The Maclaurin Expansions

Akira Nishino Shinshu University Nagano, Japan Yasunari Shidama Shinshu University Nagano, Japan

Summary. A concept of the Maclaurin expansions is defined here. This article contains the definition of the Maclaurin expansion and expansions of exp, sin and cos functions.

MML identifier: TAYLOR_2, version: 7.5.01 4.39.921

The papers [15], [16], [4], [12], [2], [14], [5], [1], [3], [7], [6], [10], [11], [8], [9], [17], and [13] provide the notation and terminology for this paper.

The following proposition is true

(1) For every real number x and for every natural number n holds $|x^n| = |x|^n$.

Let f be a partial function from \mathbb{R} to \mathbb{R} , let Z be a subset of \mathbb{R} , and let a be a real number. The functor Maclaurin(f, Z, a) yields a sequence of real numbers and is defined by:

(Def. 1) Maclaurin(f, Z, a) = Taylor(f, Z, 0, a).

The following propositions are true:

- (2) Let *n* be a natural number, *f* be a partial function from \mathbb{R} to \mathbb{R} , and *r* be a real number. Suppose 0 < r and *f* is differentiable n + 1times on]-r,r[. Let *x* be a real number. Suppose $x \in]-r,r[$. Then there exists a real number *s* such that 0 < s and s < 1 and f(x) = $(\sum_{\alpha=0}^{\kappa} (\text{Maclaurin}(f,]-r, r[, x))(\alpha))_{\kappa \in \mathbb{N}}(n) + \frac{f'(]-r,r[)(n+1)(s \cdot x) \cdot x^{n+1}}{(n+1)!}.$
- (3) Let *n* be a natural number, *f* be a partial function from \mathbb{R} to \mathbb{R} , and x_0 , *r* be real numbers. Suppose 0 < r and *f* is differentiable n + 1 times on $]x_0 - r, x_0 + r[$. Let *x* be a real number. Suppose $x \in]x_0 - r, x_0 + r[$. Then there exists a real number *s* such that 0 < s and s < 1 and $|f(x) - (\sum_{\alpha=0}^{\kappa} (\text{Taylor}(f,]x_0 - r, x_0 + r[, x_0, x))(\alpha))_{\kappa \in \mathbb{N}}(n)| =$ $|\frac{f'(]x_0 - r, x_0 + r[)(n+1)(x_0 + s \cdot (x - x_0)) \cdot (x - x_0)^{n+1}}{(n+1)!}|.$

C 2005 University of Białystok ISSN 1426-2630

AKIRA NISHINO AND YASUNARI SHIDAMA

- (4) Let n be a natural number, f be a partial function from \mathbb{R} to \mathbb{R} , and r be a real number. Suppose 0 < r and f is differentiable n + 1times on]-r, r[. Let x be a real number. Suppose $x \in]-r, r[$. Then there exists a real number s such that 0 < s and s < 1 and |f(x) - f(x)| = 1 $\left(\sum_{\alpha=0}^{\kappa} (\operatorname{Maclaurin}(f,]-r, r[, x))(\alpha)\right)_{\kappa \in \mathbb{N}}(n) = \left|\frac{f'(]-r, r[)(n+1)(s \cdot x) \cdot x^{n+1}}{(n+1)!}\right|.$ (5) For every real number r holds $\exp_{[]-r, r[}' = \exp[]-r, r[$ and
- $\operatorname{dom}(\exp[]-r,r[) =]-r,r[.$
- (6) For every natural number n and for every real number r holds $\exp'([-r, r[)(n)] = \exp[[-r, r[.$
- (7) For every natural number n and for all real numbers r, x such that $x \in \left[-r, r\right]$ holds $\exp'(\left[-r, r\right])(n)(x) = \exp(x)$.
- (8) For every natural number n and for all real numbers r, x such that 0 < rholds (Maclaurin(exp, $]-r, r[, x))(n) = \frac{x^n}{n!}$.
- (9) Let n be a natural number and r, x, s be real numbers. Suppose $x \in [-r, r[$ and 0 < s and s < 1. Then $|\frac{\exp'([-r, r])(n+1)(s \cdot x) \cdot x^{n+1}}{(n+1)!}| \leq 1$ (n+1)! $\frac{|\exp(s \cdot x)| \cdot |x|^{n+1}}{(n+1)!}$
- (10) For every real number r and for every natural number n holds exp is differentiable n times on]-r, r[.
- (11) Let r be a real number. Suppose 0 < r. Then there exist real numbers M, L such that
 - $0 \leq M$, (i)
 - (ii) $0 \leq L$, and
- for every natural number n and for all real numbers x, s such that (iii) $x \in \left]-r, r\right[$ and 0 < s and s < 1 holds $\left|\frac{\exp'(\left]-r, r\right[)(n)(s \cdot x) \cdot x^n}{n!}\right| \le \frac{M \cdot L^n}{n!}$.
- (12) Let M, L be real numbers. Suppose $M \ge 0$ and $L \ge 0$. Let e be a real number. Suppose e > 0. Then there exists a natural number n such that for every natural number m if $n \le m$, then $\frac{M \cdot L^m}{m!} < e$.
- (13) Let r, e be real numbers. Suppose 0 < r and 0 < e. Then there exists a natural number n such that for every natural number m if $n \leq m$, then for all real numbers x, s such that $x \in [-r, r]$ and 0 < s and s < 1 holds $\left|\frac{\exp'(]-r,r[)(m)(s \cdot x) \cdot x^m}{m!}\right| < e.$
- (14) Let r, e be real numbers. Suppose 0 < r and 0 < e. Then there exists a natural number n such that for every natural number m if $n \leq m$, then for every real number x such that $x \in [-r, r]$ holds $|\exp(x) - (\sum_{\alpha=0}^{\kappa} (\operatorname{Maclaurin}(\exp,]-r, r[, x))(\alpha))_{\kappa \in \mathbb{N}}(m)| < e.$
- (15) For every real number x holds x ExpSeq is absolutely summable.
- (16) For all real numbers r, x such that 0 < r holds Maclaurin(exp,]-r, r[, x) = $x \operatorname{ExpSeq}$ and Maclaurin(exp,]-r, r[, x) is absolutely summable and $\exp(x) = \sum \text{Maclaurin}(\exp,]-r, r[, x).$

