
FORMALIZED MATHEMATICS

Volume 14, Number 1, Pages 37–45

University of Bia lystok, 2006

Several Differentiation Formulas

of Special Functions. Part III

Bo Li

Qingdao University of Science

and Technology

China

Yan Zhang

Qingdao University of Science

and Technology

China

Xiquan Liang

Qingdao University of Science

and Technology

China

Summary. In this article, we give several differentiation formulas of spe-

cial and composite functions including trigonometric function, inverse trigono-

metric function, polynomial function and logarithmic function.
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The articles [13], [15], [16], [1], [4], [10], [11], [17], [5], [14], [12], [2], [6], [9], [7],

[8], and [3] provide the terminology and notation for this paper.

For simplicity, we follow the rules: x, r, a, b denote real numbers, n denotes

a natural number, Z denotes an open subset of R, and f , f1, f2, f3 denote

partial functions from R to R.

One can prove the following propositions:

(1) x2
Z

= x2.

(2) If x > 0, then x
1

2

R
=

√
x.

(3) If x > 0, then x
− 1

2

R
= 1√

x
.

(4) Suppose Z ⊆ ]−1, 1[ and Z ⊆ dom(r (the function arcsin)). Then

(i) r (the function arcsin) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (r (the function arcsin))′↾Z(x) =
r√

1−x2
.
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(5) Suppose Z ⊆ ]−1, 1[ and Z ⊆ dom(r (the function arccos)). Then

(i) r (the function arccos) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (r (the function arccos))′↾Z (x) =

− r√
1−x2

.

(6) Suppose f is differentiable in x and f(x) > −1 and f(x) < 1. Then

(the function arcsin) ·f is differentiable in x and ((the function arcsin)

·f)′(x) = f ′(x)√
1−f(x)2

.

(7) Suppose f is differentiable in x and f(x) > −1 and f(x) < 1. Then

(the function arccos) ·f is differentiable in x and ((the function arccos)

·f)′(x) = − f ′(x)√
1−f(x)2

.

(8) Suppose Z ⊆ dom(log (e) · (the function arcsin)) and Z ⊆ ]−1, 1[ and

for every x such that x ∈ Z holds (the function arcsin)(x) > 0. Then

(i) log (e) · (the function arcsin) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (log (e)·(the function arcsin))′↾Z(x) =
1√

1−x2·(the function arcsin)(x)
.

(9) Suppose Z ⊆ dom(log (e) · (the function arccos)) and Z ⊆ ]−1, 1[ and

for every x such that x ∈ Z holds (the function arccos)(x) > 0. Then

(i) log (e) · (the function arccos) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (log (e)·(the function arccos))′↾Z(x) =

− 1√
1−x2·(the function arccos)(x)

.

(10) Suppose Z ⊆ dom((n
Z
) · (the function arcsin)) and Z ⊆ ]−1, 1[. Then

(i) (n
Z
) · (the function arcsin) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((n
Z
) · (the function arcsin))′↾Z(x) =

n·(the function arcsin)(x)n−1

Z√
1−x2

.

(11) Suppose Z ⊆ dom((n
Z
) · (the function arccos)) and Z ⊆ ]−1, 1[. Then

(i) (n
Z
) · (the function arccos) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((n
Z
) · (the function arccos))′↾Z (x) =

−n·(the function arccos)(x)n−1

Z√
1−x2

.

(12) Suppose Z ⊆ dom( 1
2 ((2

Z
) · (the function arcsin))) and Z ⊆ ]−1, 1[. Then

(i) 1
2 ((2

Z
) · (the function arcsin)) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( 1
2 ((2

Z
)·(the function arcsin)))′↾Z(x) =

(the function arcsin)(x)√
1−x2

.

(13) Suppose Z ⊆ dom( 1
2 ((2

Z
) · (the function arccos))) and Z ⊆ ]−1, 1[. Then

(i) 1
2 ((2

Z
) · (the function arccos)) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( 1
2 ((2

Z
)·(the function arccos)))′↾Z (x) =

− (the function arccos)(x)√
1−x2

.
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(14) Suppose Z ⊆ dom((the function arcsin) ·f) and for every x such that

x ∈ Z holds f(x) = a · x + b and f(x) > −1 and f(x) < 1. Then

(i) (the function arcsin) ·f is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function arcsin) ·f)′↾Z(x) =
a√

1−(a·x+b)2
.

