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Summary. In this article we define the Discrete Fourier Transforma-

tion for univariate polynomials and show that multiplication of polynomials can

be carried out by two Fourier Transformations with a vector multiplication in-

between. Our proof follows the standard one found in the literature and uses

Vandermonde matrices, see e.g. [27].

MML identifier: POLYNOM8, version: 7.8.03 4.75.958

The articles [20], [26], [28], [5], [6], [19], [12], [3], [18], [13], [25], [2], [4], [23], [8],

[24], [14], [10], [11], [16], [7], [29], [22], [1], [15], [9], [21], and [17] provide the

notation and terminology for this paper.

1. Preliminaries

The following proposition is true

(1) Let n be an element of N, L be a unital integral domain-like non de-

generated non empty double loop structure, and x be an element of L. If

x 6= 0L, then x
n 6= 0L.
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One can verify that every associative right unital add-associative right zeroed

right complementable left distributive non empty double loop structure which

is field-like is also integral domain-like.

The following four propositions are true:

(2) Let L be an add-associative right zeroed right complementable asso-

ciative commutative left unital field-like distributive non empty double

loop structure and x, y be elements of L. If x 6= 0L and y 6= 0L, then

(x · y)−1 = x−1 · y−1.

(3) Let L be an associative commutative left unital distributive field-like non

empty double loop structure and z, z1 be elements of L. If z 6= 0L, then

z1 =
z1·z
z
.

(4) Let L be a left zeroed right zeroed add-associative right complementable

non empty double loop structure, m be an element of N, and s be a finite

sequence of elements of L. Suppose len s = m and for every element k of

N such that 1 ≤ k and k ≤ m holds sk = 1L. Then
∑

s = m · 1L.

(5) Let L be an add-associative right zeroed right complementable associa-

tive commutative left unital distributive field-like non empty double loop

structure, s be a finite sequence of elements of L, and q be an element of

L. Suppose q 6= 1L and for every natural number i such that 1 ≤ i and

i ≤ len s holds s(i) = qi−
′1. Then

∑

s = 1L−qlen s

1L−q
.

Let L be a unital non empty double loop structure and let m be an element

of N. The functor mL yielding an element of L is defined as follows:

(Def. 1) mL = m · 1L.

Next we state several propositions:

(6) Let L be a field andm, n, k be elements of N. Supposem > 0 and n > 0.

Let M1 be a matrix over L of dimension m × n and M2 be a matrix over

L of dimension n × k. Then (mL ·M1) ·M2 = mL · (M1 ·M2).

(7) Let L be a non empty zero structure, p be an algebraic sequence of L,

and i be an element of N. If p(i) 6= 0L, then len p ≥ i+ 1.

(8) For every non empty zero structure L and for every algebraic sequence

s of L such that len s > 0 holds s(len s− 1) 6= 0L.

(9) Let L be an add-associative right zeroed right complementable distribu-

tive commutative associative left unital integral domain-like non empty

double loop structure and p, q be polynomials of L. If len p > 0 and

len q > 0, then len(p ∗ q) ≤ len p+ len q.

(10) Let L be an associative non empty double loop structure, k, l be elements

of L, and s1 be a sequence of L. Then k · (l · s1) = (k · l) · s1.
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2. Multiplication of Algebraic Sequences

Let L be a non empty double loop structure and let m1, m2 be sequences of

L. The functor m1 ·m2 yields a sequence of L and is defined as follows:

(Def. 2) For every element i of N holds (m1 ·m2)(i) = m1(i) ·m2(i).

Let L be an add-associative right zeroed right complementable left distribu-

tive non empty double loop structure and let m1, m2 be algebraic sequences of

L. Observe that m1 ·m2 is finite-Support.

We now state two propositions:

(11) Let L be an add-associative right zeroed right complementable distribu-

tive non empty double loop structure and m1, m2 be algebraic sequences

of L. Then len(m1 ·m2) ≤ min(lenm1, lenm2).

(12) Let L be an add-associative right zeroed right complementable distribu-

tive integral domain-like non empty double loop structure and m1, m2 be

algebraic sequences of L. If lenm1 = lenm2, then len(m1 ·m2) = lenm1.

3. Powers in Double Loop Structures

Let L be an associative commutative left unital distributive field-like non

empty double loop structure, let a be an element of L, and let i be an integer.

The functor ai yielding an element of L is defined as follows:

(Def. 3) ai =

{

powerL(a, i), if 0 ≤ i,

powerL(a, |i|)
−1, otherwise.

Next we state a number of propositions:

(13) Let L be an associative commutative left unital distributive field-like non

empty double loop structure and x be an element of L. Then x0 = 1L.