422

- Let r be a real number. Then (17)
 - (the function $\sin)'_{\mid -r,r \mid} = (\text{the function } \cos) \mid -r, r \mid,$ (i)
- (the function $\cos)'_{\uparrow]-r,r[} = (-\text{the function } \sin)\uparrow]-r,r[,$ (ii)
- dom((the function $\sin)$)]-r, r[) =]-r, r[, and (iii)
- dom((the function $\cos)$)[-r, r[) =]-r, r[.(iv)
- (18) Let f be a partial function from \mathbb{R} to \mathbb{R} and Z be a subset of \mathbb{R} . If f is differentiable on Z, then $(-f)'_{\uparrow Z} = -f'_{\uparrow Z}$.
- Let r be a real number and n be a natural number. Then (19)
 - (the function $\sin^{\prime}([-r, r[)(2 \cdot n) = (-1)^n$ ((the function $\sin^{\dagger}([-r, r[), r[))$)) (i)
- (ii) (the function $\sin^{\prime}(]-r, r[)(2 \cdot n+1) = (-1)^n$ ((the function $\cos^{\dagger}(]-r, r[),$
- (the function $\cos^{\prime}(]-r, r[)(2 \cdot n) = (-1)^n$ ((the function $\cos^{\dagger}(]-r, r[),$ (iii) and
- (the function $\cos'(]-r,r](2 \cdot n + 1) = (-1)^{n+1}$ ((the function (iv) $\sin \left[-r, r \right]$.
- (20) Let n be a natural number and r, x be real numbers. Suppose r > 0. Then
 - (Maclaurin(the function $\sin (-r, r[, x))(2 \cdot n) = 0$, (i)
- (Maclaurin(the function sin,]-r, r[, x)) $(2 \cdot n + 1) = \frac{(-1)^n \cdot x^{2 \cdot n+1}}{(2 \cdot n+1)!},$ (ii)
- (Maclaurin(the function \cos , $]-r, r[, x))(2 \cdot n) = \frac{(-1)^n \cdot x^{2 \cdot n}}{(2 \cdot n)!}$, and (Maclaurin(the function $\cos x) = \frac{(-1)^n \cdot x^{2 \cdot n}}{(2 \cdot n)!}$, and (iii)
- (Maclaurin(the function $\cos,]-r, r[, x)$) $(2 \cdot n + 1) = 0$. (iv)
- (21)Let r be a real number and n be a natural number. Then the function sin is differentiable n times on $\left[-r, r\right]$ and the function cos is differentiable n times on]-r, r[.
- (22) Let r be a real number. Suppose r > 0. Then there exist real numbers r_1, r_2 such that
 - (i) $r_1 \geq 0,$
- $r_2 \geq 0$, and (ii)
- for every natural number n and for all real numbers x, s such that $x \in$ (iii) $\begin{aligned} &|-r,r[\text{ and } 0 < s \text{ and } s < 1 \text{ holds } |\frac{(\text{the function } \sin)'(]-r,r[)(n)(s\cdot x)\cdot x^n}{n!}| \leq \frac{r_1 \cdot r_2^n}{n!} \\ &\text{ and } |\frac{(\text{the function } \cos)'(]-r,r[)(n)(s\cdot x)\cdot x^n}{n!}| \leq \frac{r_1 \cdot r_2^n}{n!}. \end{aligned}$
- (23) Let r, e be real numbers. Suppose 0 < r and 0 < e. Then there exists a natural number n such that for every natural number m if $n \leq m$, then for all real numbers x, s such that $x \in [-r, r]$ and 0 < s and s < 1 holds $\left|\frac{(\text{the function } \sin)'(]-r,r[)(m)(s\cdot x)\cdot x^m}{m!}\right| < e$ and $\left|\frac{(\text{the function } \cos)'(]-r,r[)(m)(s \cdot x) \cdot x^{m}}{m!}\right| < e.$
- Suppose 0 < r and 0 < e. (24) Let r, e be real numbers. Then there exists a natural number n such that for every natural number m if $n \leq m$, then for every real number x such that $x \in]-r, r[$ holds $|(\text{the function } \sin)(x) - (\sum_{\alpha=0}^{\kappa} (\text{Maclaurin}(\text{the func-}$

