The Maclaurin Expansions

Akira Nishino
Shinshu University
Nagano, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Abstract

Summary. A concept of the Maclaurin expansions is defined here. This article contains the definition of the Maclaurin expansion and expansions of exp, \sin and cos functions.

MML identifier: TAYLOR_2, version: 7.5.01 4.39.921

The papers [15], [16], [4], [12], [2], [14], [5], [1], [3], [7], [6], [10], [11], [8], [9], [17], and [13] provide the notation and terminology for this paper.

The following proposition is true
(1) For every real number x and for every natural number n holds $\left|x^{n}\right|=$ $|x|^{n}$.
Let f be a partial function from \mathbb{R} to \mathbb{R}, let Z be a subset of \mathbb{R}, and let a be a real number. The functor $\operatorname{Maclaurin}(f, Z, a)$ yields a sequence of real numbers and is defined by:
(Def. 1) $\operatorname{Maclaurin}(f, Z, a)=\operatorname{Taylor}(f, Z, 0, a)$.
The following propositions are true:
(2) Let n be a natural number, f be a partial function from \mathbb{R} to \mathbb{R}, and r be a real number. Suppose $0<r$ and f is differentiable $n+1$ times on $]-r, r[$. Let x be a real number. Suppose $x \in]-r, r[$. Then there exists a real number s such that $0<s$ and $s<1$ and $f(x)=$ $\left(\sum_{\alpha=0}^{\kappa}(\operatorname{Maclaurin}(f,]-r, r[, x))(\alpha)\right)_{\kappa \in \mathbb{N}}(n)+\frac{\left.f^{\prime}(]-r, r\right)(n+1)(s \cdot x) \cdot x^{n+1}}{(n+1)!}$.
(3) Let n be a natural number, f be a partial function from \mathbb{R} to \mathbb{R}, and x_{0}, r be real numbers. Suppose $0<r$ and f is differentiable $n+1$ times on $] x_{0}-r, x_{0}+r[$. Let x be a real number. Suppose $x \in] x_{0}-r, x_{0}+r[$. Then there exists a real number s such that $0<s$ and $s<1$ and $\left|f(x)-\left(\sum_{\alpha=0}^{\kappa}\left(\operatorname{Taylor}(f,] x_{0}-r, x_{0}+r\left[, x_{0}, x\right)\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)\right|=$ $\left|\frac{f^{\prime}\left(x_{0}-r, x_{0}+r \mid\right)(n+1)\left(x_{0}+s \cdot\left(x-x_{0}\right)\right) \cdot\left(x-x_{0}\right)^{n+1}}{(n+1)!}\right|$.
(4) Let n be a natural number, f be a partial function from \mathbb{R} to \mathbb{R}, and r be a real number. Suppose $0<r$ and f is differentiable $n+1$ times on $]-r, r$. Let x be a real number. Suppose $x \in]-r, r[$. Then there exists a real number s such that $0<s$ and $s<1$ and $\mid f(x)-$ $\left(\sum_{\alpha=0}^{\kappa}(\operatorname{Maclaurin}(f,]-r, r[, x))(\alpha)\right)_{\kappa \in \mathbb{N}}(n)\left|=\left|\frac{f^{\prime}(]-r, r[)(n+1)(s \cdot x) \cdot x^{n+1}}{(n+1)!}\right|\right.$.
(5) For every real number r holds $\left.\exp _{\uparrow]-r, r[}^{\prime}=\exp \upharpoonright\right]-r, r[$ and $\operatorname{dom}(\exp \upharpoonright]-r, r[)=]-r, r[$.
(6) For every natural number n and for every real number r holds $\left.\exp ^{\prime}(]-r, r[)(n)=\exp \upharpoonright\right]-r, r[$.
(7) For every natural number n and for all real numbers r, x such that $x \in]-r, r\left[\right.$ holds $\exp ^{\prime}(]-r, r[)(n)(x)=\exp (x)$.
(8) For every natural number n and for all real numbers r, x such that $0<r$ holds (Maclaurin $(\exp]-r,, r[, x))(n)=\frac{x^{n}}{n!}$.
(9) Let n be a natural number and r, x, s be real numbers. Suppose $x \in]-r, r\left[\right.$ and $0<s$ and $s<1$. Then $\left|\frac{\exp ^{\prime}(]-r, r[)(n+1)(s \cdot x) \cdot x^{n+1}}{(n+1)!}\right| \leq$ $\frac{|\exp (s \cdot x)| \cdot|x|^{n+1}}{(n+1)!}$.
(10) For every real number r and for every natural number n holds exp is differentiable n times on $]-r, r$.
(11) Let r be a real number. Suppose $0<r$. Then there exist real numbers M, L such that
(i) $0 \leq M$,
(ii) $0 \leq L$, and