(14) Let L be an associative commutative left unital distributive field-like non

empty double loop structure and x be an element of L. Then x1 = x.

(15) Let L be an associative commutative left unital distributive field-like non

empty double loop structure and x be an element of L. Then x−1 = x−1.

(16) Let L be an associative commutative left unital distributive field-like non

degenerated non empty double loop structure and i be an integer. Then

(1L)
i = 1L.

(17) Let L be an associative commutative left unital distributive field-like non

empty double loop structure, x be an element of L, and n be an element

of N. Then xn+1 = xn · x and xn+1 = x · xn.

(18) Let L be an add-associative right zeroed right complementable associa-

tive commutative left unital distributive field-like non degenerated non

empty double loop structure, i be an integer, and x be an element of L.

If x 6= 0L, then (x
i)−1 = x−i.
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(19) For every field L and for every integer j and for every element x of L

such that x 6= 0L holds xj+1 = xj · x1.

(20) For every field L and for every integer j and for every element x of L

such that x 6= 0L holds xj−1 = xj · x−1.

(21) For every field L and for all integers i, j and for every element x of L

such that x 6= 0L holds xi · xj = xi+j.

(22) Let L be a field-like associative unital add-associative right zeroed right

complementable left distributive commutative non degenerated non empty

double loop structure, k be an element of N, and x be an element of L. If

x 6= 0L, then (x
−1)k = x−k.

(23) Let L be a field and x be an element of L. Suppose x 6= 0L. Let i, j, k

be natural numbers. Then x(i−1)·(k−1) · x−(j−1)·(k−1) = x(i−j)·(k−1).

(24) Let L be an associative commutative left unital distributive field-like non

empty double loop structure, x be an element of L, and n, m be elements

of N. Then xn·m = (xn)m.

(25) For every field L and for every element x of L such that x 6= 0L and for

every integer i holds (x−1)i = (xi)−1.

(26) For every field L and for every element x of L such that x 6= 0L and for

all integers i, j holds xi·j = (xi)j.

(27) Let L be an associative commutative left unital distributive field-like non

empty double loop structure, x be an element of L, and i, k be elements

of N. If 1 ≤ k, then xi·(k−1) = (xi)k−1.

4. Conversion between Algebraic Sequences and Matrices

Let m be a natural number, let L be a non empty zero structure, and let p

be an algebraic sequence of L. The functor mConv(p,m) yielding a matrix over

L of dimension m × 1 is defined as follows:

(Def. 4) For every natural number i such that 1 ≤ i and i ≤ m holds

(mConv(p,m))i,1 = p(i− 1).

We now state two propositions:

(28) Let m be a natural number. Suppose m > 0. Let L be a non empty zero

structure and p be an algebraic sequence of L. Then lenmConv(p,m) = m

and widthmConv(p,m) = 1 and for every natural number i such that

i < m holds (mConv(p,m))i+1,1 = p(i).

(29) Let m be a natural number. Suppose m > 0. Let L be a non empty

zero structure, a be an algebraic sequence of L, and M be a matrix over

L of dimension m × 1. Suppose that for every natural number i such that

i < m holds Mi+1,1 = a(i). Then mConv(a,m) =M.
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Let L be a non empty zero structure and let M be a matrix over L. The

functor aConvM yielding an algebraic sequence of L is defined by the conditions

(Def. 5).

(Def. 5)(i) For every natural number i such that i < lenM holds (aConvM)(i) =

Mi+1,1, and

(ii) for every natural number i such that i ≥ lenM holds (aConvM)(i) =

0L.

5. Primitive Roots, DFT and Vandermonde Matrix

Let L be a unital non empty double loop structure, let x be an element of

L, and let n be an element of N. We say that x is primitive root of degree n if

and only if:

(Def. 6) n 6= 0 and xn = 1L and for every element i of N such that 0 < i and

i < n holds xi 6= 1L.

We now state three propositions:

(30) Let L be a unital add-associative right zeroed right complementable right

distributive non degenerated non empty double loop structure and n be

an element of N. Then 0L is !not primitive root of degree n.

(31) Let L be an add-associative right zeroed right complementable associa-

tive commutative unital distributive field-like non degenerated non empty

double loop structure, m be an element of N, and x be an element of L.

If x is primitive root of degree m, then x−1 is primitive root of degree m.

(32) Let L be an add-associative right zeroed right complementable associa-

tive commutative left unital distributive field-like non degenerated non

empty double loop structure, m be an element of N, and x be an element

of L. Suppose x is primitive root of degree m. Let i, j be natural numbers.

