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Summary. In this article, we give several differentiable formulas of special

functions. There are some specific composite functions consisting of rational

functions, irrational functions, trigonometric functions, exponential functions or

logarithmic functions.
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The notation and terminology used in this paper have been introduced in the

following articles: [13], [15], [16], [1], [4], [10], [12], [3], [6], [9], [7], [8], [11], [17],

[5], [14], and [2].

For simplicity, we follow the rules: x, a, b, c denote real numbers, n denotes

a natural number, Z denotes an open subset of R, and f , f1, f2 denote partial

functions from R to R.

One can prove the following propositions:

(1) Suppose Z ⊆ dom(log (e) · f) and for every x such that x ∈ Z holds

f(x) = a + x and f(x) > 0. Then log (e) · f is differentiable on Z and for

every x such that x ∈ Z holds (log (e) · f)′↾Z(x) = 1
a+x

.

(2) Suppose Z ⊆ dom(log (e) · f) and for every x such that x ∈ Z holds

f(x) = x − a and f(x) > 0. Then log (e) · f is differentiable on Z and for

every x such that x ∈ Z holds (log (e) · f)′↾Z(x) = 1
x−a

.

(3) Suppose Z ⊆ dom(−log (e) · f) and for every x such that x ∈ Z holds

f(x) = a − x and f(x) > 0. Then −log (e) · f is differentiable on Z and

for every x such that x ∈ Z holds (−log (e) · f)′↾Z(x) = 1
a−x

.
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(4) Suppose Z ⊆ dom(idZ−a f) and f = log (e)·f1 and for every x such that

x ∈ Z holds f1(x) = a + x and f1(x) > 0. Then idZ − a f is differentiable

on Z and for every x such that x ∈ Z holds (idZ − a f)′↾Z(x) = x
a+x

.

(5) Suppose Z ⊆ dom((2 · a) f − idZ) and f = log (e) · f1 and for every x

such that x ∈ Z holds f1(x) = a + x and f1(x) > 0. Then (2 · a) f − idZ

is differentiable on Z and for every x such that x ∈ Z holds ((2 · a) f −

idZ)′↾Z(x) = a−x
a+x

.

(6) Suppose Z ⊆ dom(idZ − (2 · a) f) and f = log (e) · f1 and for every x

such that x ∈ Z holds f1(x) = x + a and f1(x) > 0. Then idZ − (2 · a) f

is differentiable on Z and for every x such that x ∈ Z holds (idZ − (2 ·

a) f)′↾Z(x) = x−a
x+a

.

(7) Suppose Z ⊆ dom(idZ + (2 · a) f) and f = log (e) · f1 and for every x

such that x ∈ Z holds f1(x) = x − a and f1(x) > 0. Then idZ + (2 · a) f

is differentiable on Z and for every x such that x ∈ Z holds (idZ + (2 ·

a) f)′↾Z(x) = x+a
x−a

.

(8) Suppose Z ⊆ dom(idZ + (a − b) f) and f = log (e) · f1 and for every x

such that x ∈ Z holds f1(x) = x + b and f1(x) > 0. Then idZ + (a − b) f

is differentiable on Z and for every x such that x ∈ Z holds (idZ + (a −

b) f)′↾Z(x) = x+a
x+b

.

(9) Suppose Z ⊆ dom(idZ + (a + b) f) and f = log (e) · f1 and for every x

such that x ∈ Z holds f1(x) = x − b and f1(x) > 0. Then idZ + (a + b) f

is differentiable on Z and for every x such that x ∈ Z holds (idZ + (a +

b) f)′↾Z(x) = x+a
x−b

.

(10) Suppose Z ⊆ dom(idZ − (a + b) f) and f = log (e) · f1 and for every x

such that x ∈ Z holds f1(x) = x + b and f1(x) > 0. Then idZ − (a + b) f

is differentiable on Z and for every x such that x ∈ Z holds (idZ − (a +

b) f)′↾Z(x) = x−a
x+b

.

(11) Suppose Z ⊆ dom(idZ + (b − a) f) and f = log (e) · f1 and for every x

such that x ∈ Z holds f1(x) = x − b and f1(x) > 0. Then idZ + (b − a) f

is differentiable on Z and for every x such that x ∈ Z holds (idZ + (b −

a) f)′↾Z(x) = x−a
x−b

.

(12) Suppose Z ⊆ dom(f1 + c f2) and for every x such that x ∈ Z holds

f1(x) = a + b · x and f2 = 2
Z
. Then f1 + c f2 is differentiable on Z and for

every x such that x ∈ Z holds (f1 + c f2)
′

↾Z(x) = b + 2 · c · x.

(13) Suppose Z ⊆ dom(log (e) · (f1 + c f2)) and f2 = 2
Z

and for every x

such that x ∈ Z holds f1(x) = a + b · x and (f1 + c f2)(x) > 0. Then

log (e) · (f1 + c f2) is differentiable on Z and for every x such that x ∈ Z

holds (log (e) · (f1 + c f2))
′

↾Z(x) = b+2·c·x
a+b·x+c·x2 .

