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Summary. In this article we mainly define the information entropy [3],
[11] and prove some its basic properties. First, we discuss some properties on
four kinds of transformation functions between vector and matrix. The trans-
formation functions are LineVec2Mx, ColVec2Mx, Vec2DiagMx and Mx2FinS.
Mx2FinS is a horizontal concatenation operator for a given matrix, treating rows
of the given matrix as finite sequences, yielding a new finite sequence by hori-
zontally joining each row of the given matrix in order to index. Then we define
each concept of information entropy for a probability sequence and two kinds
of probability matrices, joint and conditional, that are defined in article [25].
Further, we discuss some properties of information entropy including Shannon’s
lemma, maximum property, additivity and super-additivity properties.

MML identifier: ENTROPY1, version: 7.8.05 4.84.971

The papers [21], [23], [1], [20], [24], [6], [14], [8], [4], [22], [17], [7], 9], [2], [5], [15],
[16], [12], [10], [13], [18], [25], and [19] provide the terminology and notation for
this paper.

1. PRELIMINARIES

For simplicity, we use the following convention: D denotes a non empty set,
i, j, k, | denote elements of N, n denotes a natural number, a, b, ¢, r, r1, 79
denote real numbers, p, ¢ denote finite sequences of elements of R, and M7, M>
denote matrices over R.

Next we state several propositions:

(1) Tk#0andi<land!<jand k|, theni+k < j+E.
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(2) Ifr >0, then (log_(e))(r) <r—1and r = 1iff (log_(e))(r) =r —1 and
r # 1 iff (log-(e))(r) <r —1.

(3) Ifr >0, then log,7 <r—1andr =1ifflog,r =7 —1 and r # 1 iff
log,r <r—1.

(4) Ifa>1andb> 1, then log,b > 0.

(5) Ifa>0anda#1andb>0,then —log, b= log,(3).

(6) Ifa >0and a # 1 and b > 0 and ¢ > 0, then b-c-log,(b-c) =
b-c-log,b+b-c-log,c.

(7) Let q, q1, g2 be finite sequences of elements of R. Suppose len ¢; = leng
and leng; = lengs and for every k such that k& € domg; holds ¢g(k) =

q1(k) + q2(k). Then 3 2q =3 q1+ > ¢2.

(8) Let q, q1, g2 be finite sequences of elements of R. Suppose len g; = lengq
and leng; = lengs and for every k such that k € domg; holds ¢q(k) =

q1(k) — q2(k). Then 32 q =3 q1 — > qo.
(9) Suppose lenp > 1. Then there exists ¢ such that len g = lenp and ¢(1) =
p(1) and for every k such that 0 # k and k < lenp holds ¢(k + 1) =
q(k) + p(k+1) and >_p = q(lenp).
Let us consider p. Let us observe that p is non-negative if and only if:
(Def. 1) For every i such that i € domp holds p(i) > 0.

Let us note that there exists a finite sequence of elements of R which is
non-negative.
The following proposition is true

(10) If p is non-negative and r > 0, then r - p is non-negative.

Let us consider p, k. We say that p has only one value in £ if and only if:
(Def. 2) k € domp and for every i such that i € domp and 7 # k holds p(i) = 0.

Next we state four propositions:

(11) 1If p has only one value in k and i # k, then p(i) = 0.

(12) If lenp = leng and p has only one value in k, then p e ¢ has only one

value in k and (p e ¢)(k) = p(k) - q(k).
(13) 1If p has only one value in k, then > p = p(k).

(14) If p is non-negative, then for every k such that k € domp and p(k) = > p
holds p has only one value in k.

Let us observe that every finite sequence of elements of R which is finite
probability distribution is also non empty and non-negative.
One can prove the following propositions:
(15) Let p be finite probability distribution finite sequence of elements of R

and given k such that £ € domp and p(k) = 1. Then p has only one value
in k.
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(16) Let i be a non empty natural number. Then i — 1 is finite probability
distribution finite sequence of elements of R.

One can check that every matrix over R which is summable-to-1 is also non
empty yielding and every matrix over R which is joint probability is also non
empty yielding.

