On the Partial Product of Series and Related Basic Inequalities

Fuguo Ge
Qingdao University of Science
and Technology
China

Xiquan Liang
Qingdao University of Science
and Technology
China

Abstract

Summary. This article describes definition of partial product of series, introduced similarly to its related partial sum, as well as several important inequalities true for chosen special series.

MML identifier: SERIES_3, version: 7.5.01 4.39.921

The notation and terminology used in this paper are introduced in the following articles: [1], [9], [10], [5], [2], [4], [6], [7], [8], and [3].

For simplicity, we adopt the following convention: a, b, c are positive real numbers, m, x, y, z are real numbers, n is a natural number, and s, s_{1}, s_{2}, s_{3}, s_{4}, s_{5} are sequences of real numbers.

Let us consider x. Note that $|x|$ is non negative.
We now state a number of propositions:
(1) If $y>x$ and $x \geq 0$ and $m \geq 0$, then $\frac{x}{y} \leq \frac{x+m}{y+m}$.
(2) $\frac{a+b}{2} \geq \sqrt{a \cdot b}$.
(3) $\frac{b}{a}+\frac{a}{b} \geq 2$.
(4) $\left(\frac{x+y}{2}\right)^{2} \geq x \cdot y$.
(5) $\frac{x^{2}+y^{2}}{2} \geq\left(\frac{x+y}{2}\right)^{2}$.
(6) $x^{2}+y^{2} \geq 2 \cdot x \cdot y$.
(7) $\frac{x^{2}+y^{2}}{2} \geq x \cdot y$.
(8) $x^{2}+y^{2} \geq 2 \cdot|x| \cdot|y|$.
(9) $(x+y)^{2} \geq 4 \cdot x \cdot y$.
(10) $x^{2}+y^{2}+z^{2} \geq x \cdot y+y \cdot z+x \cdot z$.
(11) $(x+y+z)^{2} \geq 3 \cdot(x \cdot y+y \cdot z+x \cdot z)$.
(12) $a^{3}+b^{3}+c^{3} \geq 3 \cdot a \cdot b \cdot c$.
(13) $\frac{a^{3}+b^{3}+c^{3}}{3} \geq a \cdot b \cdot c$.
(14) $\left(\frac{a}{b}\right)^{3}+\left(\frac{b}{c}\right)^{3}+\left(\frac{c}{a}\right)^{3} \geq \frac{b}{a}+\frac{c}{b}+\frac{a}{c}$.
(15) $a+b+c \geq 3 \cdot \sqrt[3]{a \cdot b \cdot c}$.
(16) $\frac{a+b+c}{3} \geq \sqrt[3]{a \cdot b \cdot c}$.
(17) If $x+y+z=1$, then $x \cdot y+y \cdot z+x \cdot z \leq \frac{1}{3}$.
(18) If $x+y=1$, then $x \cdot y \leq \frac{1}{4}$.
(19) If $x+y=1$, then $x^{2}+y^{2} \geq \frac{1}{2}$.
(20) If $a+b=1$, then $\left(1+\frac{1}{a}\right) \cdot\left(1+\frac{1}{b}\right) \geq 9$.
(21) If $x+y=1$, then $x^{3}+y^{3} \geq \frac{1}{4}$.
(22) If $a+b=1$, then $a^{3}+b^{3}<1$.
(23) If $a+b=1$, then $\left(a+\frac{1}{a}\right) \cdot\left(b+\frac{1}{b}\right) \geq \frac{25}{4}$.
(24) If $|x| \leq a$, then $x^{2} \leq a^{2}$.
(25) If $|x| \geq a$, then $x^{2} \geq a^{2}$.
(26) $||x|-|y|| \leq|x|+|y|$.
(27) If $a \cdot b \cdot c=1$, then $\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq \sqrt{a}+\sqrt{b}+\sqrt{c}$.
(28) If $x>0$ and $y>0$ and $z<0$ and $x+y+z=0$, then $\left(x^{2}+y^{2}+z^{2}\right)^{3} \geq$ $6 \cdot\left(x^{3}+y^{3}+z^{3}\right)^{2}$.
(29) If $a \geq 1$, then $a^{b}+a^{c} \geq 2 \cdot a^{\sqrt{b \cdot c}}$.
(30) If $a \geq b$ and $b \geq c$, then $a^{a} \cdot b^{b} \cdot c^{c} \geq(a \cdot b \cdot c)^{\frac{a+b+c}{3}}$.
(31) $(a+b)^{n+2} \geq a^{n+2}+(n+2) \cdot a^{n+1} \cdot b$.
(32) $\frac{a^{n}+b^{n}}{2} \geq\left(\frac{a+b}{2}\right)^{n}$.
(33) If for every n holds $s(n)>0$, then for every n holds $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n)>$ 0.
(34) If for every n holds $s(n) \geq 0$, then for every n holds $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n) \geq$ 0.
(35) If for every n holds $s(n)<0$, then $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n)<0$.
(36) If $s=s_{1} s_{1}$, then for every n holds $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n) \geq 0$.
(37) If for every n holds $s(n)>0$ and $s(n)>s(n-1)$, then $(n+1) \cdot s(n+1)>$ $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
(38) If $s=s_{1} s_{2}$ and for every n holds $s_{1}(n) \geq 0$ and $s_{2}(n) \geq 0$, then for every n holds $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n) \leq\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$. $\left(\sum_{\alpha=0}^{\kappa}\left(s_{2}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
(39) If $s=s_{1} s_{2}$ and for every n holds $s_{1}(n)<0$ and $s_{2}(n)<0$, then $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n) \leq\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n) \cdot\left(\sum_{\alpha=0}^{\kappa}\left(s_{2}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
(40) For every n holds $\left|\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n)\right| \leq\left(\sum_{\alpha=0}^{\kappa}|s|(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
(41) $\quad\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n) \leq\left(\sum_{\alpha=0}^{\kappa}|s|(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.