(15) Suppose Z ⊆ dom((the function arccos) ·f) and for every x such that

x ∈ Z holds f(x) = a · x + b and f(x) > −1 and f(x) < 1. Then

(i) (the function arccos) ·f is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function arccos) ·f)′↾Z(x) =

− a√
1−(a·x+b)2

.

(16) Suppose Z ⊆ dom(idZ (the function arcsin)) and Z ⊆ ]−1, 1[. Then

(i) idZ (the function arcsin) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (idZ (the function arcsin))′↾Z(x) =

(the function arcsin)(x) + x√
1−x2

.

(17) Suppose Z ⊆ dom(idZ (the function arccos)) and Z ⊆ ]−1, 1[. Then

(i) idZ (the function arccos) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (idZ (the function arccos))′↾Z (x) =

(the function arccos)(x) − x√
1−x2

.

(18) Suppose Z ⊆ dom(f (the function arcsin)) and Z ⊆ ]−1, 1[ and for every

x such that x ∈ Z holds f(x) = a · x + b. Then

(i) f (the function arcsin) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (f (the function arcsin))′↾Z(x) = a·(the

function arcsin)(x) + a·x+b√
1−x2

.

(19) Suppose Z ⊆ dom(f (the function arccos)) and Z ⊆ ]−1, 1[ and for every

x such that x ∈ Z holds f(x) = a · x + b. Then

(i) f (the function arccos) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (f (the function arccos))′↾Z (x) =

a · (the function arccos)(x) − a·x+b√
1−x2

.

(20) Suppose Z ⊆ dom( 1
2 ((the function arcsin) ·f)) and for every x such that

x ∈ Z holds f(x) = 2 · x and f(x) > −1 and f(x) < 1. Then

(i) 1
2 ((the function arcsin) ·f) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( 1
2 ((the function arcsin) ·f))′↾Z(x) =

1√
1−(2·x)2

.

(21) Suppose Z ⊆ dom( 1
2 ((the function arccos) ·f)) and for every x such that

x ∈ Z holds f(x) = 2 · x and f(x) > −1 and f(x) < 1. Then

(i) 1
2 ((the function arccos) ·f) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( 1
2 ((the function arccos) ·f))′↾Z(x) =

− 1√
1−(2·x)2

.
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(22) Suppose Z ⊆ dom((
1

2

R
)·f) and f = f1−f2 and f2 = 2

Z
and for every x such

that x ∈ Z holds f1(x) = 1 and f(x) > 0. Then (
1

2

R
) · f is differentiable on

Z and for every x such that x ∈ Z holds ((
1

2

R
) · f)′↾Z(x) = −x · (1 − x2

Z
)
− 1

2

R
.

(23) Suppose that

(i) Z ⊆ dom(idZ (the function arcsin)+(
1

2

R
) · f),

(ii) Z ⊆ ]−1, 1[,

(iii) f = f1 − f2,

(iv) f2 = 2
Z
, and

(v) for every x such that x ∈ Z holds f1(x) = 1 and f(x) > 0 and x 6= 0.

Then

(vi) idZ (the function arcsin)+(
1

2

R
) · f is differentiable on Z, and

(vii) for every x such that x ∈ Z holds (idZ (the function arcsin)+(
1

2

R
) ·

f)′↾Z(x) = (the function arcsin)(x).

(24) Suppose that

(i) Z ⊆ dom(idZ (the function arccos)−(
1

2

R
) · f),

(ii) Z ⊆ ]−1, 1[,

(iii) f = f1 − f2,

(iv) f2 = 2
Z
, and

(v) for every x such that x ∈ Z holds f1(x) = 1 and f(x) > 0 and x 6= 0.

Then

(vi) idZ (the function arccos)−(
1

2

R
) · f is differentiable on Z, and

(vii) for every x such that x ∈ Z holds (idZ (the function arccos)−(
1

2

R
) ·

f)′↾Z(x) = (the function arccos)(x).

(25) Suppose Z ⊆ dom(idZ ((the function arcsin) ·f)) and for every x such

that x ∈ Z holds f(x) = x
a

and f(x) > −1 and f(x) < 1. Then

(i) idZ ((the function arcsin) ·f) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (idZ ((the function arcsin) ·f))′↾Z(x) =

(the function arcsin)(x
a
) + x

a·
√

1−(x

a
)2

.

