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Summary. In this article, we give the definitions of forward difference,

backward difference, central difference and difference quotient, and some of their

important properties.
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The articles [2], [6], [1], [13], [16], [17], [14], [4], [5], [9], [8], [12], [18], [7], [15],

[11], [10], [3], and [19] provide the terminology and notation for this paper.

For simplicity, we follow the rules: n, m, i are elements of N, h, r, r1, r2,

x0, x1, x2, x are real numbers, f is a partial function from R to R, and S is a

sequence of partial functions from R into R.

Let f be a partial function from R to R and let h be a real number. The

functor Shift(f, h) yields a partial function from R to R and is defined by:

(Def. 1) dom Shift(f, h) = −h+dom f and for every x such that x ∈ −h+dom f

holds (Shift(f, h))(x) = f(x + h).

Let f be a function from R into R and let h be a real number. Then

Shift(f, h) is a function from R into R and it can be characterized by the con-

dition:

(Def. 2) For every x holds (Shift(f, h))(x) = f(x + h).

Let f be a partial function from R to R and let h be a real number. The

functor fD(f, h) yielding a partial function from R to R is defined as follows:
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(Def. 3) fD(f, h) = Shift(f, h) − f.

Let f be a function from R into R and let h be a real number. Then fD(f, h)

is a function from R into R.

Let f be a partial function from R to R and let h be a real number. The

functor bD(f, h) yields a partial function from R to R and is defined by:

(Def. 4) bD(f, h) = f − Shift(f,−h).

Let f be a function from R into R and let h be a real number. Then bD(f, h)

is a function from R into R.

We now state the proposition

(1) bD(f, h) = −fD(f,−h).

Let f be a partial function from R to R and let h be a real number. The

functor cD(f, h) yielding a partial function from R to R is defined by:

(Def. 5) cD(f, h) = Shift(f, h
2 ) − Shift(f,−h

2 ).

Let f be a function from R into R and let h be a real number. Then cD(f, h)

is a function from R into R.

Let f be a partial function from R to R and let h be a real number. The

forward difference of f and h yields a sequence of partial functions from R into

R and is defined by the conditions (Def. 6).

(Def. 6)(i) (The forward difference of f and h)(0) = f, and

(ii) for every n holds (the forward difference of f and h)(n + 1) = fD((the

forward difference of f and h)(n), h).

Let f be a partial function from R to R and let h be a real number. We

introduce fdif(f, h) as a synonym of the forward difference of f and h.

In the sequel f , f1, f2 denote functions from R into R.

The following propositions are true:

(2) For every n holds (fdif(f, h))(n) is a function from R into R.

(3) For every x holds (fD(f, h))(x) = f(x + h) − f(x).

(4) For every x holds (bD(f, h))(x) = f(x) − f(x − h).

(5) For every x holds (cD(f, h))(x) = f(x + h
2 ) − f(x − h

2 ).

(6) If f is constant, then for every x holds (fdif(f, h))(n + 1)(x) = 0.

(7) (fdif(r f, h))(n + 1)(x) = r · (fdif(f, h))(n + 1)(x).

(8) (fdif(f1+f2, h))(n+1)(x) = (fdif(f1, h))(n+1)(x)+(fdif(f2, h))(n+1)(x).

(9) (fdif(f1−f2, h))(n+1)(x) = (fdif(f1, h))(n+1)(x)−(fdif(f2, h))(n+1)(x).

(10) If f = r1 f1 + r2 f2, then for every x holds (fdif(f, h))(n + 1)(x) =

r1 · (fdif(f1, h))(n + 1)(x) + r2 · (fdif(f2, h))(n + 1)(x).

(11) For every x holds (fdif(f, h))(1)(x) = (Shift(f, h))(x) − f(x).

Let f be a partial function from R to R and let h be a real number. The

backward difference of f and h yielding a sequence of partial functions from R

into R is defined by the conditions (Def. 7).
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(Def. 7)(i) (The backward difference of f and h)(0) = f, and

(ii) for every n holds (the backward difference of f and h)(n+1) = bD((the

backward difference of f and h)(n), h).

Let f be a partial function from R to R and let h be a real number. We

introduce bdif(f, h) as a synonym of the backward difference of f and h.

We now state several propositions:

(12) For every n holds (bdif(f, h))(n) is a function from R into R.

(13) If f is constant, then for every x holds (bdif(f, h))(n + 1)(x) = 0.

(14) (bdif(r f, h))(n + 1)(x) = r · (bdif(f, h))(n + 1)(x).

(15) (bdif(f1 + f2, h))(n + 1)(x) = (bdif(f1, h))(n + 1)(x) + (bdif(f2, h))(n +

1)(x).

(16) (bdif(f1 − f2, h))(n + 1)(x) = (bdif(f1, h))(n + 1)(x) − (bdif(f2, h))(n +

1)(x).

(17) If f = r1 f1 + r2 f2, then for every x holds (bdif(f, h))(n + 1)(x) =

r1 · (bdif(f1, h))(n + 1)(x) + r2 · (bdif(f2, h))(n + 1)(x).

