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Summary. Here, we present determinants of some square matrices of

field elements. First, the determinat of 2 ∗ 2 matrix is shown. Secondly, the

determinants of zero matrix and unit matrix are shown, which are equal to 0

in the field and 1 in the field respectively. Thirdly, the determinant of diagonal

matrix is shown, which is a product of all diagonal elements of the matrix. At the

end, we prove that the determinant of a matrix is the same as the determinant

of its transpose.
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The articles [19], [26], [2], [27], [5], [4], [8], [24], [18], [17], [14], [6], [23], [7], [25],

[20], [21], [3], [12], [28], [10], [15], [16], [11], [13], [1], [9], and [22] provide the

notation and terminology for this paper.

In this paper n, i, l are natural numbers.

The following propositions are true:

(1) For every permutation f of Seg 2 holds f = 〈1, 2〉 or f = 〈2, 1〉.

(2) For every finite sequence f such that f = 〈1, 2〉 or f = 〈2, 1〉 holds f is

a permutation of Seg 2.

(3) The permutations of 2-element set = {〈1, 2〉, 〈2, 1〉}.

(4) For every permutation p of Seg 2 such that p is a transposition holds

p = 〈2, 1〉.

(5) Let D be a non empty set, f be a finite sequence of elements of D, and k2

be a natural number. If 1 ≤ k2 and k2 < len f, then f = (mid(f, 1, k2))
a

mid(f, k2 + 1, len f).

(6) For every non empty set D and for every finite sequence f of elements of

D such that 2 ≤ len f holds f = (f↾(len f −′ 2)) a mid(f, len f −′ 1, len f).
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(7) For every non empty set D and for every finite sequence f of elements

of D such that 1 ≤ len f holds f = (f↾(len f −′ 1)) a mid(f, len f, len f).

(8) Let a be an element of A2. Given an element q of the permutations of

2-element set such that q = a and q is a transposition. Then a = 〈2, 1〉.

(9) Let n be a natural number, a, b be elements of An, and p2, p1 be elements

of the permutations of n-element set. If a = p2 and b = p1, then a · b =

p1 · p2.

(10) Let a, b be elements of A2. Suppose that

(i) there exists an element p of the permutations of 2-element set such that

p = a and p is a transposition, and

(ii) there exists an element q of the permutations of 2-element set such that

q = b and q is a transposition.

Then a · b = 〈1, 2〉.

(11) Let l be a finite sequence of elements of A2. Suppose that

(i) len l mod 2 = 0, and

(ii) for every i such that i ∈ dom l there exists an element q of the permu-

tations of 2-element set such that l(i) = q and q is a transposition.

Then
∏

l = 〈1, 2〉.

(12) For every field K and for every matrix M over K of dimension 2 holds

Det M = M1,1 · M2,2 − M1,2 · M2,1.

Let n be a natural number, let K be a field, let M be a matrix over K of

dimension n, and let a be an element of K. Then a · M is a matrix over K of

dimension n.

The following three propositions are true:

(13) For every field K and for all natural numbers n, m holds

len(







0 . . . 0
...

. . .
...

0 . . . 0







n×m

K

) = n and dom(







0 . . . 0
...

. . .
...

0 . . . 0







n×m

K

) = Seg n.

(14) Let K be a field, n be a natural number, p be an element of the per-

mutations of n-element set, and i be a natural number. If i ∈ Seg n, then

p(i) ∈ Seg n.

(15) For every field K and for every natural number n such that n ≥ 1 holds

Det(







0 . . . 0
...

. . .
...

0 . . . 0







n×n

K

) = 0K .

Let x, y, a, b be sets. The functor IFIN(x, y, a, b) is defined by:

(Def. 1) IFIN(x, y, a, b) =

{

a, if x ∈ y,

b, otherwise.

We now state the proposition
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(16) For every field K and for every natural number n such that n ≥ 1 holds

Det(







1 0
. . .

0 1







n×n

K

) = 1K .

Let K be a field, let n be a natural number, and let M be a matrix over K

of dimension n. We say that M being diagonal if and only if:

(Def. 2) For all natural numbers i, j such that i ∈ Seg n and j ∈ Seg n and i 6= j

holds Mi,j = 0K .

