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The Sylow Theorems
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Summary. The goal of this article is to formalize the Sylow theorems
closely following the book [4]. Accordingly, the article introduces the group op-
erating on a set, the stabilizer, the orbits, the p-groups and the Sylow subgroups.
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The papers [20], [26], [18], [9], [21], [14], [11], [27], [6], [28], [7], [3], [5], [10],
(1], [23], [24], [22], [16], [13], [19], [17], [2], [25], [15], [8], and [12] provide the
notation and terminology for this paper.

1. GROUP OPERATING ON A SET

Let S be a non empty 1-sorted structure, let F be a set, let A be an action
of the carrier of S on E, and let s be an element of S. We introduce A ™ s as a
synonym of A(s).

Let S be a non empty 1-sorted structure, let E be a set, let A be an action
of the carrier of S on FE, and let s be an element of S. Then A ™ s is a function
from E into F.

Let S be a unital non empty groupoid, let F be a set, and let A be an action
of the carrier of S on F. We say that A is left-operation if and only if:

(Def. 1) A~ (1g) = idg and for all elements si, sp of S holds A ™ (s1 - s2) =
(A - 81) . (A - 82).

Let S be a unital non empty groupoid and let E be a set. Note that there
exists an action of the carrier of S on E which is left-operation.

Let S be a unital non empty groupoid and let F be a set. A left operation
of S on F is a left-operation action of the carrier of S on E.
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The scheme FExLeftOperation deals with a set A, a group-like non empty
groupoid B, and a unary functor F yielding a function from A into A, and
states that:

There exists a left operation T of B on A such that for every
element s of B holds T'(s) = F(s)
provided the parameters meet the following requirements:

e F(1p) =1idy, and

e For all elements s1, s of B holds F(s1 - s2) = F(s1) - F(s2).

Next we state the proposition

(1) Let E be a non empty set, S be a group-like non empty groupoid, s be
an element of S, and L be a left operation of S on E. Then L ™ s is
one-to-one.

Let S be a non empty groupoid and let s be an element of S. We introduce
~s as a synonym of s*.

Let S be a group-like associative non empty groupoid. The functor I'g
yielding a left operation of S on the carrier of S is defined as follows:

(Def. 2) For every element s of S holds I's(s) = ~s.

Let E be a set and let n be a set. The functor [E]" yielding a family of
subsets of F is defined by:

(Def. 3) [E]™ = {X; X ranges over subsets of E: X = n}.
Let E be a finite set and let n be a set. One can verify that [E]™ is finite.
The following two propositions are true:
(2) For every natural number n and for every non empty set E such that
7 < E holds [E]™ is non empty.
(3) For every non empty finite set E and for every element & of N and for all
sets w1, z9 such that x1 # 2 holds card Choose(E, k, x1, x2) = card([E]).

Let E be a non empty set, let n be a natural number, let S be a group-like
non empty groupoid, let s be an element of S, and let L; be a left operation of
S on E. Let us assume that 7 < E. The functor V< 1, yields a function from
[E]™ into [E]™ and is defined by:

(Def. 4)  For every element X of [E]" holds v, (X) = (L1 7 s)°X.

Let E be a non empty set, let n be a natural number, let S be a group-like
non empty groupoid, and let L; be a left operation of S on E. Let us assume
that 77 < E. The functor I'} yields a left operation of S on [E]" and is defined
by:

(Def. 5) For every element s of S holds I'} (s) =+,

Let S be a non empty groupoid, let s be an element of S, and let Z be a
non empty set. The functor v, 7 yielding a function from [ the carrier of S, Z ]
into [ the carrier of S, Z ] is defined by the condition (Def. 6).
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(Def. 6) Let z; be an element of [the carrier of S, ZJ. Then there exists an
element zo of [the carrier of S, Z ] and there exist elements s;, so of S
and there exists an element z of Z such that 2o =5 z(21) and sy = 5- 51
and z; = (s1, z) and 29 = (s2, 2).
Let S be a group-like associative non empty groupoid and let Z be a non

empty set. The functor I'g 7 yields a left operation of S on [ the carrier of S,
7 | and is defined by:

(Def. 7)  For every element s of S holds I's z(s) = s 2.

Let G be a group, let H, P be subgroups of G, and let h be an element of
H. The functor 4, p yields a function from the left cosets of P into the left
cosets of P and is defined by the condition (Def. 8).

(Def. 8) Let P; be an element of the left cosets of P. Then there exists an element
P, of the left cosets of P and there exist subsets A;, Ao of G and there
exists an element g of G such that P, = v, p(P1) and Ay = g - Ay and
A1:P1 andAQ:PQ andg:h.

Let G be a group and let H, P be subgroups of GG. The functor I' 7 p yields
a left operation of H on the left cosets of P and is defined as follows:

(Def. 9) For every element h of H holds I'g p(h) = 3, p.

2. STABILIZER AND ORBITS

Let G be a group, let E be a non empty set, let T be a left operation of G
on F, and let A be a subset of E. The functor T4 yields a strict subgroup of G
and is defined as follows:
(Def. 10) The carrier of T4 = {g; g ranges over elements of G: (T ~ g)°A = A}.

Let G be a group, let E be a non empty set, let T be a left operation of G
on F, and let z be an element of E. The functor T, yielding a strict subgroup
of G is defined by:

Let S be a unital non empty groupoid, let E be a set, let T" be a left operation
of S on F, and let x be an element of E. We say that z is fixed under 7" if and
only if:

(Def. 12) For every element s of S holds z = (T ™ s)(z).

