y
is without zero and X ∩ Y is without zero.

One can prove the following proposition

(43) For every finite without zero subset N of N there exists k such that

N ⊆ Seg k.

Let N be a finite without zero subset of N. Then SgmN is an element of

NcardN .

Let D be a non empty set, let A be a matrix over D, and let P , Q be without

zero finite subsets of N. The functor Segm(A,P,Q) yields a matrix over D of

dimension cardP × cardQ and is defined by:

(Def. 2) Segm(A,P,Q) = Segm(A,SgmP,SgmQ).

Next we state two propositions:

(44) Segm(A, {i0}, {j0}) = 〈〈Ai0,j0〉〉.
(45) If i0 < j0 and n0 < m0, then Segm(A, {i0, j0}, {n0,m0}) =(

Ai0,n0 Ai0,m0

Aj0,n0 Aj0,m0

)
.

In the sequel P , P1, P2, Q, Q1, Q2 are without zero finite subsets of N.

The following propositions are true:

(46) Segm(A,Seg lenA,Seg widthA) = A.

(47) If i ∈ Seg cardP and Q ⊆ Seg widthA, then Line(Segm(A,P,Q), i) =

Line(A, (SgmP )(i)) · SgmQ.

(48) If i ∈ Seg cardP, then Line(Segm(A,P,Seg widthA), i) =

Line(A, (SgmP )(i)).

(49) If j ∈ Seg cardQ and P ⊆ Seg lenA, then (Segm(A,P,Q))�,j =

A�,(SgmQ)(j) · SgmP.

(50) If j ∈ Seg cardQ, then (Segm(A,Seg lenA,Q))�,j = A�,(SgmQ)(j).

(51) Segm(A,Seg lenA \ {i},Seg widthA) = A�i.
(52) Segm(M,Seg lenM,Seg widthM \ {i}) = the deleting of i-column in M .

(53) (SgmP )−1(X) is a without zero finite subset of N.
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(54) If X ⊆ P, then SgmX = SgmP · Sgm((SgmP )−1(X)).

(55) [: (SgmP )−1(X), (SgmQ)−1(Y ) :] ⊆ the indices of Segm(A,P,Q).

(56) If P ⊆ P1 and Q ⊆ Q1 and P2 = (SgmP1)−1(P ) and

Q2 = (SgmQ1)−1(Q), then [: rng SgmP2, rng SgmQ2 :] ⊆ the indices of

Segm(A,P1, Q1) and Segm(Segm(A,P1, Q1), P2, Q2) = Segm(A,P,Q).

(57) Suppose P = ∅ iff Q = ∅ and [:P, Q :] ⊆ the indices of Segm(A,P1, Q1).

Then there exist P2, Q2 such that P2 ⊆ P1 and Q2 ⊆ Q1 and P2 =

(SgmP1)◦P and Q2 = (SgmQ1)◦Q and cardP2 = cardP and cardQ2 =

cardQ and Segm(Segm(A,P1, Q1), P,Q) = Segm(A,P2, Q2).

(58) For every matrix M over K of dimension n holds Segm(M,Seg n \
{i},Seg n \ {j}) = the deleting of i-row and j-column in M .

(59) Let F , F2 be finite sequences of elements of D. Suppose lenF =

widthA′ and F2 = F · SgmQ and [:P, Q :] ⊆ the indices of A′. Then

RLine(Segm(A′, P,Q), i, F2) = Segm(RLine(A′, (SgmP )(i), F ), P,Q).

(60) Let F be a finite sequence of elements of D and given i, P . If

i /∈ P and [:P, Q :] ⊆ the indices of A′, then Segm(A′, P,Q) =

Segm(RLine(A′, i, F ), P,Q).

(61) If [:P, Q :] ⊆ the indices of A and cardP = 0 iff cardQ = 0, then

(Segm(A,P,Q))T = Segm(AT, Q, P ).

(62) If [:P, Q :] ⊆ the indices of A and if cardQ = 0, then cardP = 0, then

Segm(A,P,Q) = (Segm(AT, Q, P ))T.

(63) If [:P, Q :] ⊆ the indices ofM , then a·Segm(M,P,Q) = Segm(a·M,P,Q).

Let D be a non empty set, let A be a matrix over D, and let P , Q be

without zero finite subsets of N. Let us assume that cardP = cardQ. The

functor EqSegm(A,P,Q) yields a matrix over D of dimension cardP and is

defined by:

(Def. 3) EqSegm(A,P,Q) = Segm(A,P,Q).

Next we state several propositions:

(64) For all P , Q, i, j such that i ∈ Seg cardP and j ∈ Seg cardP and

cardP = cardQ holds Delete(EqSegm(M,P,Q), i, j) = EqSegm(M,P \
{(SgmP )(i)}, Q \ {(SgmQ)(j)}) and card(P \ {(SgmP )(i)}) = card(Q \
{(SgmQ)(j)}).

