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Summary. In this paper I present selected properties of triangular ma-
trices and basic properties of the rank of matrices over a field.

I define a submatrix as a matrix formed by selecting certain rows and columns
from a bigger matrix. That is in my considerations, as an array, it is cut down
to those entries constrained by row and column. Then I introduce the concept
of the rank of a m x n matrix A by the condition: A has the rank r if and only
if, there is a r x r submatrix of A with a non-zero determinant, and for every
k x k submatrix of A with a non-zero determinant we have k < r.

At the end, I prove that the rank defined by the size of the biggest submatrix
with a non-zero determinant of a matrix A, is the same as the maximal number
of linearly independent rows of A.
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The articles [27], [10], [37], [23], [1], 2], [12], [38], [39], [7], [8], [3], [4], [24],
[36], [31], [15], [6], [13], [28], [14], [41], [30], [19], [34], [42], [9], [22], [16], [11],
[25], [40], [18], [20], [26], [33], [21], [17], [35], [32], [29], [43], and [5] provide the

terminology and notation for this paper.

1. TRIANGULAR MATRICES

For simplicity, we use the following convention: x, X, Y are sets, D is a
non empty set, 7, j, k, m, n, m’, n’ are elements of N, ig, jo, ng, mo are non
zero elements of N, K is a field, a, b are elements of K, p is a finite sequence of
elements of K, and M is a matrix over K of dimension n.

Next we state a number of propositions:
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(1) For every matrix A over D of dimension n x m holds if n = 0, then
m = 0 iff len A = n and width A = m.

(2) The following statements are equivalent
(i) M is a lower triangular matrix over K of dimension n,
(i) M T is an upper triangular matrix over K of dimension n.

) The diagonal of M = the diagonal of M T.

) Let p1 be an element of the permutations of n-element set. Suppose

p1 # idseq(n). Then there exists ¢ such that i € Segn and p1(i) > ¢ and

there exists j such that j € Segn and p1(j) < j.

(5) Let M be a matrix over K of dimension n and p; be an element of the
permutations of n-element set. Suppose that

(i)  p1 # idseq(n), and

(i) M is a lower triangular matrix over K of dimension n or an upper
triangular matrix over K of dimension n.
Then (the product on paths of M)(p1) = Ok.

(6) Let M be a matrix over K of dimension n and I be an element of
the permutations of n-element set. If I = idseq(n), then the diagonal of
M = I-Path M.

(7) Let M be an upper triangular matrix over K of dimension n. Then
Det M = (the multiplication of K) & (the diagonal of M).

(8) Let M be a lower triangular matrix over K of dimension n. Then

Det M = (the multiplication of K) ® (the diagonal of M).

(9) For every finite set X and for every n holds
{Y’;Y ranges over subsets of X: cardY =n} = (CarsX).
(10) 2Set Segn = (5)-
(11) Let R be an element of the permutations of n-element set. If R =
Rev(idseq(n)), then R is even iff (%) mod 2 = 0.

(12) Let M be a matrix over K of dimension n and R be a permutation of
Segn. Suppose R = Rev(idseq(n)) and for all 4, j such that i € Segn
and j € Segn and i+ j < n holds M;; = Og. Then M - R is an upper
triangular matrix over K of dimension n.

(13) Let M be a matrix over K of dimension n and R be a permutation of
Segn. Suppose R = Rev(idseq(n)) and for all 4, j such that i € Segn
and j € Segn and i +j > n+ 1 holds M; ; = Og. Then M - R is a lower
triangular matrix over K of dimension n.

(14) Let M be a matrix over K of dimension n and R be an element of the
permutations of n-element set. Suppose that

(i) R = Rev(idseq(n)), and
(i)  for all 7, j such that i € Segn and j € Segn and i + j < n holds
M; ; = Ok or for all 4, j such that i € Segn and j € Segn and i+j > n+1
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holds Mi,j = OK
Then Det M = (—1)%") (the multiplication of K ® (R-Path M)).

(15) Let M be a matrix over K of dimension n and M;, Ms be upper trian-
gular matrices over K of dimension n. Suppose M = My - My. Then

(i) M is an upper triangular matrix over K of dimension n, and
(ii)  the diagonal of M = (the diagonal of M) e (the diagonal of Ms).

(16) Let M be a matrix over K of dimension n and My, Mj be lower triangular
matrices over K of dimension n. Suppose M = M; - M5. Then
(i) M is a lower triangular matrix over K of dimension n, and
(ii)  the diagonal of M = (the diagonal of M) e (the diagonal of Ms).