(26) Suppose Z ⊆ dom(idZ ((the function arccos) ·f)) and for every x such

that x ∈ Z holds f(x) = x
a

and f(x) > −1 and f(x) < 1. Then

(i) idZ ((the function arccos) ·f) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (idZ ((the function arccos) ·f))′↾Z(x) =

(the function arccos)(x
a
) − x

a·
√

1−(x

a
)2

.

(27) Suppose Z ⊆ dom((
1

2

R
)·f) and f = f1−f2 and f2 = 2

Z
and for every x such

that x ∈ Z holds f1(x) = a2 and f(x) > 0. Then (
1

2

R
) ·f is differentiable on

Z and for every x such that x ∈ Z holds ((
1

2

R
) ·f)′↾Z(x) = −x · (a2 − x2

Z
)
− 1

2

R
.

(28) Suppose that



several differentiation formulas . . . 41

(i) Z ⊆ dom(idZ ((the function arcsin) ·f3) + (
1

2

R
) · f),

(ii) Z ⊆ ]−1, 1[,

(iii) f = f1 − f2,

(iv) f2 = 2
Z
, and

(v) for every x such that x ∈ Z holds f1(x) = a2 and f(x) > 0 and

f3(x) = x
a

and f3(x) > −1 and f3(x) < 1 and x 6= 0 and a > 0.

Then

(vi) idZ ((the function arcsin) ·f3) + (
1

2

R
) · f is differentiable on Z, and

(vii) for every x such that x ∈ Z holds (idZ ((the function arcsin) ·f3)+(
1

2

R
) ·

f)′↾Z(x) = (the function arcsin)(x
a
).

(29) Suppose that

(i) Z ⊆ dom(idZ ((the function arccos) ·f3) − (
1

2

R
) · f),

(ii) Z ⊆ ]−1, 1[,

(iii) f = f1 − f2,

(iv) f2 = 2
Z
, and

(v) for every x such that x ∈ Z holds f1(x) = a2 and f(x) > 0 and

f3(x) = x
a

and f3(x) > −1 and f3(x) < 1 and x 6= 0 and a > 0.

Then

(vi) idZ ((the function arccos) ·f3) − (
1

2

R
) · f is differentiable on Z, and

(vii) for every x such that x ∈ Z holds (idZ ((the function arccos) ·f3)− (
1

2

R
) ·

f)′↾Z(x) = (the function arccos)(x
a
).

(30) Suppose Z ⊆ dom((− 1
n
) ((n

Z
) · 1

the function sin)) and n > 0 and for every x

such that x ∈ Z holds (the function sin)(x) 6= 0. Then

(i) (− 1
n
) ((n

Z
) · 1

the function sin) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((− 1
n
) ((n

Z
) · 1

the function sin))′↾Z(x) =
(the function cos)(x)

(the function sin)(x)n+1

Z

.

(31) Suppose Z ⊆ dom( 1
n

((n
Z
) · 1

the function cos )) and n > 0 and for every x

such that x ∈ Z holds (the function cos)(x) 6= 0. Then

(i) 1
n

((n
Z
) · 1

the function cos ) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( 1
n

((n
Z
) · 1

the function cos ))
′
↾Z(x) =

(the function sin)(x)

(the function cos)(x)n+1

Z

.

(32) Suppose Z ⊆ dom((the function sin) · log (e)) and for every x such that

x ∈ Z holds x > 0. Then

(i) (the function sin) · log (e) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) · log (e))′↾Z(x) =
(the function cos)((log (e))(x))

x
.

(33) Suppose Z ⊆ dom((the function cos) · log (e)) and for every x such that

x ∈ Z holds x > 0. Then
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(i) (the function cos) · log (e) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) · log (e))′↾Z(x) =

− (the function sin)((log (e))(x))
x

.

(34) Suppose Z ⊆ dom((the function sin) ·(the function exp)). Then

(i) (the function sin) ·(the function exp) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) ·(the func-

tion exp))′↾Z(x) = (the function exp)(x) · (the function cos)((the function

exp)(x)).

(35) Suppose Z ⊆ dom((the function cos) ·(the function exp)). Then

(i) (the function cos) ·(the function exp) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) ·(the function

exp))′↾Z(x) =

−(the function exp)(x) · (the function sin)((the function exp)(x)).

(36) Suppose Z ⊆ dom((the function exp) ·(the function cos)). Then

(i) (the function exp) ·(the function cos) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) ·(the function

cos))′↾Z (x) =

−(the function exp)((the function cos)(x)) · (the function sin)(x).

