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Summary. In this article we define the Discrete Fourier Transforma-
tion for univariate polynomials and show that multiplication of polynomials can
be carried out by two Fourier Transformations with a vector multiplication in-
between. Our proof follows the standard one found in the literature and uses
Vandermonde matrices, see e.g. [27].
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The articles [20], [26], 28], [5], [6], [19], [12], [3], [18], [13], [25], [2], [4], [23], [8],
[24], [14], [10], [11], [16], [7], [29], [22], [1], [15], [9], [21], and [17] provide the
notation and terminology for this paper.

1. PRELIMINARIES

The following proposition is true

(1) Let n be an element of N, L be a unital integral domain-like non de-
generated non empty double loop structure, and x be an element of L. If
x # 0p, then 2™ # Op,.
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One can verify that every associative right unital add-associative right zeroed
right complementable left distributive non empty double loop structure which
is field-like is also integral domain-like.

The following four propositions are true:

(2) Let L be an add-associative right zeroed right complementable asso-
ciative commutative left unital field-like distributive non empty double
loop structure and z, y be elements of L. If x # 0y and y # Or, then
(@-y)t=a"tyh

(3) Let L be an associative commutative left unital distributive field-like non

empty double loop structure and z, z; be elements of L. If z # Or, then
zZ1 = 21_Zz

(4) Let L be a left zeroed right zeroed add-associative right complementable
non empty double loop structure, m be an element of N, and s be a finite
sequence of elements of L. Suppose len s = m and for every element k& of
N such that 1 < k and & < m holds s = 1. Then > s =m- 1.

(5) Let L be an add-associative right zeroed right complementable associa-
tive commutative left unital distributive field-like non empty double loop
structure, s be a finite sequence of elements of L, and ¢ be an element of
L. Suppose q # 11, and for every natural nulmber 7 such that 1 < i and
i <lens holds s(i) = ¢~ . Then Y s = %

Let L be a unital non empty double loop structure and let m be an element
of N. The functor m, yielding an element of L is defined as follows:
(Def. 1) mp=m-1p.
Next we state several propositions:

(6) Let L be a field and m, n, k be elements of N. Suppose m > 0 and n > 0.
Let M7 be a matrix over L of dimension m x n and M5 be a matrix over
L of dimension n x k. Then (mp, - My) - My =myp, - (M; - My).

(7) Let L be a non empty zero structure, p be an algebraic sequence of L,
and i be an element of N. If p(i) # 0z, then lenp > i + 1.

(8) For every non empty zero structure L and for every algebraic sequence
s of L such that lens > 0 holds s(lens — 1) # 0p.

(9) Let L be an add-associative right zeroed right complementable distribu-
tive commutative associative left unital integral domain-like non empty
double loop structure and p, ¢ be polynomials of L. If lenp > 0 and
leng > 0, then len(p * ¢) < lenp + leng.

(10) Let L be an associative non empty double loop structure, k, [ be elements
of L, and s; be a sequence of L. Then k- (I -s1) = (k-1) - s1.
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2. MULTIPLICATION OF ALGEBRAIC SEQUENCES

Let L be a non empty double loop structure and let mq, msy be sequences of

L. The functor my - mo yields a sequence of L and is defined as follows:
(Def. 2) For every element ¢ of N holds (mq - ma) (i) = mq(2) - ma(0).

Let L be an add-associative right zeroed right complementable left distribu-
tive non empty double loop structure and let my, mo be algebraic sequences of
L. Observe that mq - mo is finite-Support.

We now state two propositions:

(11) Let L be an add-associative right zeroed right complementable distribu-
tive non empty double loop structure and mq, mo be algebraic sequences
of L. Then len(my - my) < min(len my,len mo).

(12) Let L be an add-associative right zeroed right complementable distribu-
tive integral domain-like non empty double loop structure and my, ms be
algebraic sequences of L. If lenmq = lenmg, then len(my - msy) = lenm;.

3. POWERS IN DOUBLE LOOP STRUCTURES

Let L be an associative commutative left unital distributive field-like non
empty double loop structure, let a be an element of L, and let ¢ be an integer.
The functor a’ yielding an element of L is defined as follows:

(Def. 3) a' = {

Next we state a number of propositions:

powery (a, 1), if 0 <,
power; (a, |i|)~!, otherwise.

(13) Let L be an associative commutative left unital distributive field-like non
empty double loop structure and x be an element of L. Then z° = 1.

(14) Let L be an associative commutative left unital distributive field-like non

empty double loop structure and x be an element of L. Then z! = .

