
FORMALIZED MATHEMATICS

Volume 14, Number 4, Pages 143–152

University of Bia lystok, 2006

Integral of Real-Valued

Measurable Function1

Yasunari Shidama

Shinshu University

Nagano, Japan

Noboru Endou

Gifu National College of Technology

Japan

Summary. Based on [16], authors formalized the integral of an extended

real valued measurable function in [12] before. However, the integral argued in

[12] cannot be applied to real-valued functions unconditionally. Therefore, in this

article we have formalized the integral of a real-value function.
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The papers [25], [11], [26], [1], [23], [24], [17], [18], [8], [27], [10], [2], [19], [7], [20],

[6], [9], [3], [4], [5], [13], [14], [15], [22], [21], and [12] provide the terminology

and notation for this paper.

1. The Measurability of Real-Valued Functions

For simplicity, we follow the rules: X denotes a non empty set, Y denotes a

set, S denotes a σ-field of subsets of X, F denotes a function from N into S, f ,

g denote partial functions from X to R, A, B denote elements of S, r, s denote

real numbers, a denotes a real number, and n denotes a natural number.

Let X be a non empty set, let f be a partial function from X to R, and let a

be a real number. The functor LE-dom(f, a) yields a subset of X and is defined

as follows:

(Def. 1) LE-dom(f, a) = LE-dom(R(f), R(a)).

The following three propositions are true:

(1) |R(f)| = R(|f |).
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(2) Let X be a non empty set, S be a σ-field of subsets of X, M be a

σ-measure on S, f be a partial function from X to R, and r be a real

number. Suppose dom f ∈ S and for every set x such that x ∈ dom f

holds f(x) = r. Then f is simple function in S.

(3) For every set x holds x ∈ LE-dom(f, a) iff x ∈ dom f and there exists a

real number y such that y = f(x) and y < a.

Let us consider X, f , a. The functor LEQ-dom(f, a) yields a subset of X

and is defined as follows:

(Def. 2) LEQ-dom(f, a) = LEQ-dom(R(f), R(a)).

We now state the proposition

(4) For every set x holds x ∈ LEQ-dom(f, a) iff x ∈ dom f and there exists

a real number y such that y = f(x) and y ≤ a.

Let us consider X, f , a. The functor GT-dom(f, a) yielding a subset of X

is defined as follows:

(Def. 3) GT-dom(f, a) = GT-dom(R(f), R(a)).

We now state the proposition

(5) For every set x holds x ∈ GT-dom(f, r) iff x ∈ dom f and there exists a

real number y such that y = f(x) and r < y.

Let us consider X, f , a. The functor GTE-dom(f, a) yields a subset of X

and is defined as follows:

(Def. 4) GTE-dom(f, a) = GTE-dom(R(f), R(a)).

Next we state the proposition

(6) For every set x holds x ∈ GTE-dom(f, r) iff x ∈ dom f and there exists

a real number y such that y = f(x) and r ≤ y.

Let us consider X, f , a. The functor EQ-dom(f, a) yielding a subset of X

is defined by:

(Def. 5) EQ-dom(f, a) = EQ-dom(R(f), R(a)).

The following propositions are true:

(7) For every set x holds x ∈ EQ-dom(f, r) iff x ∈ dom f and there exists a

real number y such that y = f(x) and r = y.

(8) If for every n holds F (n) = Y ∩ GT-dom(f, r − 1

n+1
), then Y ∩

GTE-dom(f, r) =
⋂

rng F.

(9) If for every n holds F (n) = Y ∩ LE-dom(f, r + 1

n+1
), then Y ∩

LEQ-dom(f, r) =
⋂

rng F.

(10) If for every n holds F (n) = Y ∩ LEQ-dom(f, r − 1

n+1
), then Y ∩

LE-dom(f, r) =
⋃

rng F.

(11) If for every n holds F (n) = Y ∩ GTE-dom(f, r + 1

n+1
), then Y ∩

GT-dom(f, r) =
⋃

rng F.
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Let X be a non empty set, let S be a σ-field of subsets of X, let f be a

partial function from X to R, and let A be an element of S. We say that f is

measurable on A if and only if:

(Def. 6) R(f) is measurable on A.

The following propositions are true:

(12) f is measurable on A iff for every real number r holds A∩LE-dom(f, r)

is measurable on S.

(13) Suppose A ⊆ dom f. Then f is measurable on A if and only if for every

real number r holds A ∩ GTE-dom(f, r) is measurable on S.

(14) f is measurable on A iff for every real number r holds A∩LEQ-dom(f, r)

is measurable on S.

