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Summary. The rank+nullity theorem states that, if T is a linear trans-

formation from a finite-dimensional vector space V to a finite-dimensional vector

space W , then dim(V ) = rank(T ) + nullity(T ), where rank(T ) = dim(im(T ))

and nullity(T ) = dim(ker(T )). The proof treated here is standard; see, for ex-

ample, [14]: take a basis A of ker(T ) and extend it to a basis B of V , and then

show that dim(im(T )) is equal to |B −A|, and that T is one-to-one on B −A.
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The articles [21], [11], [32], [22], [19], [33], [34], [7], [2], [17], [10], [18], [8], [9],

[20], [1], [12], [3], [5], [6], [27], [29], [24], [31], [25], [13], [4], [30], [28], [26], [23],

[15], [16], and [35] provide the notation and terminology for this paper.

1. Preliminaries

One can prove the following three propositions:

(1) For all functions f , g such that g is one-to-one and f� rng g is one-to-one

and rng g ⊆ dom f holds f · g is one-to-one.

(2) For every function f and for all sets X, Y such that X ⊆ Y and f�Y is

one-to-one holds f�X is one-to-one.

(3) Let V be a 1-sorted structure and X, Y be subsets of V . Then X meets

Y if and only if there exists an element v of V such that v ∈ X and v ∈ Y.
In the sequel F is a field and V , W are vector spaces over F .

Let F be a field and let V be a finite dimensional vector space over F . One

can verify that there exists a basis of V which is finite.
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Let F be a field and let V , W be vector spaces over F . Note that there

exists a function from V into W which is linear.

Next we state three propositions:

(4) If ΩV is finite, then V is finite dimensional.

(5) For every finite dimensional vector space V over F such that ΩV = 1

holds dim(V ) = 0.

(6) If ΩV = 2, then dim(V ) = 1.

2. Basic Facts of Linear Transformations

Let F be a field and let V , W be vector spaces over F . A linear transfor-

mation from V to W is a linear function from V into W .

In the sequel T is a linear transformation from V to W .

One can prove the following propositions:

(7) For all non empty 1-sorted structures V , W and for every function T

from V into W holds domT = ΩV and rng T ⊆ ΩW .

(8) For all elements x, y of V holds T (x)− T (y) = T (x− y).

(9) T (0V ) = 0W .

Let F be a field, let V , W be vector spaces over F , and let T be a linear

transformation from V to W . The functor kerT yielding a strict subspace of V

is defined as follows:

(Def. 1) ΩkerT = {u;u ranges over elements of V : T (u) = 0W }.
We now state the proposition

(10) For every element x of V holds x ∈ kerT iff T (x) = 0W .

Let V , W be non empty 1-sorted structures, let T be a function from V into

W , and let X be a subset of V . Then T ◦X is a subset of W .

Let F be a field, let V , W be vector spaces over F , and let T be a linear

transformation from V to W . The functor imT yielding a strict subspace of W

is defined as follows:

(Def. 2) ΩimT = T ◦(ΩV ).

The following propositions are true:

(11) 0V ∈ kerT.

(12) For every subset X of V holds T ◦X is a subset of imT.

(13) For every element y of W holds y ∈ im T iff there exists an element x of

V such that y = T (x).

(14) For every element x of ker T holds T (x) = 0W .

(15) If T is one-to-one, then kerT = 0V .

(16) For every finite dimensional vector space V over F holds dim(0V ) = 0.
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(17) For all elements x, y of V such that T (x) = T (y) holds x− y ∈ ker T.

(18) For every subset A of V and for all elements x, y of V such that x− y ∈
Lin(A) holds x ∈ Lin(A ∪ {y}).

3. Some Lemmas on Linearly Independent Subsets, Linear

Combinations, and Linear Transformations

One can prove the following propositions:

(19) For every subset X of V such that V is a subspace of W holds X is a

subset of W .

(20) For every subset A of V such that A is linearly independent holds A is

a basis of Lin(A).

(21) For every subset A of V and for every element x of V such that x ∈
Lin(A) and x /∈ A holds A ∪ {x} is linearly dependent.

(22) For every subset A of V and for every basis B of V such that A is a

basis of kerT and A ⊆ B holds T �(B \ A) is one-to-one.

(23) Let A be a subset of V , l be a linear combination of A, x be an element

of V , and a be an element of F . Then l +· (x, a) is a linear combination

of A ∪ {x}.
Let V be a 1-sorted structure and let X be a subset of V . The functor V \X

yields a subset of V and is defined by:

(Def. 3) V \X = ΩV \X.
Let F be a field, let V be a vector space over F , let l be a linear combination

of V , and let X be a subset of V . Then l◦X is a subset of F .