(65) For all M , P , P1, Q1 such that cardP1 = cardQ1 and P ⊆ P1 and

Det EqSegm(M,P1, Q1) 6= 0K there exists Q such that Q ⊆ Q1 and

cardP = cardQ and Det EqSegm(M,P,Q) 6= 0K .

(66) For all M , P1, Q, Q1 such that cardP1 = cardQ1 and Q ⊆ Q1 and

Det EqSegm(M,P1, Q1) 6= 0K there exists P such that P ⊆ P1 and

cardP = cardQ and Det EqSegm(M,P,Q) 6= 0K .

(67) If cardP = cardQ, then [:P, Q :] ⊆ the indices of A iff P ⊆ Seg lenA
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and Q ⊆ Seg widthA.

(68) Let given P , Q, i, j0. Suppose i ∈ Seg n′ and j0 ∈ Seg n′ and i ∈ P

and j0 /∈ P and cardP = cardQ and [:P, Q :] ⊆ the indices of M ′. Then

cardP = card((P \{i})∪{j0}) but [: (P \{i})∪{j0}, Q :] ⊆ the indices of M ′

but Det EqSegm(RLine(M ′, i,Line(M ′, j0)), P,Q) = Det EqSegm(M ′, (P \
{i}) ∪ {j0}, Q) or Det EqSegm(RLine(M ′, i,Line(M ′, j0)), P,Q) =

−Det EqSegm(M ′, (P \ {i}) ∪ {j0}, Q).

(69) If cardP = cardQ, then [:P, Q :] ⊆ the indices of A iff [:Q, P :] ⊆ the

indices of AT.

(70) If [:P, Q :] ⊆ the indices of M and cardP = cardQ, then

Det EqSegm(M,P,Q) = Det EqSegm(MT, Q, P ).

(71) For every matrix M over K of dimension n holds Det(a·M) = powerK(a,

n) ·DetM.

(72) If [:P, Q :] ⊆ the indices of M and cardP = cardQ, then Det EqSegm(a ·
M,P,Q) = powerK(a, cardP ) · Det EqSegm(M,P,Q).

Let K be a field and let M be a matrix over K. The functor rk(M) yielding

an element of N is defined by the conditions (Def. 4).

(Def. 4)(i) There exist P , Q such that [:P, Q :] ⊆ the indices of M and cardP =

cardQ and cardP = rk(M) and Det EqSegm(M,P,Q) 6= 0K , and

(ii) for all P1, Q1 such that [:P1, Q1 :] ⊆ the indices of M and cardP1 =

cardQ1 and Det EqSegm(M,P1, Q1) 6= 0K holds cardP1 ≤ rk(M).

The following propositions are true:

(73) For all P , Q such that [:P, Q :] ⊆ the indices of M and cardP = cardQ

holds cardP ≤ lenM and cardQ ≤ widthM.

(74) rk(M) ≤ lenM and rk(M) ≤ widthM.

(75) If [: rngn2, rngn3 :] ⊆ the indices of M and Det Segm(M,n2, n3) 6= 0K ,

then there exist P1, P2 such that P1 = rngn2 and P2 = rngn3 and

cardP1 = cardP2 and cardP1 = n and Det EqSegm(M,P1, P2) 6= 0K .

(76) Let R1 be an element of N. Then rk(M) = R1 if and only if the following

conditions are satisfied:

(i) there exist elements r1, r2 of NR1 such that [: rng r1, rng r2 :] ⊆ the

indices of M and Det Segm(M, r1, r2) 6= 0K , and

(ii) for all n, n2, n3 such that [: rngn2, rngn3 :] ⊆ the indices of M and

Det Segm(M,n2, n3) 6= 0K holds n ≤ R1.

(77) If n = 0 or m = 0, then rk(Segm(M,n1,m1)) = 0.

(78) If [: rngn1, rngm1 :] ⊆ the indices of M , then rk(M) ≥
rk(Segm(M,n1,m1)).

(79) If [:P, Q :] ⊆ the indices of M , then rk(M) ≥ rk(Segm(M,P,Q)).

(80) If P ⊆ P1 and Q ⊆ Q1, then rk(Segm(M,P,Q)) ≤ rk(Segm(M,P1, Q1)).
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(81) For all functions f , g such that rng f ⊆ rng g there exists a function h

such that domh = dom f and rng h ⊆ dom g and f = g · h.
(82) If [: rngn1, rngm1 :] = the indices of M , then rk(M) =

rk(Segm(M,n1,m1)).

(83) For every matrix M over K of dimension n holds rk(M) = n iff DetM 6=
0K .