(15) Suppose A ⊆ dom f. Then f is measurable on A if and only if for every

real number r holds A ∩ GT-dom(f, r) is measurable on S.

(16) If B ⊆ A and f is measurable on A, then f is measurable on B.

(17) If f is measurable on A and f is measurable on B, then f is measurable

on A ∪ B.

(18) If f is measurable on A and A ⊆ dom f, then A ∩ GT-dom(f, r) ∩

LE-dom(f, s) is measurable on S.

(19) If f is measurable on A and g is measurable on A and A ⊆ dom g, then

A ∩ LE-dom(f, r) ∩ GT-dom(g, r) is measurable on S.

(20) R(r f) = r R(f).

(21) If f is measurable on A and A ⊆ dom f, then r f is measurable on A.

2. The Measurability of f + g and f − g for Real-Valued

Functions f, g

For simplicity, we adopt the following rules: X denotes a non empty set, S

denotes a σ-field of subsets of X, f , g denote partial functions from X to R,

A denotes an element of S, r denotes a real number, and p denotes a rational

number.

Next we state several propositions:

(22) R(f) is finite.

(23) R(f + g) = R(f) + R(g) and R(f − g) = R(f) − R(g) and dom R(f +

g) = dom R(f)∩ dom R(g) and dom R(f − g) = dom R(f)∩ dom R(g) and

dom R(f + g) = dom f ∩ dom g and dom R(f − g) = dom f ∩ dom g.

(24) For every function F from Q into S such that for every p holds F (p) =

A∩ LE-dom(f, p)∩ (A ∩ LE-dom(g, r − p)) holds A ∩ LE-dom(f + g, r) =⋃
rng F.
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(25) Suppose f is measurable on A and g is measurable on A. Then there

exists a function F from Q into S such that for every rational number p

holds F (p) = A ∩ LE-dom(f, p) ∩ (A ∩ LE-dom(g, r − p)).

(26) If f is measurable on A and g is measurable on A, then f+g is measurable

on A.

(27) R(f) − R(g) = R(f) + R(−g).

(28) −R(f) = R((−1) f) and −R(f) = R(−f).

(29) If f is measurable on A and g is measurable on A and A ⊆ dom g, then

f − g is measurable on A.

3. Basic Properties of Real-Valued Functions, max+ f and max− f

In the sequel X denotes a non empty set, f denotes a partial function from

X to R, and r denotes a real number.

Next we state a number of propositions:

(30) max+(R(f)) = max+(f) and max−(R(f)) = max−(f).

(31) For every element x of X holds 0 ≤ (max+(f))(x).

(32) For every element x of X holds 0 ≤ (max−(f))(x).

(33) max−(f) = max+(−f).

(34) For every set x such that x ∈ dom f and 0 < (max+(f))(x) holds

(max−(f))(x) = 0.

(35) For every set x such that x ∈ dom f and 0 < (max−(f))(x) holds

(max+(f))(x) = 0.

(36) dom f = dom(max+(f) − max−(f)) and dom f = dom(max+(f) +

max−(f)).

(37) For every set x such that x ∈ dom f holds (max+(f))(x) = f(x) or

(max+(f))(x) = 0 but (max−(f))(x) = −f(x) or (max−(f))(x) = 0.

(38) For every set x such that x ∈ dom f and (max+(f))(x) = f(x) holds

(max−(f))(x) = 0.

(39) For every set x such that x ∈ dom f and (max+(f))(x) = 0 holds

(max−(f))(x) = −f(x).

(40) For every set x such that x ∈ dom f and (max−(f))(x) = −f(x) holds

(max+(f))(x) = 0.

(41) For every set x such that x ∈ dom f and (max−(f))(x) = 0 holds

(max+(f))(x) = f(x).

(42) f = max+(f) − max−(f).

(43) |r| = |R(r)|.

(44) R(|f |) = |R(f)|.
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(45) |f | = max+(f) + max−(f).

4. The Measurability of max+ f,max− f and |f |

In the sequel X denotes a non empty set, S denotes a σ-field of subsets of

X, f denotes a partial function from X to R, and A denotes an element of S.

The following propositions are true:

(46) If f is measurable on A, then max+(f) is measurable on A.

(47) If f is measurable on A and A ⊆ dom f, then max−(f) is measurable on

A.

(48) If f is measurable on A and A ⊆ dom f, then |f | is measurable on A.

5. The Definition and the Measurability of a Real-Valued Simple

Function

For simplicity, we adopt the following rules: X is a non empty set, Y is a

set, S is a σ-field of subsets of X, f , g, h are partial functions from X to R, A

is an element of S, and r is a real number.