(15) Let L be an associative commutative left unital distributive field-like non

empty double loop structure and z be an element of L. Then 27! =z~

(16) Let L be an associative commutative left unital distributive field-like non
degenerated non empty double loop structure and ¢ be an integer. Then
(1) =1p.

(17) Let L be an associative commutative left unital distributive field-like non
empty double loop structure, x be an element of L, and n be an element
of N. Then z"*! = 2" -z and 2" ! =z - 2™,

(18) Let L be an add-associative right zeroed right complementable associa-
tive commutative left unital distributive field-like non degenerated non

empty double loop structure, ¢ be an integer, and x be an element of L.
If 2 # 0p, then (2)~! = 27"



124 KRZYSZTOF TREYDEROWSKI et al.

(19) For every field L and for every integer j and for every element x of L
such that & # 07, holds /Tt = 27 - 2!

(20) For every field L and for every integer j and for every element z of L
such that & # 07, holds 2/ ~! = 27 - 2~ L.

(21) For every field L and for all integers 4, j and for every element = of L
such that = # 0r, holds 2% - 2/ = 217,

(22) Let L be a field-like associative unital add-associative right zeroed right
complementable left distributive commutative non degenerated non empty
double loop structure, k£ be an element of N, and = be an element of L. If
x # 0p, then (z~1)*F = 27F,

(23) Let L be a field and x be an element of L. Suppose z # 0r. Let i, j, k
be natural numbers. Then z(—1 (k=1) . 5=G=1)(k=1) — z(i—=7)-(k=1)

(24) Let L be an associative commutative left unital distributive field-like non
empty double loop structure, x be an element of L, and n, m be elements
of N. Then z™™ = (z™)™.

(25) For every field L and for every element x of L such that x # 0y, and for
every integer i holds (z~ 1) = (z%)~L.

(26) For every field L and for every element x of L such that x # 0y, and for
all integers 4, j holds z%7 = (z%)/.

(27) Let L be an associative commutative left unital distributive field-like non

empty double loop structure, x be an element of L, and ¢, £ be elements
of N. If 1 < k, then z**—1 = (xi)k—l‘

4. CONVERSION BETWEEN ALGEBRAIC SEQUENCES AND MATRICES

Let m be a natural number, let L be a non empty zero structure, and let p
be an algebraic sequence of L. The functor mConv(p, m) yielding a matrix over
L of dimension m x 1 is defined as follows:

(Def. 4) For every natural number ¢ such that 1 < ¢ and ¢ < m holds
(mConv(p,m));1 = p(i — 1).
We now state two propositions:

(28) Let m be a natural number. Suppose m > 0. Let L be a non empty zero
structure and p be an algebraic sequence of L. Then len mConv(p,m) = m
and widthmConv(p,m) = 1 and for every natural number i such that
i < m holds (mConv(p, m));y+1,1 = p(i).

(29) Let m be a natural number. Suppose m > 0. Let L be a non empty
zero structure, a be an algebraic sequence of L, and M be a matrix over

L of dimension m x 1. Suppose that for every natural number ¢ such that
i < m holds M; 1,1 = a(i). Then mConv(a, m) = M.
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Let L be a non empty zero structure and let M be a matrix over L. The
functor aConv M yielding an algebraic sequence of L is defined by the conditions
(Def. 5).

(Def. 5)(1)  For every natural number i such that i < len M holds (aConv M) (i) =
M;i1,1, and
(ii)  for every natural number i such that ¢ > len M holds (aConv M)(i) =
Or.

5. PRIMITIVE RooTs, DFT AND VANDERMONDE MATRIX

Let L be a unital non empty double loop structure, let = be an element of
L, and let n be an element of N. We say that x is primitive root of degree n if
and only if:

(Def. 6) n # 0 and 2™ = 17, and for every element ¢ of N such that 0 < ¢ and
i < n holds x* # 1y.

We now state three propositions:

(30) Let L be a unital add-associative right zeroed right complementable right
distributive non degenerated non empty double loop structure and n be
an element of N. Then 07, is Inot primitive root of degree n.

(31) Let L be an add-associative right zeroed right complementable associa-
tive commutative unital distributive field-like non degenerated non empty
double loop structure, m be an element of N, and x be an element of L.
If  is primitive root of degree m, then x~! is primitive root of degree m.