Let us consider s. The partial product of s yielding a sequence of real numbers is defined by the conditions (Def. 1).
(Def. 1)(i) $\quad($ The partial product of $s)(0)=s(0)$, and
(ii) for every n holds (the partial product of $s)(n+1)=($ the partial product of $s)(n) \cdot s(n+1)$.
We now state a number of propositions:
(42) If for every n holds $s(n)>0$, then (the partial product of $s)(n)>0$.
(43) If for every n holds $s(n) \geq 0$, then (the partial product of $s)(n) \geq 0$.
(44) Suppose that for every n holds $s(n)>0$ and $s(n)<1$. Let given n. Then (the partial product of $s)(n)>0$ and (the partial product of $s)(n)<1$.
(45) If for every n holds $s(n) \geq 1$, then for every n holds (the partial product of $s)(n) \geq 1$.
(46) Suppose that for every n holds $s_{1}(n) \geq 0$ and $s_{2}(n) \geq 0$. Let given n. Then (the partial product of $\left.s_{1}\right)(n)+\left(\right.$ the partial product of $\left.s_{2}\right)(n) \leq($ the partial product of $\left.s_{1}+s_{2}\right)(n)$.
(47) If for every n holds $s(n)=\frac{2 \cdot n+1}{2 \cdot n+2}$, then (the partial product of $\left.s\right)(n) \leq$ $\frac{1}{\sqrt{3 \cdot n+4}}$.
(48) If for every n holds $s_{1}(n)=1+s(n)$ and $s(n)>-1$ and $s(n)<0$, then for every n holds $1+\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n) \leq$ (the partial product of $\left.s_{1}\right)(n)$.
(49) If for every n holds $s_{1}(n)=1+s(n)$ and $s(n) \geq 0$, then for every n holds $1+\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n) \leq\left(\right.$ the partial product of $\left.s_{1}\right)(n)$.
(50) If $s_{3}=s_{1} s_{2}$ and $s_{4}=s_{1} s_{1}$ and $s_{5}=s_{2} s_{2}$, then for every n holds $\left(\sum_{\alpha=0}^{\kappa}\left(s_{3}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)^{2} \leq\left(\sum_{\alpha=0}^{\kappa}\left(s_{4}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n) \cdot\left(\sum_{\alpha=0}^{\kappa}\left(s_{5}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
(51) If $s_{4}=s_{1} s_{1}$ and $s_{5}=s_{2} s_{2}$ and for every n holds $s_{1}(n) \geq$ 0 and $s_{2}(n) \geq 0$ and $s_{3}(n)=\left(s_{1}(n)+s_{2}(n)\right)^{2}$, then for every n holds $\sqrt{\left(\sum_{\alpha=0}^{\kappa}\left(s_{3}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)} \leq \sqrt{\left(\sum_{\alpha=0}^{\kappa}\left(s_{4}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)}+$ $\sqrt{\left(\sum_{\alpha=0}^{\kappa}\left(s_{5}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)}$.
(52) If for every n holds $s(n)>0$ and $s(n)>s(n-1)$, then $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n) \geq(n+1) \cdot \sqrt[n+1]{(\text { the partial product of } s)(n)}$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[5] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[6] Library Committee of the Association of Mizar Users. Binary operations on numbers. To appear in Formalized Mathematics.
[7] Konrad Raczkowski and Andrzej Nȩdzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
[8] Konrad Raczkowski and Andrzej Nȩdzusiak. Series. Formalized Mathematics, 2(4):449452, 1991.
[9] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[10] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.

Received July 6, 2005

