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Summary. In the article the formula for Laplace expansion is proved.
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The notation and terminology used in this paper are introduced in the following

articles: [23], [11], [29], [20], [12], [30], [31], [6], [9], [7], [3], [4], [21], [28], [26],

[15], [22], [10], [5], [13], [24], [14], [33], [25], [18], [34], [1], [8], [2], [16], [17], [27],

[19], and [32].

1. Preliminaries

For simplicity, we follow the rules: x, y are sets, N is an element of N, c,

i, j, k, m, n are natural numbers, D is a non empty set, s is an element of

2Set Seg(n + 2), p is an element of the permutations of n-element set, p1, q1

are elements of the permutations of (n+ 1)-element set, p2 is an element of the

permutations of (n+ 2)-element set, K is a field, a, b are elements of K, f is a

finite sequence of elements of K, A is a matrix over K, A1 is a matrix over D

of dimension n × m, p3 is a finite sequence of elements of D, and M is a matrix

over K of dimension n.

The following propositions are true:

(1) For every finite sequence f and for every natural number i such that

i ∈ dom f holds len(f�i) = len f −′ 1.
(2) Let i, j, n be natural numbers and M be a matrix over K of dimension n.

If i ∈ domM, then len (the deleting of i-row and j-column in M) = n−′ 1.
(3) If j ∈ Seg widthA, then width (the deleting of j-column in A) =

widthA−′ 1.
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(4) For every natural number i such that lenA > 1 holds widthA =

width (the deleting of i-row in A).

(5) For every natural number i such that j ∈ Seg widthM holds width (the

deleting of i-row and j-column in M) = n−′ 1.
Let G be a non empty groupoid, let B be a function from [: the carrier of

G, N :] into the carrier of G, let g be an element of G, and let i be a natural

number. Then B(g, i) is an element of G.

One can prove the following propositions:

(6) the permutations of n-element set = n!.

(7) For all i, j such that i ∈ Seg(n + 1) and j ∈ Seg(n + 1) holds

{p1 : p1(i) = j} = n!.

(8) Let K be a Fanoian field, given p2, and X, Y be el-

ements of Fin 2Set Seg(n + 2). Suppose Y = {s : s ∈
X ∧ (Part-sgn(p2,K))(s) = −1K}. Then (the multiplication of

K)-
∑

X Part-sgn(p2,K) = powerK(−1K , cardY ).

(9) Let K be a Fanoian field and given p2, i, j. Suppose i ∈ Seg(n + 2)

and p2(i) = j. Then there exists an element X of Fin 2Set Seg(n+ 2) such

that X = {{N, i} : {N, i} ∈ 2Set Seg(n + 2)} and (the multiplication of

K)-
∑

X Part-sgn(p2,K) = powerK(−1K , i+ j).

(10) Let given i, j. Suppose i ∈ Seg(n + 1) and j ∈ Seg(n + 1) and n ≥ 2.

Then there exists a function P1 from 2Set Seg n into 2Set Seg(n+ 1) such

that

(i) rngP1 = 2Set Seg(n+ 1) \ {{N, i} : {N, i} ∈ 2Set Seg(n+ 1)},
(ii) P1 is one-to-one, and

(iii) for all k, m such that k < m and {k,m} ∈ 2Set Seg n holds if m < i

and k < i, then P1({k,m}) = {k,m} and if m ≥ i and k < i, then

P1({k,m}) = {k,m + 1} and if m ≥ i and k ≥ i, then P1({k,m}) =

{k + 1,m+ 1}.
(11) If n < 2, then for every element p of the permutations of n-element set

holds p is even and p = idseq(n).

(12) Let X, Y , D be non empty sets, f be a function from X into FinY, g be

a function from FinY into D, and F be a binary operation on D. Suppose

that

(i) for all elements A, B of Fin Y such that A misses B holds F (g(A),

g(B)) = g(A ∪B),

(ii) F is commutative and associative and has a unity, and

(iii) g(∅) = 1F .

Let I be an element of FinX. Suppose that for all x, y such that x ∈ I
and y ∈ I and f(x) meets f(y) holds x = y. Then F -

∑
I g ·f = F -

∑
f◦I g

and F -
∑

f◦I g = g(
⋃

(f◦I)) and
⋃

(f◦I) is an element of FinY.
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2. Auxiliary Notions

Let i, j, n be natural numbers, let us consider K, and let M be a matrix

over K of dimension n. Let us assume that i ∈ Seg n and j ∈ Seg n. The functor

Delete(M, i, j) yielding a matrix over K of dimension n−′1 is defined as follows:

(Def. 1) Delete(M, i, j) = the deleting of i-row and j-column in M .

The following propositions are true:

(13) Let given i, j. Suppose i ∈ Seg n and j ∈ Segn. Let given k, m such

that k ∈ Seg(n−′ 1) and m ∈ Seg(n−′ 1). Then

(i) if k < i and m < j, then (Delete(M, i, j))k,m = Mk,m,

(ii) if k < i and m ≥ j, then (Delete(M, i, j))k,m = Mk,m+1,

(iii) if k ≥ i and m < j, then (Delete(M, i, j))k,m = Mk+1,m, and

(iv) if k ≥ i and m ≥ j, then (Delete(M, i, j))k,m = Mk+1,m+1.

