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Summary. This article describes definition of partial product of series,

introduced similarly to its related partial sum, as well as several important in-

equalities true for chosen special series.
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The notation and terminology used in this paper are introduced in the following

articles: [1], [9], [10], [5], [2], [4], [6], [7], [8], and [3].

For simplicity, we adopt the following convention: a, b, c are positive real

numbers, m, x, y, z are real numbers, n is a natural number, and s, s1, s2, s3,

s4, s5 are sequences of real numbers.

Let us consider x. Note that |x| is non negative.

We now state a number of propositions:

(1) If y > x and x ≥ 0 and m ≥ 0, then x
y
≤ x+m

y+m
.

(2) a+b
2

≥
√

a · b.
(3) b

a
+ a

b
≥ 2.

(4) (x+y
2

)2 ≥ x · y.

(5) x2+y2

2
≥ (x+y

2
)2.

(6) x2 + y2 ≥ 2 · x · y.

(7) x2+y2

2
≥ x · y.

(8) x2 + y2 ≥ 2 · |x| · |y|.
(9) (x + y)2 ≥ 4 · x · y.

(10) x2 + y2 + z2 ≥ x · y + y · z + x · z.
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(11) (x + y + z)2 ≥ 3 · (x · y + y · z + x · z).

(12) a3 + b3 + c3 ≥ 3 · a · b · c.
(13) a3+b3+c3

3
≥ a · b · c.

(14) (a
b
)3 + ( b

c
)3 + ( c

a
)3 ≥ b

a
+ c

b
+ a

c
.

(15) a + b + c ≥ 3 · 3
√

a · b · c.
(16) a+b+c

3
≥ 3

√
a · b · c.

(17) If x + y + z = 1, then x · y + y · z + x · z ≤ 1

3
.

(18) If x + y = 1, then x · y ≤ 1

4
.

(19) If x + y = 1, then x2 + y2 ≥ 1

2
.

(20) If a + b = 1, then (1 + 1

a
) · (1 + 1

b
) ≥ 9.

(21) If x + y = 1, then x3 + y3 ≥ 1

4
.

(22) If a + b = 1, then a3 + b3 < 1.

(23) If a + b = 1, then (a + 1

a
) · (b + 1

b
) ≥ 25

4
.

(24) If |x| ≤ a, then x2 ≤ a2.

(25) If |x| ≥ a, then x2 ≥ a2.

(26) ||x| − |y|| ≤ |x| + |y|.
(27) If a · b · c = 1, then 1

a
+ 1

b
+ 1

c
≥ √

a +
√

b +
√

c.

(28) If x > 0 and y > 0 and z < 0 and x + y + z = 0, then (x2 + y2 + z2)3 ≥
6 · (x3 + y3 + z3)2.

(29) If a ≥ 1, then ab + ac ≥ 2 · a
√

b·c.

(30) If a ≥ b and b ≥ c, then aa · bb · cc ≥ (a · b · c)a+b+c

3 .

(31) (a + b)n+2 ≥ an+2 + (n + 2) · an+1 · b.
(32) an+bn

2
≥ (a+b

2
)n.

(33) If for every n holds s(n) > 0, then for every n holds (
∑κ

α=0
s(α))κ∈N(n) >

0.

(34) If for every n holds s(n) ≥ 0, then for every n holds (
∑κ

α=0
s(α))κ∈N(n) ≥

0.

(35) If for every n holds s(n) < 0, then (
∑κ

α=0
s(α))κ∈N(n) < 0.

(36) If s = s1 s1, then for every n holds (
∑κ

α=0
s(α))κ∈N(n) ≥ 0.

(37) If for every n holds s(n) > 0 and s(n) > s(n−1), then (n+1) ·s(n+1) >

(
∑κ

α=0
s(α))κ∈N(n).

(38) If s = s1 s2 and for every n holds s1(n) ≥ 0 and s2(n) ≥ 0,

then for every n holds (
∑κ

α=0
s(α))κ∈N(n) ≤ (

∑κ
α=0

(s1)(α))κ∈N(n) ·
(
∑κ

α=0
(s2)(α))κ∈N(n).

(39) If s = s1 s2 and for every n holds s1(n) < 0 and s2(n) < 0, then

(
∑κ

α=0
s(α))κ∈N(n) ≤ (

∑κ
α=0

(s1)(α))κ∈N(n) · (
∑κ

α=0
(s2)(α))κ∈N(n).

(40) For every n holds |(
∑κ

α=0
s(α))κ∈N(n)| ≤ (

∑κ
α=0

|s|(α))κ∈N(n).
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(41) (
∑κ

α=0
s(α))κ∈N(n) ≤ (

∑κ
α=0

|s|(α))κ∈N(n).

Let us consider s. The partial product of s yielding a sequence of real

numbers is defined by the conditions (Def. 1).

(Def. 1)(i) (The partial product of s)(0) = s(0), and

(ii) for every n holds (the partial product of s)(n+1) = (the partial product

of s)(n) · s(n + 1).

We now state a number of propositions:

(42) If for every n holds s(n) > 0, then (the partial product of s)(n) > 0.

(43) If for every n holds s(n) ≥ 0, then (the partial product of s)(n) ≥ 0.

(44) Suppose that for every n holds s(n) > 0 and s(n) < 1. Let given n. Then

(the partial product of s)(n) > 0 and (the partial product of s)(n) < 1.

(45) If for every n holds s(n) ≥ 1, then for every n holds (the partial product

of s)(n) ≥ 1.

(46) Suppose that for every n holds s1(n) ≥ 0 and s2(n) ≥ 0. Let given n.

Then (the partial product of s1)(n)+(the partial product of s2)(n) ≤ (the

partial product of s1 + s2)(n).

(47) If for every n holds s(n) = 2·n+1

2·n+2
, then (the partial product of s)(n) ≤

1√
3·n+4

.

(48) If for every n holds s1(n) = 1 + s(n) and s(n) > −1 and s(n) < 0, then

for every n holds 1 + (
∑κ

α=0
s(α))κ∈N(n) ≤ (the partial product of s1)(n).

(49) If for every n holds s1(n) = 1+s(n) and s(n) ≥ 0, then for every n holds

1 + (
∑κ

α=0
s(α))κ∈N(n) ≤ (the partial product of s1)(n).

(50) If s3 = s1 s2 and s4 = s1 s1 and s5 = s2 s2, then for every n holds

(
∑κ

α=0
(s3)(α))κ∈N(n)2 ≤ (

∑κ
α=0

(s4)(α))κ∈N(n) · (
∑κ

α=0
(s5)(α))κ∈N(n).

(51) If s4 = s1 s1 and s5 = s2 s2 and for every n holds s1(n) ≥
0 and s2(n) ≥ 0 and s3(n) = (s1(n) + s2(n))2, then for ev-

ery n holds
√

(
∑κ

α=0
(s3)(α))κ∈N(n) ≤

√

(
∑κ

α=0
(s4)(α))κ∈N(n) +

√

(
∑κ

α=0
(s5)(α))κ∈N(n).

(52) If for every n holds s(n) > 0 and s(n) > s(n − 1), then

(
∑κ

α=0
s(α))κ∈N(n) ≥ (n + 1) · n+1

√

(the partial product of s)(n).
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[10] Andrzej Trybulec and Czes law Byliński. Some properties of real numbers. Formalized

Mathematics, 1(3):445–449, 1990.

Received July 6, 2005


