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Integral of Real-Valued
Measurable Function!
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Summary. Based on [16], authors formalized the integral of an extended
real valued measurable function in [12] before. However, the integral argued in
[12] cannot be applied to real-valued functions unconditionally. Therefore, in this
article we have formalized the integral of a real-value function.
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The papers [25], [11], [26], [1], [23], [24], [17], [18], [3], [27], [10], [2], [19], [7], [20],
6], [9], [3], [4], [5], [13], [14], [15], [22], [21], and [12] provide the terminology
and notation for this paper.

1. THE MEASURABILITY OF REAL-VALUED FUNCTIONS

For simplicity, we follow the rules: X denotes a non empty set, ¥ denotes a
set, S denotes a o-field of subsets of X, F' denotes a function from N into S, f,
g denote partial functions from X to R, A, B denote elements of S, r, s denote
real numbers, a denotes a real number, and n denotes a natural number.

Let X be a non empty set, let f be a partial function from X to R, and let a
be a real number. The functor LE-dom(f, a) yields a subset of X and is defined
as follows:

(Def. 1) LE-dom(f,a) = LE-dom(R(f),R(a)).
The following three propositions are true:

1) R =R(ASD-
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(2) Let X be a non empty set, S be a o-field of subsets of X, M be a
o-measure on S, f be a partial function from X to R, and r be a real
number. Suppose dom f € S and for every set x such that z € dom f
holds f(x) = r. Then f is simple function in S.

(3) For every set x holds z € LE-dom(f,a) iff z € dom f and there exists a
real number y such that y = f(x) and y < a.

Let us consider X, f, a. The functor LEQ-dom(f,a) yields a subset of X
and is defined as follows:
(Def. 2) LEQ-dom(f,a) = LEQ-dom(R(f),R(a)).
We now state the proposition
(4) For every set z holds x € LEQ-dom(f,a) iff z € dom f and there exists
a real number y such that y = f(z) and y < a.

Let us consider X, f, a. The functor GT-dom(f, a) yielding a subset of X
is defined as follows:
(Def. 3) GT-dom(f,a) = GT-dom(R(f),R(a)).
We now state the proposition
(5) For every set x holds x € GT-dom(f,r) iff x € dom f and there exists a
real number y such that y = f(x) and r < y.

Let us consider X, f, a. The functor GTE-dom(f,a) yields a subset of X
and is defined as follows:
(Def. 4) GTE-dom(f,a) = GTE-dom(R(f),R(a)).
Next we state the proposition
(6) For every set = holds x € GTE-dom(f,r) iff x € dom f and there exists
a real number y such that y = f(z) and r < y.
Let us consider X, f, a. The functor EQ-dom(f, a) yielding a subset of X
is defined by:
(Def. 5) EQ-dom(f,a) = EQ-dom(R(f),R(a)).
The following propositions are true:

(7) For every set x holds x € EQ-dom(f,r) iff x € dom f and there exists a
real number y such that y = f(x) and r = y.

(8) If for every n holds F(n) = Y N GT-dom(f,r — %—H)’ then Y N
GTE-dom(f,r) = (\rng F.

(9) If for every m holds F(n) = Y N LE-dom(f,r + %—H)’ then Y N
LEQ-dom(f,r) = (rng F.

(10) If for every m holds F(n) = Y N LEQ-dom(f,r — %‘H)’ then Y N

LE-dom(f,r) = Jrng F.
(11) If for every m holds F(n) = Y N GTE-dom(f,r +
GT-dom(f,r) = Jrng F.

n%rl), then Y N
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Let X be a non empty set, let S be a o-field of subsets of X, let f be a
partial function from X to R, and let A be an element of S. We say that f is
measurable on A if and only if:

(Def. 6) R(f) is measurable on A.

The following propositions are true:

(12) f is measurable on A iff for every real number 7 holds ANLE-dom(f,r)
is measurable on S.

(13) Suppose A C dom f. Then f is measurable on A if and only if for every
real number r holds A N GTE-dom(f,r) is measurable on S.

(14)  f is measurable on A iff for every real number r holds ANLEQ-dom(f, )
is measurable on S.

(15) Suppose A C dom f. Then f is measurable on A if and only if for every
real number r holds A N GT-dom(f,r) is measurable on S.