The following propositions are true:

(17) For every matrix M over R such that M = () holds SumAll M = 0.

(18) For every matrix M over D and for every i such that ¢ € dom M holds
dom M (i) = Seg width M.

(19) M, is nonnegative iff for every i such that ¢ € dom M; holds Line(My, 1)
is non-negative.

2. PROPERTIES OF TRANSFORMATIONS BETWEEN VECTOR AND MATRIX

Next we state four propositions:
(20) For every j such that j € domp holds (LineVec2Mx p); = (p(5))-
(21) Let p be a non empty finite sequence of elements of R, ¢ be a fi-
nite sequence of elements of R, and M be a matrix over R. Then
M = ColVec2Mx p - LineVec2Mx ¢ if and only if the following conditions
are satisfied:
(i) lenM =lenp,
(ii)  width M =lengq, and
(ili)  for all 4, j such that (4, j) € the indices of M holds M; ; = p(i) - q(j).
(22) Let p be a non empty finite sequence of elements of R, ¢ be a fi-
nite sequence of elements of R, and M be a matrix over R. Then
M = ColVec2Mx p - LineVec2Mx ¢ if and only if the following conditions
are satisfied:
(i) lenM =lenp,
(ii)  width M =lengq, and
(iii)  for every i such that ¢ € dom M holds Line(M, i) = p(i) - q.
(23) Let p, g be finite probability distribution finite sequences of elements of
R. Then ColVec2Mx p - LineVec2Mx q is joint probability.

Let us consider n and let M7 be a matrix over R of dimension n. We say
that M is diagonal if and only if:
(Def. 3) For all 4, j such that (i, j) € the indices of My and (M;);; # 0 holds
i=j.
Let us consider n. Observe that there exists a matrix over R of dimension
n which is diagonal.
The following proposition is true



114 BO ZHANG AND YATSUKA NAKAMURA

(24) Let M; be a matrix over R of dimension n. Then M; is diagonal if and
only if for every i such that ¢ € dom M; holds Line(Mi,7) has only one
value in q.

Let us consider p. The functor Vec2DiagMx p yielding a diagonal matrix
over R of dimension len p is defined as follows:
(Def. 4) For every j such that j € domp holds (Vec2DiagMx p); ; = p(j).
One can prove the following propositions:

(25) My = Vec2DiagMx p iff len M7 = lenp and width M; = lenp and for
every i such that ¢ € dom M; holds Line(Mj,4) has only one value in 4
and Line(My,7)(i) = p(7).

(26) Suppose lenp = len M;. Then My = Vec2DiagMx p - M if and only if
the following conditions are satisfied:

(i) len My =lenp,
(ii)  width My = width M, and
(i)  for all 4, j such that (i, j) € the indices of M5 holds (Ms);; = p(i) -
(M1)i ;-

(27) If lenp = len M;, then My = Vec2DiagMxp - M iff len My = lenp
and width My = width M; and for every ¢ such that ¢ € dom Ms holds
Line(Ma,4) = p(i) - Line(Mq,1).

(28) Let p be finite probability distribution finite sequence of elements of R
and M be a non empty yielding conditional probability matrix over R. If
lenp = len M, then Vec2DiagMx p - M is joint probability.

(29) Let M be a matrix over D and p be a finite sequence of elements of D*.
Suppose lenp = len M and p(1) = M(1) and for every k such that k > 1
and k < len M holds p(k+1) = p(k) "M (k+1). Let given k. If k € dom p,
then len p(k) = k - width M.

(30) Let M be a matrix over D and p be a finite sequence of elements of
D*. Suppose lenp = len M and p(1) = M(1) and for every k such that
k>1and k <len M holds p(k + 1) = p(k) ~ M(k + 1). Let given i, j. If
i € domp and j € domp and i < j, then dom p(i) C dom p(7).