(14) For all i, j such that i ∈ Seg n and j ∈ Seg n holds (Delete(M, i, j))T =

Delete(MT, j, i).

(15) For every finite sequence f of elements of K and for all i, j such that

i ∈ Seg n and j ∈ Seg n holds Delete(M, i, j) = Delete(RLine(M, i, f), i, j).

Let us consider c, n, m, D, let M be a matrix over D of dimension n×m, and

let p3 be a finite sequence of elements of D. The functor ReplaceCol(M, c, p3)

yielding a matrix over D of dimension n × m is defined by:

(Def. 2)(i) len ReplaceCol(M, c, p3) = lenM and width ReplaceCol(M, c, p3) =

widthM and for all i, j such that 〈〈i, j〉〉 ∈ the indices of M holds

if j 6= c, then (ReplaceCol(M, c, p3))i,j = Mi,j and if j = c, then

(ReplaceCol(M, c, p3))i,c = p3(i) if len p3 = lenM,

(ii) ReplaceCol(M, c, p3) = M, otherwise.

Let us consider c, n, m, D, let M be a matrix over D of dimension n × m,

and let p3 be a finite sequence of elements of D. We introduce RCol(M, c, p3)

as a synonym of ReplaceCol(M, c, p3).

We now state four propositions:

(16) For every i such that i ∈ Seg widthA1 holds if i = c and len p3 = lenA1,

then (RCol(A1, c, p3))�,i = p3 and if i 6= c, then (RCol(A1, c, p3))�,i =

(A1)�,i.

(17) If c /∈ Seg widthA1, then RCol(A1, c, p3) = A1.

(18) RCol(A1, c, (A1)�,c) = A1.

(19) Let A be a matrix over D of dimension n × m and A′ be a matrix over

D of dimension m × n. If A′ = AT and if m = 0, then n = 0, then

ReplaceCol(A, c, p3) = (ReplaceLine(A′, c, p3))T.
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3. Permutations

Let us consider i, n and let p4 be an element of the permutations of (n+ 1)-

element set. Let us assume that i ∈ Seg(n+ 1). The functor Rem(p4, i) yielding

an element of the permutations of n-element set is defined by the condition

(Def. 3).

(Def. 3) Let given k such that k ∈ Seg n. Then

(i) if k < i, then if p4(k) < p4(i), then (Rem(p4, i))(k) = p4(k) and if

p4(k) ≥ p4(i), then (Rem(p4, i))(k) = p4(k)− 1, and

(ii) if k ≥ i, then if p4(k+ 1) < p4(i), then (Rem(p4, i))(k) = p4(k+ 1) and

if p4(k + 1) ≥ p4(i), then (Rem(p4, i))(k) = p4(k + 1)− 1.

One can prove the following three propositions:

(20) Let given i, j. Suppose i ∈ Seg(n + 1) and j ∈ Seg(n + 1). Let P be a

set. Suppose P = {p1 : p1(i) = j}. Then there exists a function P1 from

P into the permutations of n-element set such that P1 is bijective and for

every q1 such that q1(i) = j holds P1(q1) = Rem(q1, i).

(21) For all i, j such that i ∈ Seg(n+ 1) and p1(i) = j holds (−1)sgn(p1)a =

powerK(−1K , i+ j) · (−1)sgn(Rem(p1,i))a.

(22) Let given i, j. Suppose i ∈ Seg(n+ 1) and p1(i) = j. Let M be a matrix

over K of dimension n + 1 and D1 be a matrix over K of dimension n.

Suppose D1 = Delete(M, i, j). Then (the product on paths of M)(p1) =

powerK(−1K , i+ j) ·Mi,j · (the product on paths of D1)(Rem(p1, i)).

4. Minors and Cofactors

Let i, j, n be natural numbers, let us consider K, and let M be a matrix

over K of dimension n. The functor Minor(M, i, j) yielding an element of K is

defined by:

(Def. 4) Minor(M, i, j) = Det Delete(M, i, j).

Let i, j, n be natural numbers, let us consider K, and let M be a matrix

over K of dimension n. The functor Cofactor(M, i, j) yielding an element of K

is defined as follows:

(Def. 5) Cofactor(M, i, j) = powerK(−1K , i+ j) ·Minor(M, i, j).

The following propositions are true:

(23) Let given i, j. Suppose i ∈ Seg n and j ∈ Seg n. Let P be an element of

Fin (the permutations of n-element set). Suppose P = {p : p(i) = j}. Let

M be a matrix over K of dimension n. Then (the addition of K)-
∑

P (the

product on paths of M) = Mi,j · Cofactor(M, i, j).