(iii) for every natural number n and for all real numbers x, s such that $x \in]-r, r\left[\right.$ and $0<s$ and $s<1$ holds $\left|\frac{\exp ^{\prime}(]-r, r[)(n)(s \cdot x) \cdot x^{n}}{n!}\right| \leq \frac{M \cdot L^{n}}{n!}$.
(12) Let M, L be real numbers. Suppose $M \geq 0$ and $L \geq 0$. Let e be a real number. Suppose $e>0$. Then there exists a natural number n such that for every natural number m if $n \leq m$, then $\frac{M \cdot L^{m}}{m!}<e$.
(13) Let r, e be real numbers. Suppose $0<r$ and $0<e$. Then there exists a natural number n such that for every natural number m if $n \leq m$, then for all real numbers x, s such that $x \in]-r, r[$ and $0<s$ and $s<1$ holds $\left|\frac{\exp ^{\prime}(]-r, r[)(m)(s \cdot x) \cdot x^{m}}{m!}\right|<e$.
(14) Let r, e be real numbers. Suppose $0<r$ and $0<e$. Then there exists a natural number n such that for every natural number m if $n \leq m$, then for every real number x such that $x \in]-r, r[$ holds $\left|\exp (x)-\left(\sum_{\alpha=0}^{\kappa}(\operatorname{Maclaurin}(\exp ,]-r, r[, x))(\alpha)\right)_{\kappa \in \mathbb{N}}(m)\right|<e$.
(15) For every real number x holds $x \operatorname{ExpSeq}$ is absolutely summable.
(16) For all real numbers r, x such that $0<r$ holds Maclaurin $(\exp]-r,, r[, x)=$ $x \operatorname{ExpSeq}$ and Maclaurin(exp, $]-r, r[, x)$ is absolutely summable and $\exp (x)=\sum \operatorname{Maclaurin}(\exp]-r,, r[, x)$.
(17) Let r be a real number. Then
(i) (the function $\sin)_{\Gamma]-r, r[}^{\prime}=($ the function $\left.\cos) \Gamma\right]-r, r[$,
(ii) (the function $\cos)_{\Gamma]-r, r[}^{\prime}=(-$ the function $\left.\sin) \Gamma\right]-r, r[$,
(iii) $\operatorname{dom}(($ the function $\sin) \upharpoonright]-r, r[)=]-r, r[$, and
(iv) $\quad \operatorname{dom}(($ the function $\cos) \upharpoonright]-r, r[)=]-r, r[$.
(18) Let f be a partial function from \mathbb{R} to \mathbb{R} and Z be a subset of \mathbb{R}. If f is differentiable on Z, then $(-f)^{\prime}{ }_{\gamma}=-f_{\mid Z}^{\prime}$.
(19) Let r be a real number and n be a natural number. Then
(i) (the function $\sin)^{\prime}(]-r, r[)(2 \cdot n)=(-1)^{n}(($ the function $\sin) \upharpoonright]-r, r[)$,
(ii) $\quad(\text { the function } \sin)^{\prime}(]-r, r[)(2 \cdot n+1)=(-1)^{n}(($ the function $\cos) \upharpoonright]-r, r[)$,
(iii) (the function $\cos)^{\prime}(]-r, r[)(2 \cdot n)=(-1)^{n}(($ the function $\cos) \upharpoonright]-r, r[)$, and
(iv) (the function $\cos)^{\prime}(]-r, r[)(2 \cdot n+1)=(-1)^{n+1}(($ the function $\sin) \upharpoonright]-r, r[)$.
(20) Let n be a natural number and r, x be real numbers. Suppose $r>0$. Then
(i) (Maclaurin(the function sin, $]-r, r[, x))(2 \cdot n)=0$,
(ii) (Maclaurin(the function sin, $]-r, r[, x))(2 \cdot n+1)=\frac{(-1)^{n} \cdot x^{2 \cdot n+1}}{(2 \cdot n+1)!}$,
(iii) (Maclaurin(the function cos, $]-r, r[, x))(2 \cdot n)=\frac{(-1)^{n} \cdot x^{2 \cdot n}}{(2 \cdot n)!}$, and
(iv) (Maclaurin(the function cos, $]-r, r[, x))(2 \cdot n+1)=0$.
(21) Let r be a real number and n be a natural number. Then the function sin is differentiable n times on $]-r, r$ [and the function cos is differentiable n times on $]-r, r$.
(22) Let r be a real number. Suppose $r>0$. Then there exist real numbers r_{1}, r_{2} such that
(i) $\quad r_{1} \geq 0$,
(ii) $\quad r_{2} \geq 0$, and
(iii) for every natural number n and for all real numbers x, s such that $x \in$ $]-r, r\left[\right.$ and $0<s$ and $s<1$ holds $\left|\frac{(\text { the function } \sin)^{\prime}(]-r, r[)(n)(s \cdot x) \cdot x^{n}}{n!}\right| \leq \frac{r_{1} \cdot r_{2}{ }^{n}}{n!}$ and $\left|\frac{(\text { the function } \cos)^{\prime}(]-r, r[)(n)(s \cdot x) \cdot x^{n}}{n!}\right| \leq \frac{r_{1} \cdot r_{2}{ }^{n}}{n!}$.