One can prove the following propositions:

(17) Let K be a field, n be a natural number, and A be a matrix over K of

dimension n. Suppose n ≥ 1 and A being diagonal. Then Det A = (the

multiplication of K) ⊛ (the diagonal of A).

(18) Let n be a natural number and p be an element of the permutations of

n-element set. Then p−1 is an element of the permutations of n-element

set.

Let us consider n and let p be an element of the permutations of n-element

set. Then p−1 is an element of the permutations of n-element set.

Next we state the proposition

(19) Let n be a natural number, K be a field, and A be a matrix over K of

dimension n. Then AT is a matrix over K of dimension n.

Let n be a natural number, let K be a field, and let A be a matrix over K

of dimension n. The functor AT yields a matrix over K of dimension n and is

defined as follows:

(Def. 3) AT = (A qua matrix over K)T.

The following proposition is true

(20) For every group G and for all finite sequences f1, f2 of elements of G

holds (
∏

(f1
a f2))

−1 = (
∏

f2)
−1 · (

∏

f1)
−1.

Let G be a group and let f be a finite sequence of elements of G. The functor

f−1 yields a finite sequence of elements of G and is defined by:

(Def. 4) len(f−1) = len f and for every natural number i such that i ∈ Seg len f

holds (f−1)i = (fi)
−1.

One can prove the following propositions:

(21) For every group G holds (ε(the carrier of G))
−1 = ε(the carrier of G).

(22) For every group G and for all finite sequences f , g of elements of G holds

(f a g)−1 = (f−1) a g−1.

(23) For every group G and for every element a of G holds 〈a〉−1 = 〈a−1〉.

(24) For every group G and for every finite sequence f of elements of G holds
∏

(f a (Rev(f))−1) = 1G.
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(25) For every group G and for every finite sequence f of elements of G holds
∏

(((Rev(f))−1) a f) = 1G.

(26) For every group G and for every finite sequence f of elements of G holds

(
∏

f)−1 =
∏

((Rev(f))−1).

(27) Let I1 be an element of the permutations of n-element set and I2 be an

element of An. If I2 = I1 and n ≥ 1, then I1
−1 = I2

−1.

(28) Let n be a natural number and I3 be an element of the permutations of

n-element set. If n ≥ 1, then I3 is even iff I3
−1 is even.

(29) Let n be a natural number, K be a field, p be an element of the per-

mutations of n-element set, and x be an element of K. If n ≥ 1, then

(−1)sgn(p)x = (−1)sgn(p−1)x.

(30) Let K be a field and f1, f2 be finite sequences of elements of K. Then

(the multiplication of K) ⊛ (f1
a f2) = ((the multiplication of K) ⊛ (f1)) ·

((the multiplication of K) ⊛ (f2)).

(31) Let K be a field and R1, R2 be finite sequences of elements of K. Suppose

R1 and R2 are fiberwise equipotent. Then (the multiplication of K) ⊛

(R1) = (the multiplication of K) ⊛ (R2).

(32) Let n be a natural number, K be a field, p be an element of the permu-

tations of n-element set, and f , g be finite sequences of elements of K. If

n ≥ 1 and len f = n and g = f · p, then f and g are fiberwise equipotent.

(33) Let n be a natural number, K be a field, p be an element of the per-

mutations of n-element set, and f , g be finite sequences of elements of K.

Suppose n ≥ 1 and len f = n and g = f · p. Then (the multiplication of

K) ⊛ f = (the multiplication of K) ⊛ g.

(34) Let n be a natural number, K be a field, p be an element of the permu-

tations of n-element set, and f be a finite sequence of elements of K. If

n ≥ 1 and len f = n, then f · p is a finite sequence of elements of K.

(35) Let n be a natural number, K be a field, p be an element of the per-

mutations of n-element set, and A be a matrix over K of dimension n. If

n ≥ 1, then p−1 -Path AT = (p -Path A) · p−1.

(36) Let n be a natural number, K be a field, p be an element of the per-

mutations of n-element set, and A be a matrix over K of dimension n.

Suppose n ≥ 1. Then (the product on paths of AT)(p−1) = (the product

on paths of A)(p).

(37) Let n be a natural number, K be a field, and A be a matrix over K of

dimension n. If n ≥ 1, then Det A = Det(AT).
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