(18) (bdif(f, h))(1)(x) = f(x) − (Shift(f,−h))(x).

Let f be a partial function from R to R and let h be a real number. The

central difference of f and h yielding a sequence of partial functions from R into

R is defined by the conditions (Def. 8).

(Def. 8)(i) (The central difference of f and h)(0) = f, and

(ii) for every n holds (the central difference of f and h)(n + 1) = cD((the

central difference of f and h)(n), h).

Let f be a partial function from R to R and let h be a real number. We

introduce cdif(f, h) as a synonym of the central difference of f and h.

One can prove the following propositions:

(19) For every n holds (cdif(f, h))(n) is a function from R into R.

(20) If f is constant, then for every x holds (cdif(f, h))(n + 1)(x) = 0.

(21) (cdif(r f, h))(n + 1)(x) = r · (cdif(f, h))(n + 1)(x).

(22) (cdif(f1 + f2, h))(n + 1)(x) = (cdif(f1, h))(n + 1)(x) + (cdif(f2, h))(n +

1)(x).

(23) (cdif(f1 − f2, h))(n + 1)(x) = (cdif(f1, h))(n + 1)(x) − (cdif(f2, h))(n +

1)(x).

(24) If f = r1 f1 + r2 f2, then for every x holds (cdif(f, h))(n + 1)(x) =

r1 · (cdif(f1, h))(n + 1)(x) + r2 · (cdif(f2, h))(n + 1)(x).

(25) (cdif(f, h))(1)(x) = (Shift(f, h
2 ))(x) − (Shift(f,−h

2 ))(x).

(26) (fdif(f, h))(n)(x) = (bdif(f, h))(n)(x + n · h).

(27) (fdif(f, h))(2 · n)(x) = (cdif(f, h))(2 · n)(x + n · h).

(28) (fdif(f, h))(2 · n + 1)(x) = (cdif(f, h))(2 · n + 1)(x + n · h + h
2 ).
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Let f be a function from R into R and let us consider x0, x1. The functor

∆(f, x0, x1) yielding a real number is defined as follows:

(Def. 9)(i) ∆(f, x0, x1) = f(x0)−f(x1)
x0−x1

if x0 6= x1,

(ii) x0 6= x1, otherwise.

Let x0, x1, x2 be real numbers and let f be a function from R into R. The

functor [!f, x0, x1, x2!] yielding a real number is defined as follows:

(Def. 10)(i) [!f, x0, x1, x2!] = ∆(f,x0,x1)−∆(f,x1,x2)
x0−x2

if x0 6= x2,

(ii) x0 6= x2, otherwise.

Let x0, x1, x2, x3 be real numbers and let f be a function from R into R.

The functor [!f, x0, x1, x2, x3!] yielding a real number is defined by:

(Def. 11)(i) [!f, x0, x1, x2, x3!] = [!f,x0,x1,x2!]−[!f,x1,x2,x3!]
x0−x3

if x0 6= x3,

(ii) x0 6= x3, otherwise.

We now state several propositions:

(29) If x0 6= x1, then ∆(f, x0, x1) = ∆(f, x1, x0).

(30) If f is constant and x0 6= x1, then ∆(f, x0, x1) = 0.

(31) If x0 6= x1, then ∆(r f, x0, x1) = r · ∆(f, x0, x1).

(32) If x0 6= x1, then ∆(f1 + f2, x0, x1) = ∆(f1, x0, x1) + ∆(f2, x0, x1).

(33) If x0 6= x1, then ∆(r1 f1 + r2 f2, x0, x1) = r1 · ∆(f1, x0, x1) + r2 ·

∆(f2, x0, x1).

(34) If x0 6= x1 and x0 6= x2 and x1 6= x2, then [!f, x0, x1, x2!] = [!f, x1, x2, x0!]

and [!f, x0, x1, x2!] = [!f, x2, x1, x0!].

(35) If x0 6= x1 and x0 6= x2 and x1 6= x2, then [!f, x0, x1, x2!] = [!f, x2, x0, x1!]

and [!f, x0, x1, x2!] = [!f, x1, x0, x2!].

(36) (fdif((fdif(f, h))(m), h))(n)(x) = (fdif(f, h))(m + n)(x).

Let us consider S. We say that S is sequence-yielding if and only if:

(Def. 12) For every n holds S(n) is a sequence of real numbers.

Let us note that there exists a sequence of partial functions from R into R

which is sequence-yielding.

A seq sequence is a sequence-yielding sequence of partial functions from R

into R.

Let S be a seq sequence and let us consider n. Then S(n) is a sequence of

real numbers.

In the sequel S denotes a seq sequence.

Next we state the proposition

(37) Suppose that for every n and for every i such that i ≤ n holds

S(n)(i) =
(

n
i

)

· (fdif(f1, h))(i)(x) · (fdif(f2, h))(n −′ i)(x + i · h).

Then (fdif(f1 f2, h))(1)(x) =
∑1

κ=0 S(1)(κ) and (fdif(f1 f2, h))(2)(x) =
∑2

κ=0 S(2)(κ).
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