(16) If B C A and f is measurable on A, then f is measurable on B.

(17) If f is measurable on A and f is measurable on B, then f is measurable
on AUB.

(18) If f is measurable on A and A C dom f, then A N GT-dom(f,r) N
LE-dom(f, s) is measurable on S.

(19) If f is measurable on A and g is measurable on A and A C dom g, then
ANLE-dom(f,r) N GT-dom(g,r) is measurable on S.

(20) R(rf) =rR(f).

(21) If f is measurable on A and A C dom f, then r f is measurable on A.

2. THE MEASURABILITY OF f + g AND f — g FOR REAL-VALUED
FUNCTIONS f, g

For simplicity, we adopt the following rules: X denotes a non empty set, S
denotes a o-field of subsets of X, f, g denote partial functions from X to R,
A denotes an element of S, r denotes a real number, and p denotes a rational
number.

Next we state several propositions:

(22) R(f) is finite.

(23) R(f +4g) = R(J) + R(g) and ’(f — g) = R(f) - Rg) and domR(f +
g) = domR(f)NdomR(g) and dom R(f — g) = dom R(f) Ndom R(g) and
domR(f + g) = dom f Ndom g and dom R(f — ¢g) = dom f N dom g.

(24) For every function F' from Q into S such that for every p holds F(p) =
ANLE-dom(f,p) N (ANLE-dom(g,r — p)) holds ANLE-dom(f +g,7) =

Urng F.
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(25) Suppose f is measurable on A and ¢ is measurable on A. Then there
exists a function F' from Q into S such that for every rational number p
holds F(p) = AN LE-dom(f,p) N (AN LE-dom(g,r — p)).

(26) If f is measurable on A and g is measurable on A, then f+g is measurable

on A.

(1) R(f)-Flo) =E() +B(-g).

(28) —R(f) =R((-1) f) and —R(f) = R(-f).

(29) 1If f is measurable on A and g is measurable on A and A C dom g, then
f — ¢ is measurable on A.

3. BAsiC PROPERTIES OF REAL-VALUED FUNCTIONS, max f AND max_ f

In the sequel X denotes a non empty set, f denotes a partial function from
X to R, and r denotes a real number.
Next we state a number of propositions:

(30) max, (R(f)) = max, (f) and max_(B(f)) = max_(f).
(31) For every element x of X holds 0 < (max(f))(x).

(32) For every element x of X holds 0 < (max_(f))(x).
(33)
(34)

33) max_(f) = max;(—f).

34) For every set x such that z € dom f and 0 < (max4(f))(z) holds

(max_ (£))(z) = 0.
(35) For every set x such that z € dom f and 0 < (max_(f))(x) holds

(max (f))(x) = 0.

(36) dom(f ): dom(max, (f) — max_(f)) and dom f = dom(maxy(f) +
max_(f)).

(37) For every set = such that x € dom f holds (max4(f))(z) = f(z) or
(max (f))() = 0 but (max_(f))(z) = —f(z) or (max_

(38) For every set x such that x € dom f and (maxy(f))(z) = f(z) holds

(max_(f))(x) = 0.

(39) For every set z such that z € dom f and (max4(f))(z) = 0 holds
(max_(f))(z) = —f(z).

(40) For every set = such that x € dom f and (max_(f))(x) = —f(x) holds

(max, (f))(x) = 0.

(41) For every set z such that z € dom f and (max_(f))(z) = 0 holds
(maxy (f))(x) = f(z).

(42) f = max;(f) — max_(f).

(43) | = [R(r)l-

(44) R(If]) = R(/)I-
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(45) |f] = max (f) + max_(f),

4. THE MEASURABILITY OF maxy f,max_ f AND |f]

In the sequel X denotes a non empty set, S denotes a o-field of subsets of
X, f denotes a partial function from X to R, and A denotes an element of S.
The following propositions are true:

(46) If f is measurable on A, then max (f) is measurable on A.

(47) If f is measurable on A and A C dom f, then max_(f) is measurable on

A.
(48) If f is measurable on A and A C dom f, then |f| is measurable on A.

5. THE DEFINITION AND THE MEASURABILITY OF A REAL-VALUED SIMPLE
FuNcTION

For simplicity, we adopt the following rules: X is a non empty set, Y is a
set, S is a o-field of subsets of X, f, g, h are partial functions from X to R, A
is an element of S, and r is a real number.