Let us consider X, S, f . We say that f is simple function in S if and only

if the condition (Def. 7) is satisfied.

(Def. 7) There exists a finite sequence F of separated subsets of S such that

(i) dom f =
⋃

rng F, and

(ii) for every natural number n and for all elements x, y of X such that

n ∈ domF and x ∈ F (n) and y ∈ F (n) holds f(x) = f(y).

Next we state a number of propositions:

(49) f is simple function in S iff R(f) is simple function in S.

(50) If f is simple function in S, then f is measurable on A.

(51) Let X be a set and f be a partial function from X to R. Then f is

non-negative if and only if for every set x holds 0 ≤ f(x).

(52) Let X be a set and f be a partial function from X to R. If for every set

x such that x ∈ dom f holds 0 ≤ f(x), then f is non-negative.

(53) Let X be a set and f be a partial function from X to R. Then f is

non-positive if and only if for every set x holds f(x) ≤ 0.

(54) If for every set x such that x ∈ dom f holds f(x) ≤ 0, then f is non-

positive.

(55) If f is non-negative, then f↾Y is non-negative.

(56) If f is non-negative and g is non-negative, then f + g is non-negative.

(57) If f is non-negative, then if 0 ≤ r, then r f is non-negative and if r ≤ 0,

then r f is non-positive.
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(58) If for every set x such that x ∈ dom f ∩ dom g holds g(x) ≤ f(x), then

f − g is non-negative.

(59) If f is non-negative and g is non-negative and h is non-negative, then

f + g + h is non-negative.

(60) For every set x such that x ∈ dom(f + g + h) holds (f + g + h)(x) =

f(x) + g(x) + h(x).

(61) max+(f) is non-negative and max−(f) is non-negative.

(62)(i) dom(max+(f + g) + max−(f)) = dom f ∩ dom g,

(ii) dom(max−(f + g) + max+(f)) = dom f ∩ dom g,

(iii) dom(max+(f + g) + max−(f) + max−(g)) = dom f ∩ dom g,

(iv) dom(max−(f + g) + max+(f) + max+(g)) = dom f ∩ dom g,

(v) max+(f + g) + max−(f) is non-negative, and

(vi) max−(f + g) + max+(f) is non-negative.

(63) max+(f +g)+max−(f)+max−(g) = max−(f +g)+max+(f)+max+(g).

(64) If 0 ≤ r, then max+(r f) = r max+(f) and max−(r f) = r max−(f).

(65) If 0 ≤ r, then max+((−r) f) = r max−(f) and max−((−r) f) =

r max+(f).

(66) max+(f↾Y ) = max+(f)↾Y and max−(f↾Y ) = max−(f)↾Y.

(67) If Y ⊆ dom(f +g), then dom((f +g)↾Y ) = Y and dom(f↾Y +g↾Y ) = Y

and (f + g)↾Y = f↾Y + g↾Y.

(68) EQ-dom(f, r) = f−1({r}).

6. Lemmas for a Real-Valued Measurable Function and a Simple

Function

For simplicity, we use the following convention: X is a non empty set, S

is a σ-field of subsets of X, f , g are partial functions from X to R, A, B are

elements of S, and r, s are real numbers.

We now state a number of propositions:

(69) If f is measurable on A and A ⊆ dom f, then A ∩ GTE-dom(f, r) ∩

LE-dom(f, s) is measurable on S.

(70) If f is simple function in S, then f↾A is simple function in S.

(71) If f is simple function in S, then dom f is an element of S.

(72) If f is simple function in S and g is simple function in S, then f + g is

simple function in S.

(73) If f is simple function in S, then r f is simple function in S.

(74) If for every set x such that x ∈ dom(f −g) holds g(x) ≤ f(x), then f −g

is non-negative.
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(75) There exists a partial function f from X to R such that f is simple

function in S and dom f = A and for every set x such that x ∈ A holds

f(x) = r.

(76) If f is measurable on B and A = dom f ∩B, then f↾B is measurable on

A.

(77) If A ⊆ dom f and f is measurable on A and g is measurable on A, then

max+(f + g) + max−(f) is measurable on A.

(78) If A ⊆ dom f ∩ dom g and f is measurable on A and g is measurable on

A, then max−(f + g) + max+(f) is measurable on A.

(79) If dom f ∈ S and dom g ∈ S, then dom(f + g) ∈ S.

(80) If dom f = A, then f is measurable on B iff f is measurable on A ∩ B.

(81) Given an element A of S such that dom f = A. Let c be a real number

and B be an element of S. If f is measurable on B, then c f is measurable

on B.

