Some Equations Related to the Limit of Sequence of Subsets

Bo Zhang
Shinshu University
Nagano, Japan

Hiroshi Yamazaki
Shinshu University
Nagano, Japan

Yatsuka Nakamura
Shinshu University
Nagano, Japan

Summary. Set operations for sequences of subsets are introduced here. Some relations for these operations with the limit of sequences of subsets, also with the inferior sequence and the superior sequence of sets, and with the inferior limit and the superior limit of sets are shown.

MML identifier: SETLIM_2, version: 7.5.01 4.39.921

The articles [5], [2], [6], [1], [3], [4], and [7] provide the notation and terminology for this paper.

For simplicity, we use the following convention: n, k denote natural numbers, X denotes a set, A denotes a subset of X, and A_{1}, A_{2} denote sequences of subsets of X.

We now state two propositions:
(1) (The inferior setsequence $\left.A_{1}\right)(n)=\operatorname{Intersection}\left(A_{1} \uparrow n\right)$.
(2) (The superior setsequence $\left.A_{1}\right)(n)=\bigcup\left(A_{1} \uparrow n\right)$.

Let us consider X and let A_{1}, A_{2} be sequences of subsets of X. The functor $A_{1} \cap A_{2}$ yields a sequence of subsets of X and is defined as follows:
(Def. 1) For every n holds $\left(A_{1} \cap A_{2}\right)(n)=A_{1}(n) \cap A_{2}(n)$.
Let us note that the functor $A_{1} \cap A_{2}$ is commutative. The functor $A_{1} \cup A_{2}$ yielding a sequence of subsets of X is defined as follows:
(Def. 2) For every n holds $\left(A_{1} \cup A_{2}\right)(n)=A_{1}(n) \cup A_{2}(n)$.
Let us observe that the functor $A_{1} \cup A_{2}$ is commutative. The functor $A_{1} \backslash A_{2}$ yielding a sequence of subsets of X is defined by:
(Def. 3) For every n holds $\left(A_{1} \backslash A_{2}\right)(n)=A_{1}(n) \backslash A_{2}(n)$.
The functor $A_{1} \oplus A_{2}$ yields a sequence of subsets of X and is defined as follows:
(Def. 4) For every n holds $\left(A_{1} \doteq A_{2}\right)(n)=A_{1}(n) \doteq A_{2}(n)$.
Let us note that the functor $A_{1} \doteq A_{2}$ is commutative.
One can prove the following propositions:
(3) $A_{1} \doteq A_{2}=\left(A_{1} \backslash A_{2}\right) \cup\left(A_{2} \backslash A_{1}\right)$.
(4) $\left(A_{1} \cap A_{2}\right) \uparrow k=A_{1} \uparrow k \cap A_{2} \uparrow k$.
(5) $\quad\left(A_{1} \cup A_{2}\right) \uparrow k=A_{1} \uparrow k \cup A_{2} \uparrow k$.
(6) $\left(A_{1} \backslash A_{2}\right) \uparrow k=A_{1} \uparrow k \backslash A_{2} \uparrow k$.
(7) $\left(A_{1} \doteq A_{2}\right) \uparrow k=A_{1} \uparrow k \doteq A_{2} \uparrow k$.
(8) $\bigcup\left(A_{1} \cap A_{2}\right) \subseteq \bigcup A_{1} \cap \bigcup A_{2}$.
(9) $\bigcup\left(A_{1} \cup A_{2}\right)=\bigcup A_{1} \cup \bigcup A_{2}$.
(10) $\bigcup A_{1} \backslash \bigcup A_{2} \subseteq \bigcup\left(A_{1} \backslash A_{2}\right)$.
(11) $\bigcup A_{1} \doteq \bigcup A_{2} \subseteq \bigcup\left(A_{1} \doteq A_{2}\right)$.
(12) Intersection $\left(A_{1} \cap A_{2}\right)=$ Intersection $A_{1} \cap$ Intersection A_{2}.
(13) Intersection $A_{1} \cup$ Intersection $A_{2} \subseteq \operatorname{Intersection}\left(A_{1} \cup A_{2}\right)$.
(14) $\operatorname{Intersection}\left(A_{1} \backslash A_{2}\right) \subseteq$ Intersection $A_{1} \backslash$ Intersection A_{2}.