(31) Let M be a matrix over D and p be a finite sequence of elements of D*.
Suppose lenp = len M and p(1) = M(1) and for every k such that k > 1
and k < len M holds p(k+1) = p(k) >~ M (k+1). Then lenp(1) = width M
and for every j such that (1, j) € the indices of M holds j € domp(1)
and p(l)(j) = Ml,j-

(32) Let M be a matrix over D and p be a finite sequence of elements of D*.
Suppose lenp = len M and p(1) = M(1) and for every k such that k > 1
and k < len M holds p(k+1) = p(k) >~ M(k+1). Let given j. If j > 1 and
j <lenp, then for every [ such that [ € dom p(j) holds p(5)(1) = p(j+1)(l).

(33) Let M be a matrix over D and p be a finite sequence of elements of D*.
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Suppose lenp = len M and p(1) = M(1) and for every k such that k > 1
and k < len M holds p(k+ 1) = p(k) =~ M (k + 1). Let given i, j. Suppose
i € domp and j € domp and ¢ < j. Let given [. If | € domp(i), then
p() (1) = p(3)(1).

(34) Let M be a matrix over D and p be a finite sequence of elements of
D*. Suppose lenp = len M and p(1) = M(1) and for every k such that
E > 1 and k < len M holds p(k + 1) = p(k) = M(k + 1). Let given j.
Suppose j > 1 and j < lenp. Let given [. If [ € Segwidth M, then
jewidthM +1 € domp(j+1) and p(j +1)(j-width M +1) = M (5 +1)(1).

(35) Let M be a matrix over D and p be a finite sequence of elements of
D*. Suppose lenp = len M and p(1) = M(1) and for every k such that
k> 1and k < len M holds p(k + 1) = p(k) ~ M(k + 1). Let given 1, j.
Suppose (i, j) € the indices of M. Then (i — 1) - width M + j € dom p(z)
and M, ; = p(i)((i — 1) - width M + j).

(36) Let M be a matrix over D and p be a finite sequence of elements of D*.
Suppose lenp = len M and p(1) = M(1) and for every k such that & > 1
and k < len M holds p(k + 1) = p(k) =~ M(k + 1). Let given i, j. Suppose
(i, j) € the indices of M. Then (i — 1) - width M + j € dom p(len M) and
M;; =p(len M)((i — 1) - width M + 7).

(37) Let M be a matrix over R and p be a finite sequence of elements of R*.
Suppose lenp = len M and p(1) = M(1) and for every k such that k > 1
and k < len M holds p(k + 1) = p(k) ~ M(k + 1). Let given k. If k > 1
and k <len M, then Y p(k+1)=> p(k)+ > M(k+1).

(38) Let M be a matrix over R and p be a finite sequence of elements of R*.
Suppose lenp = len M and p(1) = M(1) and for every k such that & > 1
and k < len M holds p(k + 1) = p(k) ~ M(k + 1). Then SumAlM =
> p(len M).

Let D be a non empty set and let M be a matrix over D. The functor

Mx2FinS M yields a finite sequence of elements of D and is defined by:
(Def. 5)(1) M=x2FinSM = 0 if len M = 0,

(ii)  there exists a finite sequence p of elements of D* such that
Mx2FinSM = p(len M) and lenp = len M and p(1) = M(1) and for
every k such that k¥ > 1 and k < len M holds p(k+ 1) = p(k) ~ M(k + 1),
otherwise.

We now state several propositions:

(39) For every matrix M over D holds len Mx2FinS M = len M - width M.

(40) Let M be a matrix over D and given i, j. If (i, j) € the indices of M,
then (i—1)-width M +j € dom Mx2FinS M and M; ; = (Mx2FinS M)((i—
1) - width M + j).

(41) Let M be a matrix over D and given k, [. Suppose k € dom Mx2FinS M
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and [ = k—1. Then ((I+width M)+1, (Imod width M)+1) € the indices
of M and (Mx2FinS M)(k) = M width M)+1,(I mod width M)+1-

(42) SumAll M; = ) Mx2FinS M;.

(43) M, is nonnegative iff Mx2FinS M; is non-negative.

(44) M, is joint probability iff Mx2FinS M; is finite probability distribution.
(45) Let p, ¢ be finite probability distribution finite sequences of elements

of R. Then Mx2FinS(ColVec2Mx p - LineVec2Mx q) is finite probability
distribution.