(84) rk(M) = rk(MT).

(85) For every matrix M over K of dimension n × m and for every permu-

tation F of Seg n holds rk(M) = rk(M · F ).

(86) If a 6= 0K , then rk(M) = rk(a ·M).

(87) Let p, p2 be finite sequences of elements of K and f be a function. If

p2 = p · f and rng f ⊆ dom p, then a · p · f = a · p2.

(88) Let p, p2, q, q1 be finite sequences of elements of K and f be a function.

If p2 = p · f and rng f ⊆ dom p and q1 = q · f and rng f ⊆ dom q, then

(p+ q) · f = p2 + q1.

(89) If a 6= 0K , then rk(M ′) = rk(RLine(M ′, i, a · Line(M ′, i))).

(90) If Line(M, i) = widthM 7→ 0K , then rk(the deleting of i-row in M) =

rk(M).

(91) For every p such that len p = widthM ′ holds rk(the deleting of i-row in

M ′) = rk(RLine(M ′, i, 0K · p)).
(92) If j ∈ Seg lenM ′ and if i = j, then a 6= −1K , then rk(M ′) =

rk(RLine(M ′, i,Line(M ′, i) + a · Line(M ′, j))).

(93) If j ∈ Seg lenM ′ and j 6= i, then rk(the deleting of i-row in M ′) =

rk(RLine(M ′, i, a · Line(M ′, j))).

(94) rk(M) > 0 iff there exist i, j such that 〈〈i, j〉〉 ∈ the indices of M and

Mi,j 6= 0K .

(95) rk(M) = 0 iff M =




0 . . . 0
...

. . .
...

0 . . . 0




(lenM)×(widthM)

K

.

(96) rk(M) = 1 if and only if the following conditions are satisfied:

(i) there exist i, j such that 〈〈i, j〉〉 ∈ the indices of M and Mi,j 6= 0K , and

(ii) for all i0, j0, n0, m0 such that i0 6= j0 and n0 6= m0 and [: {i0, j0},
{n0,m0} :] ⊆ the indices of M holds Det EqSegm(M, {i0, j0}, {n0,m0}) =

0K .

(97) rk(M) = 1 if and only if the following conditions are satisfied:

(i) there exist i, j such that 〈〈i, j〉〉 ∈ the indices of M and Mi,j 6= 0K , and

(ii) for all i, j, n, m such that [: {i, j}, {n,m} :] ⊆ the indices of M holds

Mi,n ·Mj,m = Mi,m ·Mj,n.
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(98) rk(M) = 1 if and only if there exists i such that i ∈ Seg lenM and there

exists j such that j ∈ Seg widthM and Mi,j 6= 0K and for every k such

that k ∈ Seg lenM there exists a such that Line(M,k) = a · Line(M, i).

Let us consider K. Observe that there exists a matrix over K which is

diagonal.

One can prove the following propositions:

(99) Let M be a diagonal matrix over K and N1 be a set. Suppose N1 = {i :

〈〈i, i〉〉 ∈ the indices of M ∧ Mi,i 6= 0K}. Let given P , Q. If [:P, Q :] ⊆ the

indices of M and cardP = cardQ and Det EqSegm(M,P,Q) 6= 0K , then

P ⊆ N1 and Q ⊆ N1.

(100) For every diagonal matrix M over K and for every P such that [:P,

P :] ⊆ the indices of M holds Segm(M,P, P ) is diagonal.

(101) Let M be a diagonal matrix over K and N1 be a set. If N1 = {i : 〈〈i,
i〉〉 ∈ the indices of M ∧ Mi,i 6= 0K}, then rk(M) = N1 .

For simplicity, we adopt the following rules: v, v1, v2, u denote vectors of

the n-dimension vector space over K, t, t1, t2 denote elements of (the carrier of

K)n, L denotes a linear combination of the n-dimension vector space over K,

and M , M1 denote matrices over K of dimension m × n.

We now state the proposition

(102)(i) The carrier of the n-dimension vector space over K = (the carrier of

K)n,

(ii) 0the n-dimension vector space over K = n 7→ 0K ,

(iii) if t1 = v1 and t2 = v2, then t1 + t2 = v1 + v2, and

(iv) if t = v, then a · t = a · v.
Let us consider K, n. Then the n-dimension vector space over K is a strict

vector space over K.

Let us consider K, n. One can verify that every vector of the n-dimension

vector space over K is function-like and relation-like.

Let us consider K, m, n and let M be a matrix over K of dimension m ×
n. We introduce lines(M) as a synonym of rngM. We introduce M is without

repeated line as a synonym of M is one-to-one.

Let K be a field, let us consider m, n, and let M be a matrix over K of

dimension m × n. Then lines(M) is a subset of the n-dimension vector space

over K.