2. THE RANK OF MATRICES

Let D be a non empty set, let M be a matrix over D, let n, m be natural
numbers, let n1 be an element of N, and let my be an element of N™. The
functor Segm (M, nq, m) yielding a matrix over D of dimension n x m is defined
as follows:

(Def. 1) For all natural numbers i, j such that (i, j) € the indices of
Segm (M, n1,mq) holds (Segm(M,n1,m1))i; = My, (5)mi()-

For simplicity, we follow the rules: A denotes a matrix over D, A" denotes a
matrix over D of dimension n’ x m/, M’ denotes a matrix over K of dimension
n’ x m/, n1, ne, nz denote elements of N”, m, mo denote elements of N™, and
M denotes a matrix over K.

Next we state a number of propositions:

(17) If [rngng, rngm; ] C the indices of A, then (i, j) € the indices of
Segm(A,ni,my) iff (n1(i), m1(j)) € the indices of A.

(18) If [rngni, rngm;] C the indices of A and n = 0 iff m = 0, then
(Segm(A,n1,m1))T = Segm (AT, my,ny).

(19) If frngni, rngmg ] C the indices of A and if m = 0, then n = 0, then
Segm(A, n1,m1) = (Segm (AT, my,n1))T.

(20) For every matrix A over D of dimension 1 holds A = ({41 1)).

(21) If n=1and m = 1, then Segm(A,n1,m1) = ((An, (1),m1(1)))-

(22) For every matrix A over D of dimension 2 holds A = ( A Aig ) .
Ax1 Azp

(23) If n =2 and m = 2, then Segm(A,ny,m;) =
( Ani()mi()) Ani(1)mi2) >
A1 @) (1) Ani@)mi(2)
(24) If i € Segn and rngm; C Segwidth A, then Line(Segm(A4,ni,my),i) =
Line(A,nq(3)) - my.
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(25) If ¢ € Segn and j € Segn and ni(i) = ni(j), then
Line(Segm(A, n1,m1),i) = Line(Segm(A4, n1,m1), j).

(26) If i € Segn and j € Segn and ni(i) = ny1(j) and i # j, then
Det Segm (M, ny,n9) = Og.

(27) 1If ny is not one-to-one, then Det Segm(M,ny,n3) = 0.

(28) If 7 € Segm and rngn; C Seglen A, then (Segm(A,ni,m1))g
AQm, (j) - 11

(29) If ¢ € Segm and j € Segm and mi(i) = my(j), then
(Segm(A,n1,m1))n; = (Segm(A,nl,ml))DJ.

(30) If i € Segm and j € Segm and mi(i) = mi(j) and i # j, then
Det Segm (M, ma,m1) = O.

7j =

(31) If m; is not one-to-one, then Det Segm (M, ma, m;) = Ok.
(32) Let ng, n2 be elements of N®. Suppose n; is one-to-one and ng is one-

to-one and rngn; = rngny. Then there exists a permutation p; of Segn
such that no = nq - p;.

(33) For every function f from Segn into Segn such that ne = ny - f holds
Segm(A, ny,my) = Segm(A4,ny, my) - f.

(34) For every function f from Segm into Segm such that ms = my - f holds
(Segm(A,n1,ms))" = (Segm(A,ny,my))T - f.

(35) Let p1 be an element of the permutations of n-element set. If ng =
n3 - p1, then Det Segm (M, ng,n1) = (—1)%"P) Det Segm(M,n3,n;) and
Det Segm (M, n1,n9) = (—1)%8®1) Det Segm (M, ny,n3).

(36) For all elements ny, na, nj, ny of N™ such that rngn; = rngn} and
rngny = rngn, holds Det Segm(M,ni,n2) = DetSegm(M,n},nj) or
Det Segm (M, n1,ne) = —Det Segm(M, n, nl).

(37) Let F', F be finite sequences of elements of D and given ni, m;. Suppose
len F = width A’ and F; = F-m and [rngny, rngmq | C the indices of A’.
Let given i, j. If ny=*({j}) = {4}, then RLine(Segm(A’, ny,m1),i, F}) =
Segm(RLine(4’, 4, F),n1, mq).

(38) Let F be a finite sequence of elements of D and given i, ni. If i ¢
rngny and frngny, rngmy | C the indices of A’, then Segm(A’, ny,my) =
Segm(RLine(A4’,i, F),ni,my).