Let us consider X, let A_{1} be a sequence of subsets of X, and let A be a subset of X. The functor $A \cap A_{1}$ yielding a sequence of subsets of X is defined by:
(Def. 5) For every n holds $\left(A \cap A_{1}\right)(n)=A \cap A_{1}(n)$.
The functor $A \cup A_{1}$ yielding a sequence of subsets of X is defined as follows:
(Def. 6) For every n holds $\left(A \cup A_{1}\right)(n)=A \cup A_{1}(n)$.
The functor $A \backslash A_{1}$ yields a sequence of subsets of X and is defined by:
(Def. 7) For every n holds $\left(A \backslash A_{1}\right)(n)=A \backslash A_{1}(n)$.
The functor $A_{1} \backslash A$ yields a sequence of subsets of X and is defined by:
(Def. 8) For every n holds $\left(A_{1} \backslash A\right)(n)=A_{1}(n) \backslash A$.
The functor $A \subset A_{1}$ yielding a sequence of subsets of X is defined as follows:
(Def. 9) For every n holds $\left(A \doteq A_{1}\right)(n)=A \doteq A_{1}(n)$.
One can prove the following propositions:
(15) $\quad A \doteq A_{1}=\left(A \backslash A_{1}\right) \cup\left(A_{1} \backslash A\right)$.
(16) $\quad\left(A \cap A_{1}\right) \uparrow k=A \cap A_{1} \uparrow k$.
(17) $\left(A \cup A_{1}\right) \uparrow k=A \cup A_{1} \uparrow k$.
(18) $\left(A \backslash A_{1}\right) \uparrow k=A \backslash A_{1} \uparrow k$.
(19) $\quad\left(A_{1} \backslash A\right) \uparrow k=A_{1} \uparrow k \backslash A$.
(20) $\quad\left(A \doteq A_{1}\right) \uparrow k=A \doteq A_{1} \uparrow k$.
(21) If A_{1} is non-increasing, then $A \cap A_{1}$ is non-increasing.
(22) If A_{1} is non-decreasing, then $A \cap A_{1}$ is non-decreasing.
(23) If A_{1} is monotone, then $A \cap A_{1}$ is monotone.
(24) If A_{1} is non-increasing, then $A \cup A_{1}$ is non-increasing.
(25) If A_{1} is non-decreasing, then $A \cup A_{1}$ is non-decreasing.
(26) If A_{1} is monotone, then $A \cup A_{1}$ is monotone.
(27) If A_{1} is non-increasing, then $A \backslash A_{1}$ is non-decreasing.
(28) If A_{1} is non-decreasing, then $A \backslash A_{1}$ is non-increasing.
(29) If A_{1} is monotone, then $A \backslash A_{1}$ is monotone.
(30) If A_{1} is non-increasing, then $A_{1} \backslash A$ is non-increasing.
(31) If A_{1} is non-decreasing, then $A_{1} \backslash A$ is non-decreasing.
(32) If A_{1} is monotone, then $A_{1} \backslash A$ is monotone.
(33) Intersection $\left(A \cap A_{1}\right)=A \cap \operatorname{Intersection} A_{1}$.
(34) $\operatorname{Intersection}\left(A \cup A_{1}\right)=A \cup \operatorname{Intersection} A_{1}$.
(35) $\operatorname{Intersection}\left(A \backslash A_{1}\right) \subseteq A \backslash$ Intersection A_{1}.
(36) $\operatorname{Intersection}\left(A_{1} \backslash A\right)=\operatorname{Intersection} A_{1} \backslash A$.
(37) $\operatorname{Intersection}\left(A \subset A_{1}\right) \subseteq A \doteq \operatorname{Intersection} A_{1}$.
(38) $\bigcup\left(A \cap A_{1}\right)=A \cap \bigcup A_{1}$.
(39) $\bigcup\left(A \cup A_{1}\right)=A \cup \bigcup A_{1}$.
(40) $A \backslash \bigcup A_{1} \subseteq \bigcup\left(A \backslash A_{1}\right)$.
(41) $\bigcup\left(A_{1} \backslash A\right)=\bigcup A_{1} \backslash A$.
(42) $\quad A \doteq \bigcup A_{1} \subseteq \bigcup\left(A \doteq A_{1}\right)$.
(43) (The inferior setsequence $\left.A_{1} \cap A_{2}\right)(n)=$ (the inferior setsequence $\left.A_{1}\right)(n) \cap\left(\right.$ the inferior setsequence $\left.A_{2}\right)(n)$.
(44) (The inferior setsequence $\left.A_{1}\right)(n) \cup\left(\right.$ the inferior setsequence $\left.A_{2}\right)(n) \subseteq($ the inferior setsequence $\left.A_{1} \cup A_{2}\right)(n)$.