If 1 ≤ i and i ≤ m and 1 ≤ j and j ≤ m and i 6= j, then xi−j 6= 1L.

Let m be a natural number, let L be a unital non empty double loop struc-

ture, let p be a polynomial of L, and let x be an element of L. The functor

DFT(p, x,m) yielding an algebraic sequence of L is defined by the conditions

(Def. 7).

(Def. 7)(i) For every element i of N such that i < m holds (DFT(p, x,m))(i) =

eval(p, xi), and

(ii) for every element i of N such that i ≥ m holds (DFT(p, x,m))(i) = 0L.

The following propositions are true:

(33) Let m be a natural number, L be a unital non empty double loop struc-

ture, and x be an element of L. Then DFT(0. L, x,m) = 0. L.

(34) Let m be a natural number, L be a field, p, q be polynomials of L, and x

be an element of L. Then DFT(p, x,m) ·DFT(q, x,m) = DFT(p∗q, x,m).
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Let L be an associative commutative left unital distributive field-like non

empty double loop structure, let m be a natural number, and let x be an element

of L. The functor Vandermonde(x,m) yielding a matrix over L of dimension m

is defined as follows:

(Def. 8) For all natural numbers i, j such that 1 ≤ i and i ≤ m and 1 ≤ j and

j ≤ m holds (Vandermonde(x,m))i,j = x(i−1)·(j−1).

Let L be an associative commutative left unital distributive field-like non

empty double loop structure, let m be a natural number, and let x be an element

of L. We introduce VM(x,m) as a synonym of Vandermonde(x,m).

One can prove the following propositions:

(35) Let L be a field andm, n be natural numbers. Supposem > 0. LetM be

a matrix over L of dimension m × n. Then







1 0
. . .

0 1







m×m

L

·M =M.

(36) Let L be a field and m be an element of N. Suppose 0 < m. Let u,

v, u1 be matrices over L of dimension m. Suppose that for all natural

numbers i, j such that 1 ≤ i and i ≤ m and 1 ≤ j and j ≤ m holds

(u · v)i,j = mL · (u1)i,j. Then u · v = mL · u1.

(37) Let L be a field, x be an element of L, s be a finite sequence of elements

of L, and i, j, m be elements of N. Suppose that x is primitive root of

degree m and 1 ≤ i and i ≤ m and 1 ≤ j and j ≤ m and len s = m and for

every natural number k such that 1 ≤ k and k ≤ m holds sk = x(i−j)·(k−1).

Then (VM(x,m) · VM(x−1,m))i,j =
∑

s.

(38) Let L be a field, m, i, j be elements of N, and x be an element of L.

Suppose i 6= j and 1 ≤ i and i ≤ m and 1 ≤ j and j ≤ m and x is

primitive root of degree m. Then (VM(x,m) · VM(x−1,m))i,j = 0L.

(39) Let L be a field and m be an element of N. Suppose m > 0. Let x

be an element of L. If x is primitive root of degree m, then VM(x,m) ·

VM(x−1,m) = mL ·







1 0
. . .

0 1







m×m

L

.

(40) Let L be a field, m be an element of N, and x be an element of L. If

m > 0 and x is primitive root of degree m, then VM(x,m) ·VM(x−1,m) =

VM(x−1,m) · VM(x,m).
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6. DFT-Multiplication of Polynomials

We now state four propositions:

(41) Let L be a field, p be a polynomial of L, and m be an element of N. Sup-

pose m > 0 and len p ≤ m. Let x be an element of L and i be an element

of N. If i < m, then (DFT(p, x,m))(i) = (VM(x,m) ·mConv(p,m))i+1,1.

(42) Let L be a field, p be a polynomial of L, and m be a natural number. If

0 < m and len p ≤ m, then for every element x of L holds DFT(p, x,m) =

aConv(VM(x,m) ·mConv(p,m)).

(43) Let L be a field, p, q be polynomials of L, and m be an element of N.

Supposem > 0 and len p ≤ m and len q ≤ m. Let x be an element of L. If x

is primitive root of degree 2·m, then DFT(DFT(p∗q, x, 2·m), x−1 , 2·m) =
(2 ·m)L · (p ∗ q).

(44) Let L be a field, p, q be polynomials of L, and m be an element of N.

Suppose m > 0 and len p ≤ m and len q ≤ m. Let x be an element of

L. Suppose x is primitive root of degree 2 · m. If (2 · m)L 6= 0L, then

((2 ·m)L)
−1 ·DFT(DFT(p, x, 2 ·m) ·DFT(q, x, 2 ·m), x−1, 2 ·m) = p ∗ q.
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