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String Rewriting Systems

Michat Trybulec
Motorola Software Group
Cracow, Poland

Summary. Basing on the definitions from [15], semi-Thue systems, Thue
systems, and direct derivations are introduced. Next, the standard reduction
relation is defined that, in turn, is used to introduce derivations using the theory
from [1]. Finally, languages generated by rewriting systems are defined as all
strings reachable from an initial word. This is followed by the introduction of
the equivalence of semi-Thue systems with respect to the initial word.
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The notation and terminology used here are introduced in the following papers:

[11], [13], [8], [16], [10], [4], [17], [14], [7], [18], 2], [1], 3], [12], [5], [6], and [9].

1. PRELIMINARIES

We adopt the following convention: x denotes a set, k, [ denote natural
numbers, and p, ¢ denote finite sequences.
Next we state two propositions:

(1) Ifk¢ dompand k+ 1 € domp, then k = 0.

(2) Ifk>lenpand k <len(p~ q), then there exists [ such that k = lenp+1
and [ > 1 and [ <leng.

In the sequel R denotes a binary relation and p, ¢ denote reduction sequences
w.r.t. R.
Next we state two propositions:

(3) If k> 1, then p[k is a reduction sequence w.r.t. R.
(4) If k € dom p, then there exists ¢ such that len ¢ = k and ¢(1) = p(1) and
q(lengq) = p(k).
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2. FINITE 0-SEQUENCE YIELDING FUNCTIONS AND FINITE SEQUENCES

Let f be a function. We say that f is finite-0-sequence-yielding if and only
if:
(Def. 1) If x € dom f, then f(z) is a finite 0-sequence.
Let us mention that ) is finite-O-sequence-yielding.
Let f be a finite 0-sequence. Observe that (f) is finite-0-sequence-yielding.
Let us observe that there exists a function which is finite-0-sequence-yielding.

Let p be a finite-0-sequence-yielding function and let us consider x. Then
p(z) is a finite O-sequence.

One can verify that there exists a finite sequence which is finite-0-sequence-
yielding.

Let E be a set. Note that every finite sequence of elements of E“ is finite-
0-sequence-yielding.

Let p, g be finite-0-sequence-yielding finite sequences. Observe that p ™ ¢ is
finite-0-sequence-yielding.

3. CONCATENATION OF A FINITE 0-SEQUENCE WITH ALL ELEMENTS OF A
FINITE 0-SEQUENCE YIELDING FUNCTION

Let s be a finite 0-sequence and let p be a finite-0-sequence-yielding function.
The functor s + p yields a finite-0-sequence-yielding function and is defined by:
(Def. 2) dom(s + p) = domp and for every = such that x € domp holds (s +
p)(x) = s~ p().
The functor p + s yielding a finite-0-sequence-yielding function is defined by:
(Def. 3) dom(p + s) = domp and for every z such that z € domp holds (p +
s)(z) =p(x) " s.
Let s be a finite 0-sequence and let p be a finite-0-sequence-yielding finite
sequence. Note that s+ p is finite sequence-like and p + s is finite sequence-like.
We adopt the following convention: E denotes a set, s, ¢ denote finite 0-
sequences, and p, g denote finite-O-sequence-yielding finite sequences.
The following propositions are true:
(5) len(s+ p) =lenp and len(p + s) = lenp.
(6) Optp=pandp+()p=p.
(7) s+(t+p =s"t+pandp+t+s=p+t_s.
(8) s+ (+t)=(s+p)+t.
9) s+p q=(s+p) " (s+q)andp”qg+s=(p+s) " (¢+5)
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4. SEMI-THUE SYSTEMS AND THUE SYSTEMS

Let E be a set, let p be a finite sequence of elements of E“, and let k£ be a
natural number. Then p(k) is an element of E“.

Let E be a set, let k be a natural number, and let s be an element of E¥.
Then k — s is a finite sequence of elements of E“.

Let E be a set, let s be an element of £“, and let p be a finite sequence of
elements of E“. Then s + p is a finite sequence of elements of E“. Then p + s
is a finite sequence of elements of E%“.

Let F be a set. A semi-Thue-system of F is a binary relation on E*.

In the sequel F is a set and S, T', U are semi-Thue-systems of F.

Let S be a binary relation. Observe that S US> is symmetric.

Let us consider E. One can check that there exists a semi-Thue-system of
FE which is symmetric.

Let E be a set. A Thue-system of E is a symmetric semi-Thue-system of E.