(39) If i € Segn' and i € rngn; and [rngny, rngmy ] C the indices of
A, then there exists ng such that rngns = (rngn; \ {i}) U {j} and
Segm(RLine(A4’, i, Line(4’,5)),n1,m1) = Segm(A’, na, my).

(40) For every finite sequence F' of elements of D such that i ¢ Seglen A’
holds RLine(A’,i, F) = A’

Let n, m be natural numbers, let K be a field, let M be a matrix over K of
dimension n X m, and let a be an element of K. Then a - M is a matrix over
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K of dimension n x m.

We now state two propositions:

(41) 1If [rngng, rngmg ] C the indices of M, then a - Segm(M,ni,my) =
Segm(a - M,ny,my).

(42) 1If ny = idseq(len A) and m; = idseq(width A), then Segm(A,ni,my) =
A.

Let us observe that there exists a subset of N which is empty, without zero,
and finite and there exists a subset of N which is non empty, without zero, and
finite.

Let us consider n. Observe that Segn is without zero.

Let X be a without zero set and let Y be a set. One can verify that X \ Y
is without zero and X NY is without zero.

One can prove the following proposition

(43) For every finite without zero subset N of N there exists k such that
N C Segk.

Let N be a finite without zero subset of N. Then Sgm N is an element of
Ncard N.

Let D be a non empty set, let A be a matrix over D, and let P, () be without
zero finite subsets of N. The functor Segm(A, P, Q) yields a matrix over D of
dimension card P x card @ and is defined by:

(Def. 2)  Segm(A, P,Q) = Segm(A, Sgm P, Sgm Q).
Next we state two propositions:
(44)  Segm(A, {io}, {jo}) = ((Aig.jo))-
(45) If iy < jo and mng < myg, then Segm(A,{ig,jo},{no,mo}) =
< Aio,no Aio,mo > )
Ajone Ajomo
In the sequel P, P, P, QQ, @1, Q2 are without zero finite subsets of N.
The following propositions are true:
(46) Segm(A,Seglen A, Seg width A) = A.
(47) 1If i € Segcard P and @ C Segwidth A, then Line(Segm(A, P,Q),i) =
Line(A, (Sgm P)(7)) - Sgm Q.
(48) 1If i € Segcard P, then Line(Segm (A, P, Seg width A),i) =
Line(A, (Sgm P)(7)).
(49) If j € Segcard@ and P C SeglenA, then (Segm(A,P,Q))o,; =
A (sem Q)(j) - Sgm P
If j € Segcard @, then (Segm(A4, Seglen 4,Q))n; = An (sem @)(j)-
Segm(A, Seglen A\ {i}, Seg width A) = A};.
Segm (M, Seglen M, Seg width M \ {i}) = the deleting of i-column in M.
(Sgm P)~1(X) is a without zero finite subset of N.

203
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(54) If X C P, then Sgm X = Sgm P - Sgm((Sgm P)~1(X)).

(55) [ (SgmP)~H(X), (Sgm Q) (Y)] C the indices of Segm(A, P, Q).

(56) If P € P and Q C @ and P, = (SgmP;)"}(P) and
Q2 = (SgmQ1)~1(Q), then [rngSgm P, rngSgm Q2] C the indices of
Segm(A, P;,Q1) and Segm(Segm (A, Py, Q1), P2, Q2) = Segm(A, P, Q).

(57) Suppose P =0 iff @ = () and [ P, Q] C the indices of Segm(A, Py, Q1).
Then there exist P», ()2 such that P, C P; and Q2 C (1 and P, =
(Sgm P1)°P and Q2 = (Sgm Q1)°Q and card P» = card P and card Q2 =
card Q and Segm(Segm(A, P1,Q1), P,Q) = Segm(A, P2, Q2).

(58) For every matrix M over K of dimension n holds Segm(M,Segn \
{i},Segn\ {j}) = the deleting of i-row and j-column in M.

(59) Let F, Fy be finite sequences of elements of D. Suppose len F' =
width A" and F, = F - Sgm@ and [P, @] C the indices of A’. Then
RLine(Segm(A4’, P,Q), i, F5) = Segm(RLine(A’, (Sgm P) (i), F), P, Q).

(60) Let F be a finite sequence of elements of D and given i, P. If
i ¢ P and [P,Q] C the indices of A’, then Segm(A’,P,Q) =
Segm(RLine(4',i, F'), P,Q).

(61) If [ P, Q] C the indices of A and card P = 0 iff card@ = 0, then
(Segm (A, P,Q))" = Segm(A™,Q, P).