tion $\sin(x) = -r, r(x)(\alpha) = -r$ $(\sum_{\alpha=0}^{\kappa} (\text{Maclaurin}(\text{the function } \cos,]-r, r[, x))(\alpha))_{\kappa \in \mathbb{N}}(m)| < e.$

- (25) Let r, x be real numbers and m be a natural number. Suppose 0 < r. Then $(\sum_{\alpha=0}^{\kappa} (\text{Maclaurin}(\text{the function } \sin,]-r, r[, x))(\alpha))_{\kappa \in \mathbb{N}}(2 \cdot m+1) = (\sum_{\alpha=0}^{\kappa} x \operatorname{P}_{-}\sin(\alpha))_{\kappa \in \mathbb{N}}(m)$ and $(\sum_{\alpha=0}^{\kappa} (\text{Maclaurin}(\text{the function function}))_{\kappa \in \mathbb{N}}(m)$ $\cos,]-r, r[, x))(\alpha))_{\kappa \in \mathbb{N}}(2 \cdot m + 1) = (\sum_{\alpha=0}^{\kappa} x \operatorname{P-cos}(\alpha))_{\kappa \in \mathbb{N}}(m).$
- (26) Let r, x be real numbers and m be a natural number. Suppose 0 < rand m > 0. Then $(\sum_{\alpha=0}^{\kappa} (\text{Maclaurin}(\text{the function sin},]-r, r[, x))(\alpha))_{\kappa \in \mathbb{N}}(2 \cdot 1)$ $m) = (\sum_{\alpha=0}^{\kappa} x \operatorname{P}_{-}\operatorname{sin}(\alpha))_{\kappa \in \mathbb{N}} (m-1) \text{ and } (\sum_{\alpha=0}^{\kappa} (\operatorname{Maclaurin}(\text{the function } \cos,]-r, r[, x))(\alpha))_{\kappa \in \mathbb{N}} (2 \cdot m) = (\sum_{\alpha=0}^{\kappa} x \operatorname{P}_{-} \cos(\alpha))_{\kappa \in \mathbb{N}} (m).$
- (27) Let r, x be real numbers and m be a natural number. If 0 <r, then $(\sum_{\alpha=0}^{\kappa} (\text{Maclaurin}(\text{the function } \cos,]-r, r[, x))(\alpha))_{\kappa \in \mathbb{N}}(2 \cdot m) =$ $(\sum_{\alpha=0}^{\kappa} x \operatorname{P}_{-} \cos(\alpha))_{\kappa \in \mathbb{N}}(m).$
- Let r, x be real numbers. Suppose r > 0. Then (28)
- $(\sum_{\alpha=0}^{\kappa} (\text{Maclaurin}(\text{the function sin},]-r, r[, x))(\alpha))_{\kappa \in \mathbb{N}}$ is convergent, (i)
- (the function $\sin(x) = \sum \text{Maclaurin}(\text{the function } \sin,]-r, r[, x),$ (ii)
- (iii) $(\sum_{\alpha=0}^{\kappa} (\text{Maclaurin}(\text{the function } \cos,]-r, r[, x))(\alpha))_{\kappa \in \mathbb{N}}$ is convergent, and
- (the function $\cos(x) = \sum \text{Maclaurin}(\text{the function } \cos,]-r, r[, x).$ (iv)

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe*matics*, 1(1):41–46, 1990.
- [2]Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
- Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. [4]
- Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, [5]1(1):35-40, 1990.
- Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Math-[6] ematics, 1(2):273-275, 1990.
- Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathemat*ics*, 1(**2**):269–272, 1990.
- [8] Beata Perkowska. Functional sequence from a domain to a domain. Formalized Mathe*matics*, 3(1):17–21, 1992.
- Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125-[9] 130, 1991.
- [10] Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449-452, 1991.
- [11] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
- [12] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
- Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195-200, [13]2004.[14]
- Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990. [15]
- [16] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

[17] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255–263, 1998.

Received July 6, 2005