Let us consider X, S, f. We say that f is simple function in S if and only
if the condition (Def. 7) is satisfied.

(Def. 7) There exists a finite sequence F' of separated subsets of S such that
(i) dom f =JrngF, and
(ii)  for every natural number n and for all elements z, y of X such that
n € domF and z € F(n) and y € F(n) holds f(x) = f(y).
Next we state a number of propositions:
(49)  f is simple function in S iff R(f) is simple function in S.
(50) If f is simple function in S, then f is measurable on A.

(51) Let X be a set and f be a partial function from X to R. Then f is
non-negative if and only if for every set x holds 0 < f(x).

(52) Let X be aset and f be a partial function from X to R. If for every set
x such that z € dom f holds 0 < f(x), then f is non-negative.

(53) Let X be a set and f be a partial function from X to R. Then f is
non-positive if and only if for every set  holds f(z) <0.

(54) 1If for every set x such that x € dom f holds f(z) < 0, then f is non-
positive.

(55) If f is non-negative, then f[Y is non-negative.

(56) If f is non-negative and ¢ is non-negative, then f 4 ¢ is non-negative.

(57) If f is non-negative, then if 0 < r, then r f is non-negative and if r <0,
then r f is non-positive.
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(58) If for every set x such that € dom f N dom g holds g(z) < f(z), then
f — g is non-negative.
(59) If f is non-negative and ¢ is non-negative and h is non-negative, then
f + g + h is non-negative.
(60) For every set x such that € dom(f + g+ h) holds (f + g+ h)(z) =
f(@) + g(x) + h(z).
max (f) is non-negative and max_(f) is non-negative.
(i) dom(max4(f+ ¢g)+ max_(f)) =dom f Ndomyg,
) dom(max_(f+ g) +max,(f)) =dom fNdomyg,
) dom(max(f + g) + max_(f) +max_(g)) = dom f Ndomg,
(iv) dom(max_(f+ g)+ max(f)+ max;(g)) = dom f Ndomg,
) maxy(f+ g)+max_(f) is non-negative, and
) max_(f+ ¢g) +max4(f) is non-negative.
) maxy(f+g)+max_(f)+max_(g) = max_(f+g)+max(f)+max(g).
(64) If 0 <r, then max(r f) = r maxy(f) and max_(r f) = r max_(f).
) If 0 < r, then max;((—r)f) = r max_(f) and max_((—r) f) =
r maxy (f).
(66) maxy(f]Y)=maxy(f)]Y and max_(f[Y) = max_(f)[Y-
(67) IfY C dom(f+g), then dom((f+¢)lY) =Y and dom(f[Y +¢lY)=Y
and (f +g)IY = fIY +g[Y.
(68) EQ-dom(f,r)=f"'({r}).

6. LEMMAS FOR A REAL-VALUED MEASURABLE FUNCTION AND A SIMPLE
FuNcTION

For simplicity, we use the following convention: X is a non empty set, S
is a o-field of subsets of X, f, g are partial functions from X to R, A, B are
elements of S, and r, s are real numbers.

We now state a number of propositions:

(69) If f is measurable on A and A C dom f, then A N GTE-dom(f,r) N
LE-dom(f, s) is measurable on S.

(70) If f is simple function in S, then f[A is simple function in S.

(71) If f is simple function in S, then dom f is an element of S.

(72) If f is simple function in S and ¢ is simple function in S, then f + g is
simple function in S.

(73) If f is simple function in S, then r f is simple function in S.

(74) If for every set x such that x € dom(f —g) holds g(z) < f(z), then f—g
is non-negative.
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(75) There exists a partial function f from X to R such that f is simple
function in S and dom f = A and for every set x such that x € A holds
flz) =r.

(76) If f is measurable on B and A = dom f N B, then f[B is measurable on
A.

(77) If A C dom f and f is measurable on A and g is measurable on A, then
maxy (f + g) + max_(f) is measurable on A.

(78) If A C dom f Ndomg and f is measurable on A and ¢ is measurable on
A, then max_(f + g) + max, (f) is measurable on A.

(79) If dom f € S and dom g € S, then dom(f + g) € S.

(80) If dom f = A, then f is measurable on B iff f is measurable on AN B.