(62) If [ P, Q] C the indices of A and if card @ = 0, then card P = 0, then
Segm(A, P,Q) = (Segm(A™,Q, P))T.

(63) Iff P, @ C theindices of M, then a-Segm(M, P, Q) = Segm(a-M, P, Q).

Let D be a non empty set, let A be a matrix over D, and let P, Q be
without zero finite subsets of N. Let us assume that card P = card (). The

functor EqSegm(A, P, Q) yields a matrix over D of dimension card P and is
defined by:

(Def. 3) EqSegm(A, P,Q) = Segm(A, P, Q).
Next we state several propositions:

(64) For all P, Q, i, j such that i € Segcard P and j € Segcard P and
card P = card @ holds Delete(EqSegm(M, P, Q),i,j) = EqSegm(M, P \
{(Sem P)(i)}, Q \ {(Sgm Q)(j)}) and card(P \ {(Sgm P)(i)}) = card(Q \
{(Sem Q)(4)})-

(65) For all M, P, P, Q1 such that card P, = card@; and P C P; and
Det EqSegm(M, P, Q1) # Ok there exists @ such that @ C @ and
card P = card @ and Det EqSegm (M, P, Q) # Ok.

(66) For all M, P, Q, Q1 such that card P, = card@; and Q C @; and
Det EqSegm(M, Py, (1) # Ox there exists P such that P C P; and
card P = card ) and Det EqSegm(M, P, Q) # Ok.

(67) If card P = card @, then [ P, Q] C the indices of A iff P C Seglen A
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and @ C Segwidth A.

(68) Let given P, Q, i, jo. Suppose i € Segn’ and jy € Segn’ and i € P
and jg ¢ P and card P = card Q and [ P, Q] C the indices of M'. Then
card P = card((P\{i})U{jo}) but [ (P\{i})U{jo}, @] C the indices of M’
but Det EqSegm (RLine(M’, 4, Line(M’, jo)), P, Q) = Det EqSegm (M’, (P\
{i}) U {jo},Q) or DetEqSegm(RLine(M’,i,Line(M’,jo)),P,Q) =
—Det EqSegm(M', (P \ {7’}> U {jO}v Q)

(69) 1If card P = card Q, then [ P, @] C the indices of A iff [Q, P] C the
indices of AT,

(70) If [P, Q] C the indices of M and cardP = card@, then
Det EqSegm (M, P, Q) = Det EqSegm(M ™, Q, P).

(71) For every matrix M over K of dimension n holds Det(a-M) = power g (a,
n) - Det M.

(72) If [ P, Q] C the indices of M and card P = card @), then Det EqSegm(a -
M, P,Q) = power g (a, card P) - Det EqSegm(M, P, Q).

Let K be a field and let M be a matrix over K. The functor rk(M) yielding
an element of N is defined by the conditions (Def. 4).
(Def. 4)(i)  There exist P, @ such that [ P, Q] C the indices of M and card P =
card Q and card P = rk(M) and Det EqSegm (M, P, Q) # Ok, and
(ii)  for all P, @ such that [ Py, Q1] C the indices of M and card P| =
card Q1 and Det EqSegm (M, P;, Q1) # Ok holds card P; < rk(M).
The following propositions are true:

(73) For all P, Q such that [ P, Q] C the indices of M and card P = card @)
holds card P < len M and card () < width M.

(74) rk(M) <len M and rk(M) < width M.

(75) If frngng, rngns ] C the indices of M and Det Segm(M, no, n3) # O,
then there exist P;, P» such that P, = rngne and P, = rngns and
card P; = card P, and card P; = n and Det EqSegm(M, Py, P») # Ok.

(76) Let R; be an element of N. Then rk(M) = R; if and only if the following
conditions are satisfied:

(i)  there exist elements r1, ro of Nt such that [rngry, rngro] C the
indices of M and Det Segm (M, r1,79) # Of, and

(ii)  for all n, ny, n3 such that [rngne, rngng] C the indices of M and
Det Segm (M, ng,ng) # 0 holds n < R;.

(77) If n =0 or m = 0, then rk(Segm(M,n1,m1)) = 0.

(78) If [rngni, mgm;] < the indices of M, then rk(M) >
rk(Segm (M, ni, my)).

(79) If [ P, @ C the indices of M, then rk(M) > rk(Segm (M, P, Q)).

(80) If P C P and Q C Q1, then rk(Segm(M, P, Q)) < rk(Segm(M, P;,Q1)).
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(81) For all functions f, g such that rng f C rngg there exists a function h
such that dom h = dom f and rngh C domg and f =g - h.