Let S be a unital non empty groupoid, let E be a set, and let T be a left
operation of S on E. The functor T yields a subset of E and is defined by:
{z; z ranges over elements of F: x is fixed under T'},
(Def. 13) Tj = if £ is non empty,
(g, otherwise.
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Let S be a unital non empty groupoid, let F be a set, let T be a left operation
of S on F, and let x, y be elements of £. We say that x and y are conjugated
under T if and only if:

(Def. 14) There exists an element s of S such that y = (T~ s)(x).
We now state three propositions:

(4) Let S be a unital non empty groupoid, E be a non empty set, x be an
element of E, and T be a left operation of S on . Then z and = are
conjugated under T'.

(5) Let G be a group, E be a non empty set, z, y be elements of E, and T'
be a left operation of G on E. Suppose z and y are conjugated under 7.
Then y and x are conjugated under 7.

(6) Let S be a unital non empty groupoid, E be a non empty set, z, y, z be
elements of F/, and T be a left operation of S on E. Suppose x and y are
conjugated under T" and y and z are conjugated under 7. Then x and z
are conjugated under 7.

Let S be a unital non empty groupoid, let ¥ be a non empty set, let T be a
left operation of S on F, and let x be an element of E. The functor T'(x) yields
a subset of E and is defined as follows:

(Def. 15) T'(z) = {y;y ranges over elements of E: = and y are conjugated under
T}.

One can prove the following four propositions:

(7) Let S be a unital non empty groupoid, E be a non empty set, x be an
element of E, and T be a left operation of S on E. Then T'(z) is non
empty.

(8) Let G be a group, E be a non empty set, z, y be elements of E, and T
be a left operation of G on E. Then T'(z) misses T'(y) or T'(x) = T'(y).

(9) Let S be a unital non empty groupoid, E be a non empty finite set, = be
an element of £/, and T be a left operation of S on E. If x is fixed under
T, then T'(z) = {z}.

(10) Let G be a group, E be a non empty set, a be an element of F, and T'
be a left operation of G on E. Then T(a) = |e : T,|.

Let G be a group, let E be a non empty set, and let T" be a left operation
of G on E. The orbits of T yields a partition of £ and is defined by:

(Def. 16) The orbits of T'= {X; X ranges over subsets of E: \/

T(x)}.

X:

x:element of F

3. p-GROUPS

Let p be a prime natural number and let G be a group. We say that G is a
p-group if and only if:
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(Def. 17) There exists a natural number r such that ord(G) = p”.

Let p be a prime natural number, let G be a group, and let P be a subgroup
of G. We say that P is a p-group if and only if:

(Def. 18) There exists a finite group H such that P = H and H is a p-group.
One can prove the following proposition
(11) Let E be a non empty finite set, G be a finite group, p be a prime

natural number, and T be a left operation of G on E. If GG is a p-group,
then card Ty mod p = card E mod p.

4. THE SYLOW THEOREMS

Let p be a prime natural number, let G be a group, and let P be a subgroup
of G. We say that P is a Sylow p-subgroup if and only if:
(Def. 19) P is a p-group and pt |e : P|y.
We now state three propositions:
(12) For every finite group G and for every prime natural number p holds
there exists a subgroup of G which is a Sylow p-subgroup.
(13) Let G be a finite group and p be a prime natural number. If p | ord(G),
then there exists an element g of G such that ord(g) = p.
(14) Let G be a finite group and p be a prime natural number. Then
(i)  for every subgroup H of G such that H is a p-group there exists a
subgroup P of G such that P is a Sylow p-subgroup and H is a subgroup
of P, and
(ii)  for all subgroups P;, Py of G such that P is a Sylow p-subgroup and
P; is a Sylow p-subgroup holds P; and P» are conjugated.
Let G be a group and let p be a prime natural number. The functor Sylp(G)
yielding a subset of SubGr G is defined as follows:

(Def. 20) Syl,(G) = {H; H ranges over elements of SubGrG :

VP strict subgroup of ¢ (P =H A P is a Sylow p-subgroup)}.

Let G be a finite group and let p be a prime natural number. Note that
Syl,(G) is non empty and finite.

Let G be a finite group, let p be a prime natural number, let H be a subgroup
of G, and let h be an element of H. The functor vy, yielding a function from
Syl,(G) into Syl,(G) is defined by the condition (Def. 21).

(Def. 21) Let P; be an element of Syl (G). Then there exists an element P of
Syl,(G) and there exist strict subgroups Hy, Hz of G and there exists an
element g of G such that Py = 7y, ,(P1) and P, = H; and P, = Hy and
h™! =g and Hy = H,9.
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Let G be a finite group, let p be a prime natural number, and let H be a
subgroup of G. The functor Iy, yields a left operation of H on Syl,(G) and is
defined as follows:

(Def. 22) For every element h of H holds 'y (k) = pp.
The following proposition is true

(15) For every finite group G and for every prime natural number p holds
card(Syl,(G)) mod p = 1 and card(Syl,(G)) | ord(G).

5. APPENDIX

The following propositions are true:
(16) For all non empty sets X, Y holds
{[ X, {y}]:y ranges over elements of Y} =Y.

(17) For all natural numbers n, m, r and for every prime natural number p
such that n = p” - m and p{ m holds (1?*) mod p # 0.

(18) For every natural number n such that n > 0 holds ord(Z;") = n.

(19) For every group G and for every non empty subset A of G and for every
element g of G holds A = A - g.
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