(45) (The inferior setsequence $\left.A_{1} \backslash A_{2}\right)(n) \subseteq$ (the inferior setsequence $\left.A_{1}\right)(n) \backslash$ (the inferior setsequence $\left.A_{2}\right)(n)$.
(46) (The superior setsequence $\left.A_{1} \cap A_{2}\right)(n) \subseteq$ (the superior setsequence $\left.A_{1}\right)(n) \cap\left(\right.$ the superior setsequence $\left.A_{2}\right)(n)$.
(47) (The superior setsequence $\left.A_{1} \cup A_{2}\right)(n)=$ (the superior setsequence $\left.A_{1}\right)(n) \cup\left(\right.$ the superior setsequence $\left.A_{2}\right)(n)$.
(48) (The superior setsequence $\left.A_{1}\right)(n) \backslash$ (the superior setsequence $\left.A_{2}\right)(n) \subseteq$ (the superior setsequence $\left.A_{1} \backslash A_{2}\right)(n)$.
(49) (The superior setsequence $\left.A_{1}\right)(n) \doteq\left(\right.$ the superior setsequence $\left.A_{2}\right)(n) \subseteq$ (the superior setsequence $\left.A_{1} \doteq A_{2}\right)(n)$.
(50) (The inferior setsequence $\left.A \cap A_{1}\right)(n)=A \cap$ (the inferior setsequence $\left.A_{1}\right)(n)$.
(51) (The inferior setsequence $\left.A \cup A_{1}\right)(n)=A \cup$ (the inferior setsequence $\left.A_{1}\right)(n)$.
(52) (The inferior setsequence $\left.A \backslash A_{1}\right)(n) \subseteq A \backslash$ (the inferior setsequence $\left.A_{1}\right)(n)$.
(53) (The inferior setsequence $\left.A_{1} \backslash A\right)(n)=\left(\right.$ the inferior setsequence $\left.A_{1}\right)(n) \backslash$ A.
(54) (The inferior setsequence $\left.A \dot{\oplus} A_{1}\right)(n) \subseteq A \doteq$ (the inferior setsequence $\left.A_{1}\right)(n)$.
(55) (The superior setsequence $\left.A \cap A_{1}\right)(n)=A \cap$ (the superior setsequence $\left.A_{1}\right)(n)$.
(56) (The superior setsequence $\left.A \cup A_{1}\right)(n)=A \cup$ (the superior setsequence $\left.A_{1}\right)(n)$.
(57) $\quad A \backslash\left(\right.$ the superior setsequence $\left.A_{1}\right)(n) \subseteq$ (the superior setsequence $A \backslash$ $\left.A_{1}\right)(n)$.
(58) (The superior setsequence $\left.A_{1} \backslash A\right)(n)=$ (the superior setsequence $\left.A_{1}\right)(n) \backslash A$.
(59) $A \dot{\circ}$ (the superior setsequence $\left.A_{1}\right)(n) \subseteq$ (the superior setsequence $\left.A \subset A_{1}\right)(n)$.
(60) $\quad \liminf \left(A_{1} \cap A_{2}\right)=\liminf A_{1} \cap \liminf A_{2}$.
(61) $\lim \inf A_{1} \cup \lim \inf A_{2} \subseteq \liminf \left(A_{1} \cup A_{2}\right)$.
(62) $\liminf \left(A_{1} \backslash A_{2}\right) \subseteq \liminf A_{1} \backslash \liminf A_{2}$.
(63) If A_{1} is convergent or A_{2} is convergent, then $\liminf \left(A_{1} \cup A_{2}\right)=$ $\lim \inf A_{1} \cup \liminf A_{2}$.
(64) If A_{2} is convergent, then $\liminf \left(A_{1} \backslash A_{2}\right)=\liminf A_{1} \backslash \liminf A_{2}$.
(65) If A_{1} is convergent or A_{2} is convergent, then $\liminf \left(A_{1} \perp A_{2}\right) \subseteq$ $\liminf A_{1} \doteq \liminf A_{2}$.
(66) If A_{1} is convergent and A_{2} is convergent, then $\liminf \left(A_{1} \dot{-} A_{2}\right)=$ $\liminf A_{1} \subset \liminf A_{2}$.
(67) $\limsup \left(A_{1} \cap A_{2}\right) \subseteq \limsup A_{1} \cap \limsup A_{2}$.
(68) $\lim \sup \left(A_{1} \cup A_{2}\right)=\limsup A_{1} \cup \limsup A_{2}$.
(69) $\lim \sup A_{1} \backslash \lim \sup A_{2} \subseteq \lim \sup \left(A_{1} \backslash A_{2}\right)$.