(32) Let L be an add-associative right zeroed right complementable associa-
tive commutative left unital distributive field-like non degenerated non
empty double loop structure, m be an element of N, and x be an element
of L. Suppose x is primitive root of degree m. Let i, j be natural numbers.
If1<iandi<mand1<jandj<mandi# j, then 27 # 1.

Let m be a natural number, let L be a unital non empty double loop struc-
ture, let p be a polynomial of L, and let x be an element of L. The functor
DFT(p,z,m) yielding an algebraic sequence of L is defined by the conditions
(Def. 7).

(Def. 7)(i)  For every element i of N such that ¢ < m holds (DFT(p,z,m))(i) =

eval(p, z'), and
(ii)  for every element ¢ of N such that ¢ > m holds (DFT(p,z,m))(i) = 0r.

The following propositions are true:

(33) Let m be a natural number, L be a unital non empty double loop struc-
ture, and x be an element of L. Then DFT(0. L, z,m) = 0. L.

(34) Let m be a natural number, L be a field, p, ¢ be polynomials of L, and =
be an element of L. Then DFT(p, z, m)-DFT(q,z,m) = DFT(p*q,x,m).
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Let L be an associative commutative left unital distributive field-like non
empty double loop structure, let m be a natural number, and let z be an element
of L. The functor Vandermonde(z, m) yielding a matrix over L of dimension m
is defined as follows:

(Def. 8) For all natural numbers 4, j such that 1 < i and ¢ < m and 1 < j and
j < m holds (Vandermonde(z,m)); ; = x(~1-0=1),

Let L be an associative commutative left unital distributive field-like non
empty double loop structure, let m be a natural number, and let = be an element
of L. We introduce VM(z, m) as a synonym of Vandermonde(x,m).

One can prove the following propositions:

(35) Let L be a field and m, n be natural numbers. Suppose m > 0. Let M be

1 0 mXxXm

a matrix over L of dimension m X n. Then -M = M.
0 1/,

(36) Let L be a field and m be an element of N. Suppose 0 < m. Let u,
v, w1 be matrices over L of dimension m. Suppose that for all natural
numbers ¢, j such that 1 < ¢ and ¢ < mand 1 < j and j < m holds
(u-v)i; =mp - (u1);;. Then u-v=mp - u;.

(37) Let L be a field, x be an element of L, s be a finite sequence of elements
of L, and ¢, j, m be elements of N. Suppose that x is primitive root of
degreemand 1 <diand i <mand 1< jandj <m and lens = m and for
every natural number k such that 1 < k and k£ < m holds s = x(i=3) (k=1)
Then (VM(z,m) - VM(z71,m)); ; = s.

(38) Let L be a field, m, i, j be elements of N, and = be an element of L.
Suppose i # jand 1 < iandi < mand 1 < j and j < m and x is
primitive root of degree m. Then (VM(z,m) - VM(z~!,m)); ; = 0r.

(39) Let L be a field and m be an element of N. Suppose m > 0. Let z
be an element of L. If x is primitive root of degree m, then VM(z,m) -

1 0 mXxXm
VM(z=t,m) =my, - .
0 L),
(40) Let L be a field, m be an element of N, and = be an element of L. If
m > 0 and x is primitive root of degree m, then VM(z,m)-VM(x~!,m) =
VM(z~t,m) - VM(z,m).
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6. DFT-MULTIPLICATION OF POLYNOMIALS

We now state four propositions:

(41) Let L be a field, p be a polynomial of L, and m be an element of N. Sup-
pose m > 0 and lenp < m. Let  be an element of L and 7 be an element
of N. If i < m, then (DFT(p,x,m))(i) = (VM(z, m) - mConv(p,m));y1,1.

(42) Let L be a field, p be a polynomial of L, and m be a natural number. If
0 < m and lenp < m, then for every element x of L holds DFT(p,x,m) =
aConv(VM(z, m) - mConv(p, m)).

(43) Let L be a field, p, ¢ be polynomials of L, and m be an element of N.
Suppose m > 0 and len p < m and len ¢ < m. Let « be an element of L. If z
is primitive root of degree 2-m, then DET(DFT (p*q,x,2-m), 2~ %,2-m) =
(2-m)L-(pxq)

(44) Let L be a field, p, ¢ be polynomials of L, and m be an element of N.
Suppose m > 0 and lenp < m and leng < m. Let « be an element of
L. Suppose x is primitive root of degree 2 -m. If (2-m)y # 0r, then
((2-m)r)~t-DFT(DFT(p,x,2-m)-DFT(q,2,2-m),z~1,2-m) =pxq.
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