(24) For all i, j such that i ∈ Seg n and j ∈ Seg n holds Minor(M, i, j) =

Minor(MT, j, i).
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Let us consider n, K and let M be a matrix over K of dimension n. The

matrix of cofactor M yielding a matrix over K of dimension n is defined by the

condition (Def. 6).

(Def. 6) Let i, j be natural numbers. Suppose 〈〈i, j〉〉 ∈ the indices of the matrix

of cofactor M . Then (the matrix of cofactor M)i,j = Cofactor(M, i, j).

5. Laplace Expansion

Let us consider n, i, K and let M be a matrix over K of dimension n.

The functor LaplaceExpL(M, i) yields a finite sequence of elements of K and is

defined as follows:

(Def. 7) len LaplaceExpL(M, i) = n and for every j such that j ∈
dom LaplaceExpL(M, i) holds

(LaplaceExpL(M, i))(j) = Mi,j · Cofactor(M, i, j).

Let us consider n, let j be a natural number, let us consider K, and let M

be a matrix over K of dimension n. The functor LaplaceExpC(M, j) yields a

finite sequence of elements of K and is defined by:

(Def. 8) len LaplaceExpC(M, j) = n and for every i such that i ∈
dom LaplaceExpC(M, j) holds (LaplaceExpC(M, j))(i) = Mi,j ·
Cofactor(M, i, j).

One can prove the following propositions:

(25) For every natural number i and for every matrix M over K of dimension

n such that i ∈ Seg n holds DetM =
∑

LaplaceExpL(M, i).

(26) For every i such that i ∈ Segn holds LaplaceExpC(M, i) =

LaplaceExpL(MT, i).

(27) For every natural number j and for every matrix M over K of dimension

n such that j ∈ Segn holds DetM =
∑

LaplaceExpC(M, j).

(28) For all p, i such that len f = n and i ∈ Seg n holds Line(the matrix of

cofactor M , i) • f = LaplaceExpL(RLine(M, i, f), i).

(29) If i ∈ Seg n, then Line(M, j) · ((the matrix of cofactor M)T)�,i =

Det RLine(M, i,Line(M, j)).

(30) If DetM 6= 0K , then M · (DetM−1 · (the matrix of cofactor M)T) =


1 0
. . .

0 1




n×n

K

.

(31) For all f , i such that len f = n and i ∈ Seg n holds (the matrix of

cofactor M)�,i • f = LaplaceExpL(RLine(MT, i, f), i).

(32) If i ∈ Seg n and j ∈ Seg n, then Line((the matrix of cofactor M)T, i) ·
M�,j = Det RLine(MT, i,Line(MT, j)).
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(33) If DetM 6= 0K , then DetM−1 · (the matrix of cofactor M)T · M =


1 0
. . .

0 1




n×n

K

.

(34) M is invertible iff DetM 6= 0K .

(35) If DetM 6= 0K , then M` = DetM−1 · (the matrix of cofactor M)T.

(36) Let M be a matrix over K of dimension n. Suppose M is invertible.

Let given i, j. If 〈〈i, j〉〉 ∈ the indices of M`, then M`i,j = DetM−1 ·
powerK(−1K , i+ j) ·Minor(M, j, i).

(37) Let A be a matrix over K of dimension n. Suppose DetA 6= 0K . Let x,

b be matrices over K. Suppose lenx = n and A · x = b. Then x = A` · b
and for all i, j such that 〈〈i, j〉〉 ∈ the indices of x holds xi,j = DetA−1 ·
Det ReplaceCol(A, i, b�,j).

(38) Let A be a matrix over K of dimension n. Suppose DetA 6= 0K . Let

x, b be matrices over K. Suppose widthx = n and x · A = b. Then

x = b · A` and for all i, j such that 〈〈i, j〉〉 ∈ the indices of x holds

xi,j = DetA−1 ·Det ReplaceLine(A, j,Line(b, i)).

6. Product by a Vector

Let D be a non empty set and let f be a finite sequence of elements of D.

Then 〈f〉 is a matrix over D of dimension 1 × len f.

Let us consider K, let M be a matrix over K, and let f be a finite sequence

of elements of K. The functor M · f yielding a matrix over K is defined by:

(Def. 9) M · f = M · 〈f〉T.
The functor f ·M yields a matrix over K and is defined by:

(Def. 10) f ·M = 〈f〉 ·M.

Next we state two propositions:

(39) Let A be a matrix over K of dimension n. Suppose DetA 6= 0K . Let x, b

be finite sequences of elements of K. Suppose len x = n and A · x = 〈b〉T.
Then 〈x〉T = A` · b and for every i such that i ∈ Segn holds x(i) =

DetA−1 · Det ReplaceCol(A, i, b).

(40) Let A be a matrix over K of dimension n. Suppose DetA 6= 0K . Let x,

b be finite sequences of elements of K. Suppose len x = n and x ·A = 〈b〉.
Then 〈x〉 = b · A` and for every i such that i ∈ Seg n holds x(i) =

DetA−1 · Det ReplaceLine(A, i, b).



laplace expansion 149

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
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