(70) $\lim \sup A_{1} \doteq \limsup A_{2} \subseteq \lim \sup \left(A_{1} \perp A_{2}\right)$.
(71) If A_{1} is convergent or A_{2} is convergent, then $\limsup \left(A_{1} \cap A_{2}\right)=$ $\limsup A_{1} \cap \limsup A_{2}$.
(72) If A_{2} is convergent, then $\lim \sup \left(A_{1} \backslash A_{2}\right)=\limsup A_{1} \backslash \limsup A_{2}$.
(73) If A_{1} is convergent and A_{2} is convergent, then $\limsup \left(A_{1} \doteq A_{2}\right)=$ $\lim \sup A_{1} \doteq \limsup A_{2}$.
(74) $\liminf \left(A \cap A_{1}\right)=A \cap \liminf A_{1}$.
(75) $\liminf \left(A \cup A_{1}\right)=A \cup \liminf A_{1}$.
(76) $\liminf \left(A \backslash A_{1}\right) \subseteq A \backslash \liminf A_{1}$.
(77) $\liminf \left(A_{1} \backslash A\right)=\liminf A_{1} \backslash A$.
(78) $\quad \liminf \left(A \subset A_{1}\right) \subseteq A \subset \liminf A_{1}$.
(79) If A_{1} is convergent, then $\lim \inf \left(A \backslash A_{1}\right)=A \backslash \liminf A_{1}$.
(80) If A_{1} is convergent, then $\liminf \left(A \subset A_{1}\right)=A \subset \liminf A_{1}$.
(81) $\lim \sup \left(A \cap A_{1}\right)=A \cap \limsup A_{1}$.
(82) $\lim \sup \left(A \cup A_{1}\right)=A \cup \limsup A_{1}$.
(83) $A \backslash \limsup A_{1} \subseteq \limsup \left(A \backslash A_{1}\right)$.
(84) $\limsup \left(A_{1} \backslash A\right)=\limsup A_{1} \backslash A$.
(85) $A \doteq \limsup A_{1} \subseteq \limsup \left(A \doteq A_{1}\right)$.
(86) If A_{1} is convergent, then $\limsup \left(A \backslash A_{1}\right)=A \backslash \limsup A_{1}$.
(87) If A_{1} is convergent, then $\lim \sup \left(A \doteq A_{1}\right)=A \doteq \limsup A_{1}$.
(88) If A_{1} is convergent and A_{2} is convergent, then $A_{1} \cap A_{2}$ is convergent and $\lim \left(A_{1} \cap A_{2}\right)=\lim A_{1} \cap \lim A_{2}$.
(89) If A_{1} is convergent and A_{2} is convergent, then $A_{1} \cup A_{2}$ is convergent and $\lim \left(A_{1} \cup A_{2}\right)=\lim A_{1} \cup \lim A_{2}$.
(90) If A_{1} is convergent and A_{2} is convergent, then $A_{1} \backslash A_{2}$ is convergent and $\lim \left(A_{1} \backslash A_{2}\right)=\lim A_{1} \backslash \lim A_{2}$.
(91) If A_{1} is convergent and A_{2} is convergent, then $A_{1} \doteq A_{2}$ is convergent and $\lim \left(A_{1} \doteq A_{2}\right)=\lim A_{1} \doteq \lim A_{2}$.
(92) If A_{1} is convergent, then $A \cap A_{1}$ is convergent and $\lim \left(A \cap A_{1}\right)=A \cap$ $\lim A_{1}$.
(93) If A_{1} is convergent, then $A \cup A_{1}$ is convergent and $\lim \left(A \cup A_{1}\right)=A \cup$ $\lim A_{1}$.
(94) If A_{1} is convergent, then $A \backslash A_{1}$ is convergent and $\lim \left(A \backslash A_{1}\right)=A \backslash \lim A_{1}$.
(95) If A_{1} is convergent, then $A_{1} \backslash A$ is convergent and $\lim \left(A_{1} \backslash A\right)=\lim A_{1} \backslash A$.
(96) If A_{1} is convergent, then $A \doteq A_{1}$ is convergent and $\lim \left(A \doteq A_{1}\right)=$ $A \doteq \lim A_{1}$.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[2] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[3] Adam Grabowski. On the Kuratowski limit operators. Formalized Mathematics, 11(4):399409, 2003.
[4] Andrzej Nȩdzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
[5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[6] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[7] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Limit of sequence of subsets. Formalized Mathematics, 13(2):347-352, 2005.

Received May 24, 2005

