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Summary. A formalization of the first proof from [6].
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The terminology and notation used here are introduced in the following articles:

[11], [13], [12], [10], [9], [5], [2], [3], [1], [8], [4], and [7].

1. Preliminaries

Let A, B′ be non empty sets, let B be a non empty subset of B ′, let f be a

function from A into B, and let x be an element of A. Then f(x) is an element

of B.

Next we state two propositions:

(1) For every finite set A such that cardA ≥ 2 and for every element a of A

there exists an element b of A such that b 6= a.

(2) Let A be a finite set. Suppose cardA ≥ 3. Let a, b be elements of A.

Then there exists an element c of A such that c 6= a and c 6= b.

2. Linear Preorders and Linear Orders

In the sequel A denotes a non empty set and a, b, c denote elements of A.

Let us consider A. The functor LinPreordersA is defined by the condition

(Def. 1).
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(Def. 1) Let R be a set. Then R ∈ LinPreordersA if and only if the following

conditions are satisfied:

(i) R is a binary relation on A,

(ii) for all a, b holds 〈〈a, b〉〉 ∈ R or 〈〈b, a〉〉 ∈ R, and

(iii) for all a, b, c such that 〈〈a, b〉〉 ∈ R and 〈〈b, c〉〉 ∈ R holds 〈〈a, c〉〉 ∈ R.
Let us consider A. Note that LinPreordersA is non empty.

Let us consider A. The functor LinOrdersA yielding a subset of LinPreordersA

is defined by:

(Def. 2) For every element R of LinPreordersA holds R ∈ LinOrdersA iff for all

a, b such that 〈〈a, b〉〉 ∈ R and 〈〈b, a〉〉 ∈ R holds a = b.

Let A be a set. One can verify that there exists an order in A which is

connected.

Let us consider A. Then LinOrdersA can be characterized by the condition:

(Def. 3) For every set R holds R ∈ LinOrdersA iff R is a connected order in A.

Let us consider A. One can verify that LinOrdersA is non empty.

In the sequel o, o′ are elements of LinPreordersA and o′′ is an element of

LinOrdersA.

Let us consider A, o, a, b. The predicate a ≤o b is defined by:

(Def. 4) 〈〈a, b〉〉 ∈ o.
Let us consider A, o, a, b. We introduce b ≥o a as a synonym of a ≤o b. We

introduce b <o a as an antonym of a ≤o b. We introduce a >o b as an antonym

of a ≤o b.
We now state a number of propositions:

(3) a ≤o a.
(4) a ≤o b or b ≤o a.
(5) If a ≤o b or a <o b and if b ≤o c or b <o c, then a ≤o c.
(6) If a ≤o′′ b and b ≤o′′ a, then a = b.

(7) If a 6= b and b 6= c and a 6= c, then there exists o such that a <o b and

b <o c.

(8) There exists o such that for every a such that a 6= b holds b <o a.

(9) There exists o such that for every a such that a 6= b holds a <o b.

(10) If a 6= b and a 6= c, then there exists o such that a <o b and a <o c and

b <o c iff b <o′ c and c <o b iff c <o′ b.

(11) If a 6= b and a 6= c, then there exists o such that b <o a and c <o a and

b <o c iff b <o′ c and c <o b iff c <o′ b.

(12) Let o, o′ be elements of LinOrdersA. Then a <o b iff a <o′ b and b <o a

iff b <o′ a if and only if a <o b iff a <o′ b.

(13) Let o be an element of LinOrdersA and o′ be an element of

LinPreordersA. Then for all a, b such that a <o b holds a <o′ b if and only
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if for all a, b holds a <o b iff a <o′ b.

3. Arrow’s Theorem

For simplicity, we follow the rules: A, N are finite non empty sets, a, b are

elements of A, i, n are elements of N , p, p′ are elements of (LinPreordersA)N ,

and f is a function from (LinPreordersA)N into LinPreordersA.

We now state the proposition

(14) Suppose that

(i) for all p, a, b such that for every i holds a <p(i) b holds a <f(p) b,

(ii) for all p, p′, a, b such that for every i holds a <p(i) b iff a <p′(i) b and

b <p(i) a iff b <p′(i) a holds a <f(p) b iff a <f(p′) b, and

(iii) cardA ≥ 3.

Then there exists n such that for all p, a, b such that a <p(n) b holds

a <f(p) b.

In the sequel p, p′ denote elements of (LinOrdersA)N and f denotes a func-

tion from (LinOrdersA)N into LinPreordersA.

One can prove the following proposition

(15) Suppose that

(i) for all p, a, b such that for every i holds a <p(i) b holds a <f(p) b,

(ii) for all p, p′, a, b such that for every i holds a <p(i) b iff a <p′(i) b holds

a <f(p) b iff a <f(p′) b, and

(iii) cardA ≥ 3.

Then there exists n such that for all p, a, b holds a <p(n) b iff a <f(p) b.
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