(46) Let p be finite probability distribution finite sequence of elements of R
and M be a non empty yielding conditional probability matrix over R.
If lenp = len M, then Mx2FinS(Vec2DiagMx p - M) is finite probability
distribution.

3. INFORMATION ENTROPY

Let us consider a, p. Let us assume that a > 0 and a # 1 and p is non-
—>
negative. The functor log, p yields a finite sequence of elements of R and is

defined by:
(Def. 6) len lo—_g>ap = lenp and for every k such that £ € dom I?)?gap holds if
p(k) > 0, then (log, p)(k) = log, p(k) and if p(k) = 0, then (log, p)(k) = 0.
Let us consider p. The functor Mp yields a finite sequence of elements

of R and is defined by:
(Def. 7) id logp = p e logy p.
The following propositions are true:
(47) Let p be a non-negative finite sequence of elements of R and given q.
Then q = Wg p if and only if the following conditions are satisfied:
(i) leng =lenp, and
(ii) for every k such that k € dom ¢ holds ¢q(k) = p(k) - logs p(k).
(48) Let p be a non-negative finite sequence of elements of R and given k such
that k € domp. Then
(i) if p(k) =0, then (mgp)(k) =0, and
(i) if p(k) > 0, then (id Togp)(k) = p(k) - log, p(k).
(49) Let p be a non-negative finite sequence of elements of R and given q.
Then q = —id—log> p if and only if the following conditions are satisfied:
(i) leng =lenp, and
(ii)  for every k such that k € dom ¢ holds ¢q(k) = p(k) - logg(wlk)).
(50) Let p be a non-negative finite sequence of elements of R. Suppose r; > 0
and o > 0. Let given i. If i € domp and p(i) = 71 -rg, then (Wg p)(i) =
r1 -T2 -logery + 11 - 1o - logy Ta.
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(51) For every non-negative finite sequence p of elements of R such that » > 0
holds id—bér-p:r-logzr-p—i—r-(po@zp).

(52) Let p be a non empty finite probability distribution finite sequence of
elements of R and given k. If k € domp, then (1d—bs>gp)(k) <0.

Let us consider M;. Let us assume that M; is nonnegative. The functor
idTg M, yields a matrix over R and is defined as follows:
(Def. 8) lenidTng = len M; and widtthMl = width M; and for ev-
ery k such that k € domid log M; holds (KiTg M;i)(k) = Line(My,k) e
fog, Line(My, k).
The following two propositions are true:

(53) For every nonnegative matrix M over R and for every k such that k €
dom M holds Line(id log M, k) = id log Line(M, k).

(54) Let M be a nonnegative matrix over R and M3 be a matrix over R.
Then M3 = id—loé M if and only if the following conditions are satisfied:

(i) lenMs3 =len M,

(ii)  width M3 = width M, and

(ili)  for all 4, j such that (i, j) € the indices of M3 holds (M3);; = M, ; -

logy (Mi,j)-
Let p be a finite sequence of elements of R. The functor Entropy p yields a
real number and is defined by:
(Def. 9) Entropyp = —>_ idTgp.

We now state several propositions:

(55) For every non empty finite probability distribution finite sequence p of
elements of R holds Entropy p > 0.

(56) Let p be a non empty finite probability distribution finite sequence of
elements of R. If there exists k such that £ € domp and p(k) = 1, then
Entropy p = 0.

(57) Let p, ¢ be non empty finite probability distribution finite sequences of

elements of R and pq, ¢3 be finite sequences of elements of R. Suppose
that
(i)
(i)
(ili)) lengs =leng, and
) for every k such that & € domp holds p(k) > 0 and ¢(k) > 0 and
p1(k) = —p(k) - logy p(k) and g3(k) = —p(k) - log, q(k).
Then
v) Xp <X as,
(vi)  for every k such that k € domp holds p(k) = q(k) iff Y p1 = >_ g3, and
(vii)  there exists k such that & € domp and p(k) # q(k) iff Y p1 <> qgs.

lenp = len g,
lenp; = lenp,

(iv
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(58) Let p be a non empty finite probability distribution finite sequence of
elements of R. Suppose that for every k such that k£ € domp holds p(k) >
0. Then
(i)  Entropy p < log, lenp,
(ii)  for every k such that k& € domp holds p(k) = lerllp iff Entropyp =
log, len p, and
(ili)  there exists k such that k¥ € domp and p(k) #

len

1p iff Entropyp <

log, len p.
(59) For every nonnegative matrix M over R holds Mx2FinSid log M =
id log Mx2FinS M.