(82) If [rngni, mgm;] = the indices of M, then rk(M) =
rk(Segm (M, ny, my)).

(83) For every matrix M over K of dimension n holds rk(M) = n iff Det M #
Ox.

(84) k(M) =rk(MT).

(85) For every matrix M over K of dimension n X m and for every permu-
tation F' of Segn holds rk(M) =rk(M - F).

(86) If a # Ok, then rk(M) = rk(a - M).

(87) Let p, p2 be finite sequences of elements of K and f be a function. If
po=p- fand rng f Cdomp, thena-p- f =a- po.

(88) Let p, p2, ¢, ¢1 be finite sequences of elements of K and f be a function.
If po =p- fand rng f C domp and ¢; = ¢ - f and rng f C dom ¢, then
(p+a)-f=p2ta

(89) If a # Ok, then rk(M’) = rk(RLine(M’, i, a - Line(M’, 7))).

(90) If Line(M,i) = width M — Og, then rk(the deleting of i-row in M) =
rk(M).

(91) For every p such that len p = width M’ holds rk(the deleting of i-row in
M') = rk(RLine(M’, 1,0k - p)).

(92) If j € SeglenM’ and if i = j, then a # —1g, then rk(M') =
rk(RLine(M’, 4, Line(M’,i) + a - Line(M’, j))).

(93) 1If j € Seglen M’ and j # i, then rk(the deleting of i-row in M’') =
rk(RLine(M’,i,a - Line(M’, 5))).

(94) k(M) > 0 iff there exist 4, j such that (i, j) € the indices of M and
Mi,j 7£ Ox.

0 o\ Uend)x(width )

(95) rk(M)=0iff M = : .o

0O ... 0 %

(96) rk(M) =1 if and only if the following conditions are satisfied:

(i)  there exist 7, j such that (i, j) € the indices of M and M, ; # Ok, and

(ii)  for all 49, jo, mo, mo such that ig # jo and ng # mg and | {ig,jo},
{ng,mo}{ C the indices of M holds Det EqSegm (M, {io, jo}, {no,mo}) =
Of.

(97) rk(M) =1 if and only if the following conditions are satisfied:

(i)  there exist 7, j such that (i, j) € the indices of M and M, ; # Ok, and
(ii)  for all 7, j, n, m such that [{i,j}, {n,m}] C the indices of M holds
Mi,n . Mj,m = Mi,m . Mjﬂ'
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(98) rk(M) =1 if and only if there exists i such that ¢ € Seglen M and there
exists j such that j € Segwidth M and M;; # Ox and for every k such
that k € Seglen M there exists a such that Line(M, k) = a - Line(M,1).

Let us consider K. Observe that there exists a matrix over K which is
diagonal.

One can prove the following propositions:

(99) Let M be a diagonal matrix over K and Nj be a set. Suppose N = {i :
(7, i) € the indices of M A M;; # O }. Let given P, Q. If [ P, Q] C the
indices of M and card P = card Q and Det EqSegm(M, P, Q) # Ok, then
PgNl anngNl.

(100) For every diagonal matrix M over K and for every P such that | P,
P ] C the indices of M holds Segm (M, P, P) is diagonal.

(101) Let M be a diagonal matrix over K and Ny be a set. If Ny = {i : (i,
i) € the indices of M A M;; # Ok}, then tk(M) = Nj.

For simplicity, we adopt the following rules: v, vy, vs, u denote vectors of
the n-dimension vector space over K, t, t1, to denote elements of (the carrier of
K)™, L denotes a linear combination of the n-dimension vector space over K,
and M, My denote matrices over K of dimension m X n.

We now state the proposition

(102)(1)  The carrier of the n-dimension vector space over K = (the carrier of

(11) Othe n-dimension vector space over Kk — 10— Ok,
(i)  if ;1 = vy and to = vg, then t; 4+ to = v; + v9, and
(iv) ift=wv,thena-t=a-v.
Let us consider K, n. Then the n-dimension vector space over K is a strict
vector space over K.
Let us consider K, n. One can verify that every vector of the n-dimension
vector space over K is function-like and relation-like.
Let us consider K, m, n and let M be a matrix over K of dimension m x
n. We introduce lines(M) as a synonym of rng M. We introduce M is without
repeated line as a synonym of M is one-to-one.
Let K be a field, let us consider m, n, and let M be a matrix over K of
dimension m X n. Then lines(M) is a subset of the n-dimension vector space
over K.