In the sequel l is a linear combination of V .

Let F be a field and let V be a vector space over F . Note that there exists

a subset of V which is linearly dependent.

Let F be a field, let V be a vector space over F , let l be a linear combination

of V , and let A be a subset of V . The functor l[A] yields a linear combination

of A and is defined by:

(Def. 4) l[A] = l�A+·(V \A 7−→ 0F ).

The following propositions are true:

(24) l = l[the support of l].

(25) For every subset A of V and for every element v of V such that v ∈ A
holds l[A](v) = l(v).

(26) For every subset A of V and for every element v of V such that v /∈ A
holds l[A](v) = 0F .

(27) For all subsets A, B of V and for every linear combination l of B such

that A ⊆ B holds l = l[A] + l[B \A].
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Let F be a field, let V be a vector space over F , let l be a linear combination

of V , and let X be a subset of V . Observe that l◦X is finite.

Let V , W be non empty 1-sorted structures, let T be a function from V into

W , and let X be a subset of W . Then T−1(X) is a subset of V .

We now state the proposition

(28) For every subset X of V such that X misses the support of l holds

l◦X ⊆ {0F }.
Let F be a field, let V , W be vector spaces over F , let l be a linear combi-

nation of V , and let T be a linear transformation from V to W . The functor

T @ l yielding a linear combination of W is defined by:

(Def. 5) For every element w of W holds (T @ l)(w) =
∑

(l◦T−1({w})).
One can prove the following propositions:

(29) T @ l is a linear combination of T ◦(the support of l).

(30) The support of T @ l ⊆ T ◦(the support of l).

(31) Let l, m be linear combinations of V . Suppose the support of l misses

the support of m. Then the support of l +m = (the support of l) ∪ (the

support of m).

(32) Let l, m be linear combinations of V . Suppose the support of l misses

the support of m. Then the support of l −m = (the support of l) ∪ (the

support of m).

(33) For all subsets A, B of V such that A ⊆ B and B is a basis of V holds

V is the direct sum of Lin(A) and Lin(B \A).

(34) Let A be a subset of V , l be a linear combination of A, and v be an

element of V . Suppose T �A is one-to-one and v ∈ A. Then there exists a

subset X of V such that X misses A and T−1({T (v)}) = {v} ∪X.
(35) For every subset X of V such that X misses the support of l and X 6= ∅

holds l◦X = {0F }.
(36) For every element w of W such that w ∈ the support of T @ l holds

T−1({w}) meets the support of l.

(37) Let v be an element of V . Suppose T �(the support of l) is one-to-one

and v ∈ the support of l. Then (T @ l)(T (v)) = l(v).

(38) Let G be a finite sequence of elements of V . Suppose rngG = the support

of l and T �(the support of l) is one-to-one. Then T · (l G) = (T @ l) (T ·G).

(39) If T �(the support of l) is one-to-one, then T ◦(the support of l) = the

support of T @ l.

(40) Let A be a subset of V , B be a basis of V , and l be a linear combination

of B \ A. If A is a basis of ker T and A ⊆ B, then T (
∑
l) =

∑
(T @ l).

(41) Let X be a subset of V . Suppose X is linearly dependent. Then there

exists a linear combination l of X such that the support of l 6= ∅ and
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∑
l = 0V .

Let F be a field, let V , W be vector spaces over F , let X be a subset of V ,

let T be a linear transformation from V to W , and let l be a linear combination

of T ◦X. Let us assume that T �X is one-to-one. The functor T#l yields a linear

combination of X and is defined as follows:

(Def. 6) T#l = l · T+·(V \X 7−→ 0F ).

We now state two propositions:

(42) Let X be a subset of V , l be a linear combination of T ◦X, and v be an

element of V . If v ∈ X and T �X is one-to-one, then (T#l)(v) = l(T (v)).

(43) For every subset X of V and for every linear combination l of T ◦X such

that T �X is one-to-one holds T @ T#l = l.

4. The Rank+Nullity Theorem

Let F be a field, let V , W be finite dimensional vector spaces over F , and

let T be a linear transformation from V to W . The functor rankT yielding a

natural number is defined by:

(Def. 7) rankT = dim(im T ).

The functor nullity T yields a natural number and is defined by:

(Def. 8) nullity T = dim(ker T ).

Next we state two propositions:

(44) Let V , W be finite dimensional vector spaces over F and T be a linear

transformation from V to W . Then dim(V ) = rankT + nullity T.

(45) Let V , W be finite dimensional vector spaces over F and T be a linear

transformation from V to W . If T is one-to-one, then dim(V ) = rankT.
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