(81) Given an element A of S such that dom f = A. Let ¢ be a real number

and B be an element of S. If f is measurable on B, then ¢ f is measurable
on B.

7. THE INTEGRAL OF A REAL-VALUED FUNCTION

For simplicity, we follow the rules: X is a non empty set, S is a o-field of
subsets of X, M is a o-measure on .S, f, g are partial functions from X to R, r
is a real number, and F, A, B are elements of S.

Let X be a non empty set, let S be a o-field of subsets of X, let M be
a o-measure on S, and let f be a partial function from X to R. The functor
| f dM yields an element of R and is defined by:

(Def. 8) [ fdM = [R(f)dM.

The following propositions are true:

(82) If there exists an element A of S such that A = dom f and f is measur-
able on A and f is non-negative, then [ fdM = f+ R(f)dM.

(83) If f is simple function in S and f is non-negative, then [ fdM =
[*R(f)dM and [ fdM = ["R(f)dM.

(84) If there exists an element A of S such that A = dom f and f is measur-
able on A and f is non-negative, then 0 < [ fdM.

(85) Suppose there exists an element E of S such that £ = dom f and f is
measurable on E and f is non-negative and A misses B. Then [ f[(AU
B)dM = [ flAdM + [ fIBdM.

(86) If there exists an element F of S such that £ = dom f and f is measur-
able on E and f is non-negative, then 0 < [ f]AdM.

(87) Suppose there exists an element E of S such that £ = dom f and f is
measurable on E and f is non-negative and A C B. Then [ flAdM <
[ f1BdM.
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(88) If there exists an element F of S such that £ = dom f and f is measur-
able on E and M(A) =0, then [ fl|AdM = 0.
(89) If E =dom f and f is measurable on E and M(A) = 0, then [ f](E\
A)dM = [ fdM.
Let X be a non empty set, let S be a o-field of subsets of X, let M be a
o-measure on S, and let f be a partial function from X to R. We say that f is
integrable on M if and only if:

(Def. 9) R(f) is integrable on M.
We now state a number of propositions:

(90) If f is integrable on M, then —oo < [ fdM and [ fdM < +oo.

(91) 1If f is integrable on M, then f[A is integrable on M.

(92) If f is integrable on M and A misses B, then [ f](A U B)dM =
[ fIAdM + [ f1BdM.

(93) If f is integrable on M and B = dom f \ A, then f[A is integrable on
M and [ fdM = [ flAdM + [ fIBdM.

(94) Given an element A of S such that A = dom f and f is measurable on
A. Then f is integrable on M if and only if |f| is integrable on M.

(95) 1If f is integrable on M, then | [ fdM| < [|f|dM.
(96) Suppose that
(i)  there exists an element A of S such that A = dom f and f is measurable

on A,
(i) dom f =domg,
(iii) g is integrable on M, and
(iv)  for every element x of X such that z € dom f holds |f(x)| < g(x).
Then f is integrable on M and [|f|dM < [gdM.
(97) If dom f € S and 0 < r and for every set x such that € dom f holds
f(z) =7, then [ fdM = R(r) - M(dom f).
(98) Suppose f is integrable on M and ¢ is integrable on M and f is non-
negative and g is non-negative. Then f + ¢ is integrable on M.
(99) If f is integrable on M and g is integrable on M, then dom(f + g) € S.
(100) If f is integrable on M and g is integrable on M, then f + g is integrable
on M.
(101) Suppose f is integrable on M and g is integrable on M. Then there
exists an element E of S such that E = dom f Ndomg and [ f+gdM =
[ fIEAM + [ g[EdM.
(102) If f is integrable on M, then r f is integrable on M and [r fdM =
R(r)- [ fdM.
Let X be a non empty set, let S be a o-field of subsets of X, let M be
a o-measure on S, let f be a partial function from X to R, and let B be an
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element of S. The functor [ fdM yielding an element of R is defined by:
B

(Def. 10) [ fdM = [ fIBdM.
B

Next we state two propositions:

(103) Suppose f is integrable on M and g is integrable on M and B C dom(f+

g). Then f + g is integrable on M and [ f+gdM = [ fdM + [ gdM.
B B B

(104) If f is integrable on M and f is measurable on B, then f[B is integrable

[1]

on M and [r fdM =R(r)- [ fdM.
B B
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