(60) Let p, ¢ be finite probability distribution finite sequences of elements of
R and M be a matrix over R. If M = ColVec2Mx p - LineVec2Mx ¢, then
—
SumAllid log M = > id logp + > id log q.

Let us consider M;. The entropy of joint probability of M; yields a real

number and is defined as follows:
(Def. 10) The entropy of joint probability of M; = Entropy Mx2FinS M.
Next we state the proposition

(61) Let p, g be finite probability distribution finite sequences of elements of
R. Then the entropy of joint probability of ColVec2Mx p-LineVec2Mx q =
Entropy p + Entropy q.

Let us consider M;y. The entropy of conditional probability of M yields a
finite sequence of elements of R and is defined by the conditions (Def. 11).

(Def. 11)(i)  len (the entropy of conditional probability of M;) = len M7, and
(ii)  for every k such that k € dom (the entropy of conditional probabil-
ity of M) holds (the entropy of conditional probability of Mi)(k) =
Entropy Line(M, k).
One can prove the following propositions:

(62) Let M be a non empty yielding conditional probability matrix over R
and p be a finite sequence of elements of R. Then p = the entropy of
conditional probability of M if and only if lenp = len M and for every k
such that k& € dom p holds p(k) = —Z(idTg M)(k).

(63) Let M be a non empty yielding conditional probability matrix over R.
Then the entropy of conditional probability of M = —LineSum id—los;:g M.

(64) Let p be finite probability distribution finite sequence of elements
of R and M be a non empty yielding conditional probability matrix
over R. Suppose lenp = len M. Let M3 be a matrix over R. If
M3 = Vec2DiagMx p - M, then SumAllid—loéMg = Zid—loép +>(pe
LineSumid—loéM ).

(65) Let p be finite probability distribution finite sequence of elements of
R and M be a non empty yielding conditional probability matrix over
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R. Suppose lenp = len M. Then the entropy of joint probability of
Vec2DiagMx p - M = Entropy p+ >_(p e the entropy of conditional proba-
bility of M).

REFERENCES

Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

P. Billingsley. Ergodic Theory and Information. John Wiley & Sons, 1964.

Czestaw Byliniski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
Czestaw Byliniski. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529-536, 1990.

Czestaw Byliniski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

Czestaw Byliriski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,
1990.

Czestaw Byliriski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53,
1990.

Czestaw Byliniski. The sum and product of finite sequences of real numbers. Formalized

Mathematics, 1(4):661-668, 1990.

Agata Darmochwal. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
Shigeichi Hirasawa. Information Theory. Baifukan CO., 1996.

Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics,
2(4):475-480, 1991.

Artur Kornitowicz. On the real valued functions. Formalized Mathematics, 13(1):181-187,

Jarostaw Kotowicz. Real sequences and basic operations on them. Formalized Mathemat-
ics, 1(2):269-272, 1990.
Rafal Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890,

1990.
Yatsuka Nakamura, Nobuyuki Tamaura, and Wenpai Chang. A theory of matrices of real

elements. Formalized Mathematics, 14(1):21-28, 2006.

Library Committee of the Association of Mizar Users. Binary operations on numbers. To
appear in Formalized Mathematics.

Konrad Raczkowski and Andrzej Nedzusiak. Real exponents and logarithms. Formalized
Mathematics, 2(2):213-216, 1991.

Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195-200,

2004.
Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.

Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,

1990.
Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291—

296, 1990.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Bo Zhang and Yatsuka Nakamura. The definition of finite sequences and matrices of

probability, and addition of matrices of real elements. Formalized Mathematics, 14(3):101—
108, 2006.

Received July 9, 2007

119