Next we state two propositions:

(103) x ∈ lines(M) iff there exists i such that i ∈ Segm and x = Line(M, i).

(104) Let V be a finite subset of the n-dimension vector space over K. Then

there exists a matrix M over K of dimension cardV × n such that M is

without repeated line and lines(M) = V.
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Let us consider K, n and let F be a finite sequence of elements of the n-

dimension vector space over K. The functor FinS2MXF yielding a matrix over

K of dimension lenF × n is defined by:

(Def. 5) FinS2MXF = F.

Let us consider K, m, n and let M be a matrix over K of dimension m

× n. The functor MX2FinSM yielding a finite sequence of elements of the

n-dimension vector space over K is defined as follows:

(Def. 6) MX2FinSM = M.

One can prove the following propositions:

(105) If rk(M) = m, then M is without repeated line.

(106) If i ∈ Seg lenM and a = L(M(i)), then

Line(FinS2MX(L MX2FinSM), i) = a · Line(M, i).

(107) If M is without repeated line and the support of L ⊆ lines(M) and

i ∈ Segn, then (
∑
L)(i) =

∑
((FinS2MX(L MX2FinSM))�,i).

(108) Let given M , M1. Suppose M is without repeated line and for ev-

ery i such that i ∈ Segm there exists a such that Line(M1, i) =

a · Line(M, i). Then there exists a linear combination L of lines(M) such

that L MX2FinSM = M1.

(109) Let given M . Suppose M is without repeated line. Then for every i

such that i ∈ Segm holds Line(M, i) 6= n 7→ 0K and for every M1 such

that for every i such that i ∈ Segm there exists a such that Line(M1, i) =

a · Line(M, i) and for every j such that j ∈ Seg n holds
∑

((M1)�,j) =

0K holds M1 =




0 . . . 0
...

. . .
...

0 . . . 0




m×n

K

if and only if lines(M) is linearly

independent.

(110) If rk(M) = m, then lines(M) is linearly independent.

(111) Let M be a diagonal n-dimensional matrix over K. Suppose rk(M) = n.

Then lines(M) is a basis of the n-dimension vector space over K.

Let us consider K, n. Then the n-dimension vector space over K is a strict

finite dimensional vector space over K.

The following propositions are true:

(112) dim(the n-dimension vector space over K) = n.

(113) Let given M , i, a. Suppose that for every j such that j ∈ Segm

holds Mj,i = a. Then M is without repeated line if and only if

Segm(M,Seg lenM,Seg widthM \ {i}) is without repeated line.

(114) Let given M , i. Suppose M is without repeated line and lines(M) is

linearly independent and for every j such that j ∈ Segm holds Mj,i = 0K .

Then lines(Segm(M,Seg lenM,Seg widthM\{i})) is linearly independent.
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(115) Let V be a vector space over K and U be a finite subset of V . Suppose

U is linearly independent. Let u, v be vectors of V . If u ∈ U and v ∈ U
and u 6= v, then (U \ {u}) ∪ {u+ a · v} is linearly independent.

(116) Let V be a vector space over K and u, v be vectors of V . Then x ∈
Lin({u, v}) if and only if there exist a, b such that x = a · u+ b · v.

(117) Let given M . Suppose lines(M) is linearly independent and M is with-

out repeated line. Let given i, j. Suppose j ∈ Seg lenM and i 6= j.

Then RLine(M, i,Line(M, i) +a ·Line(M, j)) is without repeated line and

lines(RLine(M, i,Line(M, i) + a · Line(M, j))) is linearly independent.

(118) If P ⊆ Segm, then lines(Segm(M,P,Seg n)) ⊆ lines(M).

(119) If P ⊆ Segm and lines(M) is linearly independent, then

lines(Segm(M,P,Seg n)) is linearly independent.

(120) If P ⊆ Segm and M is without repeated line, then Segm(M,P,Seg n) is

without repeated line.

(121) Let M be a matrix over K of dimensionm × n. Then lines(M) is linearly

independent and M is without repeated line if and only if rk(M) = m.

(122) Let U be a subset of the n-dimension vector space over K. Sup-

pose U ⊆ lines(M). Then there exists P such that P ⊆ Segm and

lines(Segm(M,P,Seg n)) = U and Segm(M,P,Seg n) is without repeated

line.

(123) Let R1 be an element of N. Then rk(M) = R1 if and only if the following

conditions are satisfied:

(i) there exists a finite subset U of the n-dimension vector space over K

such that U is linearly independent and U ⊆ lines(M) and cardU = R1,

and

(ii) for every finite subset W of the n-dimension vector space over K such

that W is linearly independent and W ⊆ lines(M) holds cardW ≤ R1.
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