7. The Integral of a Real-Valued Function

For simplicity, we follow the rules: X is a non empty set, S is a σ-field of

subsets of X, M is a σ-measure on S, f , g are partial functions from X to R, r

is a real number, and E, A, B are elements of S.

Let X be a non empty set, let S be a σ-field of subsets of X, let M be

a σ-measure on S, and let f be a partial function from X to R. The functor∫
f dM yields an element of R and is defined by:

(Def. 8)
∫

f dM =
∫

R(f) dM.

The following propositions are true:

(82) If there exists an element A of S such that A = dom f and f is measur-

able on A and f is non-negative, then
∫

f dM =
∫

+
R(f) dM.

(83) If f is simple function in S and f is non-negative, then
∫

f dM =∫
+

R(f) dM and
∫

f dM =
∫
′

R(f) dM.

(84) If there exists an element A of S such that A = dom f and f is measur-

able on A and f is non-negative, then 0 ≤
∫

f dM.

(85) Suppose there exists an element E of S such that E = dom f and f is

measurable on E and f is non-negative and A misses B. Then
∫

f↾(A ∪

B) dM =
∫

f↾AdM +
∫

f↾B dM.

(86) If there exists an element E of S such that E = dom f and f is measur-

able on E and f is non-negative, then 0 ≤
∫

f↾AdM.

(87) Suppose there exists an element E of S such that E = dom f and f is

measurable on E and f is non-negative and A ⊆ B. Then
∫

f↾AdM ≤∫
f↾B dM.
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(88) If there exists an element E of S such that E = dom f and f is measur-

able on E and M(A) = 0, then
∫

f↾AdM = 0.

(89) If E = dom f and f is measurable on E and M(A) = 0, then
∫

f↾(E \

A) dM =
∫

f dM.

Let X be a non empty set, let S be a σ-field of subsets of X, let M be a

σ-measure on S, and let f be a partial function from X to R. We say that f is

integrable on M if and only if:

(Def. 9) R(f) is integrable on M .

We now state a number of propositions:

(90) If f is integrable on M , then −∞ <
∫

f dM and
∫

f dM < +∞.

(91) If f is integrable on M , then f↾A is integrable on M .

(92) If f is integrable on M and A misses B, then
∫

f↾(A ∪ B) dM =∫
f↾AdM +

∫
f↾B dM.

(93) If f is integrable on M and B = dom f \ A, then f↾A is integrable on

M and
∫

f dM =
∫

f↾AdM +
∫

f↾B dM.

(94) Given an element A of S such that A = dom f and f is measurable on

A. Then f is integrable on M if and only if |f | is integrable on M .

(95) If f is integrable on M , then |
∫

f dM | ≤
∫
|f |dM.

(96) Suppose that

(i) there exists an element A of S such that A = dom f and f is measurable

on A,

(ii) dom f = dom g,

(iii) g is integrable on M , and

(iv) for every element x of X such that x ∈ dom f holds |f(x)| ≤ g(x).

Then f is integrable on M and
∫
|f |dM ≤

∫
g dM.

(97) If dom f ∈ S and 0 ≤ r and for every set x such that x ∈ dom f holds

f(x) = r, then
∫

f dM = R(r) · M(dom f).

(98) Suppose f is integrable on M and g is integrable on M and f is non-

negative and g is non-negative. Then f + g is integrable on M .

(99) If f is integrable on M and g is integrable on M , then dom(f + g) ∈ S.

(100) If f is integrable on M and g is integrable on M , then f +g is integrable

on M .

(101) Suppose f is integrable on M and g is integrable on M . Then there

exists an element E of S such that E = dom f ∩ dom g and
∫

f + g dM =∫
f↾E dM +

∫
g↾E dM.

(102) If f is integrable on M , then r f is integrable on M and
∫

r f dM =

R(r) ·
∫

f dM.

Let X be a non empty set, let S be a σ-field of subsets of X, let M be

a σ-measure on S, let f be a partial function from X to R, and let B be an
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element of S. The functor
∫

B

f dM yielding an element of R is defined by:

(Def. 10)
∫

B

f dM =
∫

f↾B dM.

Next we state two propositions:

(103) Suppose f is integrable on M and g is integrable on M and B ⊆ dom(f +

g). Then f + g is integrable on M and
∫

B

f + g dM =
∫

B

f dM +
∫

B

g dM.

(104) If f is integrable on M and f is measurable on B, then f↾B is integrable

on M and
∫

B

r f dM = R(r) ·
∫

B

f dM.
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[7] Czes law Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
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