(37) Suppose Z ⊆ dom((the function exp) ·(the function sin)). Then

(i) (the function exp) ·(the function sin) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) ·(the func-

tion sin))′↾Z(x) = (the function exp)((the function sin)(x)) · (the function

cos)(x).

(38) Suppose Z ⊆ dom((the function sin)+(the function cos)). Then

(i) (the function sin)+(the function cos) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin)+(the function

cos))′↾Z (x) = (the function cos)(x) − (the function sin)(x).

(39) Suppose Z ⊆ dom((the function sin)−(the function cos)). Then

(i) (the function sin)−(the function cos) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin)−(the function

cos))′↾Z (x) = (the function cos)(x) + (the function sin)(x).

(40) Suppose Z ⊆ dom((the function exp) ((the function sin)−(the function

cos))). Then

(i) (the function exp) ((the function sin)−(the function cos)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) ((the function

sin)−(the function cos)))′↾Z(x) = 2 · (the function exp)(x) · (the function

sin)(x).

(41) Suppose Z ⊆ dom((the function exp) ((the function sin)+(the function

cos))). Then
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(i) (the function exp) ((the function sin)+(the function cos)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) ((the function

sin)+(the function cos)))′↾Z (x) = 2 · (the function exp)(x) · (the function

cos)(x).

(42) Suppose Z ⊆ dom( (the function sin)+(the function cos)
the function exp ). Then

(i) (the function sin)+(the function cos)
the function exp is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( (the function sin)+(the function cos)
the function exp )′↾Z(x) =

−2·(the function sin)(x)
(the function exp)(x) .

(43) Suppose Z ⊆ dom( (the function sin)−(the function cos)
the function exp ). Then

(i) (the function sin)−(the function cos)
the function exp is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( (the function sin)−(the function cos)
the function exp )′↾Z(x) =

2·(the function cos)(x)
(the function exp)(x) .

(44) Suppose Z ⊆ dom((the function exp) (the function sin)). Then

(i) (the function exp) (the function sin) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) (the function

sin))′↾Z(x) = (the function exp)(x) · ((the function sin)(x) + (the function

cos)(x)).

(45) Suppose Z ⊆ dom((the function exp) (the function cos)). Then

(i) (the function exp) (the function cos) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) (the function

cos))′↾Z(x) = (the function exp)(x) · ((the function cos)(x)− (the function

sin)(x)).

(46) Suppose (the function cos)(x) 6= 0. Then

(i) the function sin
the function cos is differentiable in x, and

(ii) ( the function sin
the function cos )

′(x) = 1
(the function cos)(x)2

.

(47) Suppose (the function sin)(x) 6= 0. Then

(i) the function cos
the function sin is differentiable in x, and

(ii) ( the function cos
the function sin )′(x) = − 1

(the function sin)(x)2
.

(48) Suppose Z ⊆ dom((2
Z
) · the function sin

the function cos ) and for every x such that x ∈ Z

holds (the function cos)(x) 6= 0. Then

(i) (2
Z
) · the function sin

the function cos is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((2
Z
) · the function sin

the function cos )
′
↾Z(x) =

2·(the function sin)(x)
(the function cos)(x)3

Z

.

(49) Suppose Z ⊆ dom((2
Z
) · the function cos

the function sin ) and for every x such that x ∈ Z

holds (the function sin)(x) 6= 0. Then

(i) (2
Z
) · the function cos

the function sin is differentiable on Z, and
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(ii) for every x such that x ∈ Z holds ((2
Z
) · the function cos

the function sin )′↾Z(x) =

−2·(the function cos)(x)
(the function sin)(x)3

Z

.

(50) Suppose that

(i) Z ⊆ dom( the function sin
the function cos · f), and

(ii) for every x such that x ∈ Z holds f(x) = x
2 and (the function

cos)(f(x)) 6= 0.

Then

(iii) the function sin
the function cos · f is differentiable on Z, and

(iv) for every x such that x ∈ Z holds ( the function sin
the function cos · f)′↾Z(x) =

1
1+(the function cos)(x) .

(51) Suppose that

(i) Z ⊆ dom( the function cos
the function sin · f), and

(ii) for every x such that x ∈ Z holds f(x) = x
2 and (the function

sin)(f(x)) 6= 0.

Then

(iii) the function cos
the function sin · f is differentiable on Z, and

(iv) for every x such that x ∈ Z holds ( the function cos
the function sin · f)′↾Z(x) =

− 1
1−(the function cos)(x) .
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