Next we state two propositions:
(103) =z € lines(M) iff there exists ¢ such that i € Segm and z = Line(M, ).

(104) Let V be a finite subset of the n-dimension vector space over K. Then
there exists a matrix M over K of dimension card V' x n such that M is
without repeated line and lines(M) = V.
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Let us consider K, n and let F' be a finite sequence of elements of the n-
dimension vector space over K. The functor FinS2MX F' yielding a matrix over
K of dimension len F' X n is defined by:

(Def. 5) FinS2MX F' = F.
Let us consider K, m, n and let M be a matrix over K of dimension m

x n. The functor MX2FinS M yielding a finite sequence of elements of the
n-dimension vector space over K is defined as follows:

(Def. 6) MX2FinS M = M.
One can prove the following propositions:

(105) If rk(M) = m, then M is without repeated line.

(106) If i € Seglen M and a = L(M (7)), then
Line(FinS2MX(L MX2FinS M), i) = a - Line(M, 7).

(107) If M is without repeated line and the support of L C lines(M) and
i € Segn, then (3 L)(i) = Y ((FinS2MX(L MX2FinS M))m,;).

(108) Let given M, Mj. Suppose M is without repeated line and for ev-
ery ¢ such that i € Segm there exists a such that Line(Mj,i) =
a - Line(M,i). Then there exists a linear combination L of lines(M) such
that L MX2FinS M = M;.

(109) Let given M. Suppose M is without repeated line. Then for every i
such that i € Segm holds Line(M,i) # n — Ok and for every M; such
that for every i such that ¢ € Segm there exists a such that Line(My,7) =
a - Line(M,4) and for every j such that j € Segn holds » ((Mi)n;) =

0 ... 0\™"
Ox holds M; = Do if and only if lines(M) is linearly

0 ... 0/,

independent.

(110) If rk(M) = m, then lines(M) is linearly independent.

(111) Let M be a diagonal n-dimensional matrix over K. Suppose rk(M) = n.
Then lines(M) is a basis of the n-dimension vector space over K.

Let us consider K, n. Then the n-dimension vector space over K is a strict

finite dimensional vector space over K.

The following propositions are true:

(112) dim(the n-dimension vector space over K) = n.

(113) Let given M, i, a. Suppose that for every j such that j € Segm
holds M;; = a. Then M is without repeated line if and only if
Segm(M, Seglen M, Seg width M \ {i}) is without repeated line.

(114) Let given M, i. Suppose M is without repeated line and lines(M) is

linearly independent and for every j such that j € Segm holds M ; = Ok
Then lines(Segm (M, Seglen M, Seg width M\ {i})) is linearly independent.
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(115) Let V be a vector space over K and U be a finite subset of V. Suppose
U is linearly independent. Let u, v be vectors of V. If u € U and v € U
and u # v, then (U \ {u}) U{u + a- v} is linearly independent.

(116) Let V be a vector space over K and u, v be vectors of V. Then z €
Lin({u, v}) if and only if there exist a, b such that z =a-u+0b-v.

(117) Let given M. Suppose lines(M) is linearly independent and M is with-
out repeated line. Let given i, j. Suppose j € Seglen M and i # j.
Then RLine(M, i, Line(M, i) + a - Line(M, 5)) is without repeated line and
lines(RLine(M, i, Line(M,i) + a - Line(M, 5))) is linearly independent.

(118) If P C Segm, then lines(Segm(M, P, Segn)) C lines(M).

(119) If P C Segm and lines(M) is linearly independent, then
lines(Segm (M, P, Segn)) is linearly independent.

(120) If P C Segm and M is without repeated line, then Segm (M, P, Segn) is
without repeated line.

(121) Let M be a matrix over K of dimension m x n. Then lines(M) is linearly
independent and M is without repeated line if and only if rk(M) = m.

(122) Let U be a subset of the n-dimension vector space over K. Sup-
pose U C lines(M). Then there exists P such that P C Segm and
lines(Segm (M, P,Segn)) = U and Segm(M, P, Segn) is without repeated
line.

(123) Let Ry be an element of N. Then rk(M) = R; if and only if the following
conditions are satisfied:

(i)  there exists a finite subset U of the n-dimension vector space over K
such that U is linearly independent and U C lines(M) and cardU = Ry,
and

(ii) for every finite subset W of the n-dimension vector space over K such
that W is linearly independent and W C lines(M) holds card W < Rj.
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