(23) Let r, e be real numbers. Suppose $0<r$ and $0<e$. Then there exists a natural number n such that for every natural number m if $n \leq m$, then for all real numbers x, s such that $x \in]-r, r[$ and $0<s$ and $s<1$ holds $\left|\frac{(\text { the function } \sin)^{\prime}(]-r, r[)(m)(s \cdot x) \cdot x^{m}}{m!}\right|<e$ and $\left|\frac{(\text { the function } \cos)^{\prime}(]-r, r[)(m)(s \cdot x) \cdot x^{m}}{m!}\right|<e$.
(24) Let r, e be real numbers. Suppose $0<r$ and $0<e$. Then there exists a natural number n such that for every natural number m if $n \leq m$, then for every real number x such that $x \in]-r, r[$ holds \mid (the function $\sin)(x)-\left(\sum_{\alpha=0}^{\kappa}(\right.$ Maclaurin (the func-
tion $\sin ,]-r, r[, x))(\alpha))_{\kappa \in \mathbb{N}}(m) \mid<e$ and $\mid($ the function $\cos)(x)-$ $\left(\sum_{\alpha=0}^{\kappa}(\right.$ Maclaurin(the function cos, $\left.\left.]-r, r[, x)\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(m) \mid<e$.
(25) Let r, x be real numbers and m be a natural number. Suppose $0<r$. Then $\left(\sum_{\alpha=0}^{\kappa}(\right.$ Maclaurin(the function $\left.\left.\sin]-r,, r[, x)\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(2$. $m+1)=\left(\sum_{\alpha=0}^{\kappa} x P_{-} \sin (\alpha)\right)_{\kappa \in \mathbb{N}}(m)$ and $\left(\sum_{\alpha=0}^{\kappa}(\right.$ Maclaurin $($ the function $\cos ,]-r, r[, x))(\alpha))_{\kappa \in \mathbb{N}}(2 \cdot m+1)=\left(\sum_{\alpha=0}^{\kappa} x \mathrm{P}_{-} \cos (\alpha)\right)_{\kappa \in \mathbb{N}}(m)$.
(26) Let r, x be real numbers and m be a natural number. Suppose $0<r$ and $m>0$. Then $\left(\sum_{\alpha=0}^{\kappa}(\right.$ Maclaurin(the function $\left.\left.\sin]-r,, r[, x)\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(2$. $m)=\left(\sum_{\alpha=0}^{\kappa} x \mathrm{P}_{-} \sin (\alpha)\right)_{\kappa \in \mathbb{N}}(m-1)$ and $\left(\sum_{\alpha=0}^{\kappa}\right.$ (Maclaurin(the function $\cos ,]-r, r[, x))(\alpha))_{\kappa \in \mathbb{N}}(2 \cdot m)=\left(\sum_{\alpha=0}^{\kappa} x \mathrm{P}_{-} \cos (\alpha)\right)_{\kappa \in \mathbb{N}}(m)$.
(27) Let r, x be real numbers and m be a natural number. If $0<$ r, then $\left(\sum_{\alpha=0}^{\kappa}(\right.$ Maclaurin(the function $\left.\left.\cos]-r,, r[, x)\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(2 \cdot m)=$ $\left(\sum_{\alpha=0}^{\kappa} x \text { P_cos }^{\kappa}(\alpha)\right)_{\kappa \in \mathbb{N}}(m)$.
(28) Let r, x be real numbers. Suppose $r>0$. Then
(i) $\quad\left(\sum_{\alpha=0}^{\kappa}(\right.$ Maclaurin(the function $\left.\left.\sin]-r,, r[, x)\right)(\alpha)\right)_{\kappa \in \mathbb{N}}$ is convergent,
(ii) $\quad($ the function $\sin)(x)=\sum \operatorname{Maclaurin}($ the function $\sin]-r,, r[, x)$,
(iii) $\quad\left(\sum_{\alpha=0}^{\kappa}(\right.$ Maclaurin(the function $\left.\left.\cos]-r,, r[, x)\right)(\alpha)\right)_{\kappa \in \mathbb{N}}$ is convergent, and
(iv) (the function $\cos)(x)=\sum$ Maclaurin(the function $\left.\cos ,\right]-r, r[, x)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[4] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[6] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[7] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[8] Beata Perkowska. Functional sequence from a domain to a domain. Formalized Mathematics, 3(1):17-21, 1992.
[9] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125130, 1991.
[10] Konrad Raczkowski and Andrzej Nȩdzusiak. Series. Formalized Mathematics, 2(4):449452, 1991.
[11] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[12] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[13] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195-200, 2004.
[14] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[16] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[17] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.

Received July 6, 2005