5. DIRECT DERIVATIONS

We follow the rules: s, t, s1, t1, u, v, w are elements of E“ and p is a finite
sequence of elements of £,
Let us consider F, S, s, t. The predicate s —g t is defined by:
(Def. 4) (s, t) € S.
Let us consider E, S, s, t. The predicate s =g t is defined as follows:
(Def. 5) There exist v, w, s1, t; such that s =v " s; "wand t =v " ¢; - w and
S1 —g t1.
The following propositions are true:
If s —»gt, then s =g t.
If s =g s, then there exist v, w, s such that s = v~ s; "w and s1 —g s1.
If s=gt, thenu " s=gu"tand s " u=gt" u.
If s=gt, thenu"s"v=gu"t v
If s —»gt, thenu " s=>gu"tand s u=gt" u.
If s —gt, thenu " s v=gu"t " w.
If S is a Thue-system of £ and s —g t, then t —g s.
If S is a Thue-system of £ and s =g t, then t =g s.
If SCT and s —g t, then s —7p t.
If SCT and s =g t, then s =7 t.
s #(Z)EW,EW t.
If s=gurt, then s =gtors=rpt.
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6. REDUCTION RELATION

Let us consider E. Then idg is a binary relation on E.

Let us consider E, S. The functor =g yielding a binary relation on E¥ is

defined as follows:

(Def. 6)

(s, t) e =g iff s =g t.

The following propositions are true:
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(24)
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S C=g.

Suppose p is a reduction sequence w.r.t. =g. Then p + u is a reduction
sequence w.r.t. =g and u + p is a reduction sequence w.r.t. =g.

If p is a reduction sequence w.r.t. =g, then (¢t + p) + u is a reduction
sequence w.r.t. =g.

If S is a Thue-system of E, then =g = (=g)~.
If SCT, then =g C =7.

=idgw — idgw.

= SUidge = =5 U idgw.

:>®EW Be — (DEW,EW-

If s §:S t, then s =g t.

=g = =S

7. DERIVATIONS

Let us consider E, S, s, t. The predicate s =7 t is defined by:

(Def. 7)

=g reduces s to t.

One can prove the following propositions:

32

5 =G S.

If s =g t, then s =% t.

If s —gt, then s =% t.

If s =5 tand t =% u, then s =% u.

Ifs=%t thens " u=5t "vandu"s=gu"t
Ifs=%t, thenu" s v=5u"t v

If s=%tand u=5v, then s "u=5t " vandu"s=5v "t
If S is a Thue-system of F and s =75 ¢, then t =% s.
If SCT and s =5 t, then s =7 t.

s =gt iffs:>i‘quidEw t.

Ifs:>6Ew7Ew t, then s =t.

If s =% _ t, then s =% t.
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(44) If s=%tandu :>{<S’t>} v, then u =% v.

* * *
(45) If s=%tandu :>SU{<s,t)} v, then u =73 v.

8. LANGUAGES GENERATED BY SEMI-THUE SYSTEMS

Let us consider E, S, w. The functor Lang(w, S) yields a subset of E“ and
is defined by:
(Def. 8) Lang(w,S) = {s:w =5 s}.
Next we state two propositions:
(46) s € Lang(w,S) iff w =% s.
(47) w € Lang(w, S).
Let E be a non empty set, let S be a semi-Thue-system of F, and let w be
an element of E“. Note that Lang(w, S) is non empty.
We now state four propositions:

(48) If S C T, then Lang(w, S) C Lang(w,T).
(49) Lang(w,S) = Lang(w, S Uidgw).

(50) Lang(w,0pe po) = {w}.

(51) Lang(w,idge) = {w}.

9. EQUIVALENCE OF SEMI-THUE SYSTEMS

Let us consider E, S, T, w. We say that S and T are equivalent wrt w if
and only if:

(Def. 9) Lang(w, S) = Lang(w,T).
The following propositions are true:
(52) S and S are equivalent wrt w.
(53) If S and T are equivalent wrt w, then 7" and S are equivalent wrt w.

(54) Suppose S and T are equivalent wrt w and 7" and U are equivalent wrt
w. Then S and U are equivalent wrt w.

(55) S and SUidge are equivalent wrt w.

(56) Suppose S and T are equivalent wrt w and S C U and U C T. Then S
and U are equivalent wrt w and U and T are equivalent wrt w.

(57) S and =g are equivalent wrt w.

(58) If S and T are equivalent wrt w and = gur reduces w to s, then =g
reduces w to s.

(59) If S and T are equivalent wrt w and w =% s, then w =% s.
(60) If S and T are equivalent wrt w, then S and SUT are equivalent wrt w.
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(61) If s =gt, then S and SU{(s, t)} are equivalent wrt w.
(62) If s =% t, then S and SU {(s, t)} are equivalent wrt w.
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