(14) Suppose Z ⊆ dom f and for every x such that x ∈ Z holds f(x) = a + x

and f(x) 6= 0. Then 1
f

is differentiable on Z and for every x such that
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x ∈ Z holds ( 1
f
)′↾Z(x) = − 1

(a+x)2
.

(15) Suppose Z ⊆ dom((−1) 1
f
) and for every x such that x ∈ Z holds f(x) =

a + x and f(x) 6= 0. Then (−1) 1
f

is differentiable on Z and for every x

such that x ∈ Z holds ((−1) 1
f
)′↾Z(x) = 1

(a+x)2
.

(16) Suppose Z ⊆ dom f and for every x such that x ∈ Z holds f(x) = a− x

and f(x) 6= 0. Then 1
f

is differentiable on Z and for every x such that

x ∈ Z holds ( 1
f
)′↾Z(x) = 1

(a−x)2
.

(17) Suppose Z ⊆ dom(f1 + f2) and for every x such that x ∈ Z holds

f1(x) = a2 and f2 = 2
Z
. Then f1 + f2 is differentiable on Z and for every

x such that x ∈ Z holds (f1 + f2)
′

↾Z(x) = 2 · x.

(18) Suppose Z ⊆ dom(log (e) · (f1 + f2)) and f2 = 2
Z

and for every x such

that x ∈ Z holds f1(x) = a2 and (f1 + f2)(x) > 0. Then log (e) · (f1 + f2)

is differentiable on Z and for every x such that x ∈ Z holds (log (e) · (f1 +

f2))
′

↾Z(x) = 2·x
a2+x2 .

(19) Suppose Z ⊆ dom(−log (e) · (f1 − f2)) and f2 = 2
Z

and for every

x such that x ∈ Z holds f1(x) = a2 and (f1 − f2)(x) > 0. Then

−log (e) · (f1 − f2) is differentiable on Z and for every x such that x ∈ Z

holds (−log (e) · (f1 − f2))
′

↾Z(x) = 2·x
a2

−x2 .

(20) Suppose Z ⊆ dom(f1 + f2) and for every x such that x ∈ Z holds

f1(x) = a and f2 = 3
Z
. Then f1 + f2 is differentiable on Z and for every x

such that x ∈ Z holds (f1 + f2)
′

↾Z(x) = 3 · x2.

(21) Suppose Z ⊆ dom(log (e) · (f1 + f2)) and f2 = 3
Z

and for every x such

that x ∈ Z holds f1(x) = a and (f1 +f2)(x) > 0. Then log (e) · (f1 +f2) is

differentiable on Z and for every x such that x ∈ Z holds (log (e) · (f1 +

f2))
′

↾Z(x) = 3·x2

a+x3 .

(22) Suppose Z ⊆ dom(log (e) · f1

f2
) and for every x such that x ∈ Z holds

f1(x) = a + x and f1(x) > 0 and f2(x) = a − x and f2(x) > 0. Then

log (e) · f1

f2
is differentiable on Z and for every x such that x ∈ Z holds

(log (e) · f1

f2
)′↾Z(x) = 2·a

a2
−x2 .

(23) Suppose Z ⊆ dom(log (e) · f1

f2
) and for every x such that x ∈ Z holds

f1(x) = x − a and f1(x) > 0 and f2(x) = x + a and f2(x) > 0. Then

log (e) · f1

f2
is differentiable on Z and for every x such that x ∈ Z holds

(log (e) · f1

f2
)′↾Z(x) = 2·a

x2
−a2 .

(24) Suppose Z ⊆ dom(log (e) · f1

f2
) and for every x such that x ∈ Z holds

f1(x) = x − a and f1(x) > 0 and f2(x) = x − b and f2(x) > 0. Then

log (e) · f1

f2
is differentiable on Z and for every x such that x ∈ Z holds

(log (e) · f1

f2
)′↾Z(x) = a−b

(x−a)·(x−b) .

(25) Suppose Z ⊆ dom( 1
a−b

f) and f = log (e) · f1

f2
and for every x such that
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x ∈ Z holds f1(x) = x− a and f1(x) > 0 and f2(x) = x− b and f2(x) > 0

and a− b 6= 0. Then 1
a−b

f is differentiable on Z and for every x such that

x ∈ Z holds ( 1
a−b

f)′↾Z(x) = 1
(x−a)·(x−b) .

(26) Suppose Z ⊆ dom(log (e) · f1

f2
) and f2 = 2

Z
and for every x such that

x ∈ Z holds f1(x) = x − a and f1(x) > 0 and f2(x) > 0 and x 6= 0. Then

log (e) · f1

f2
is differentiable on Z and for every x such that x ∈ Z holds

(log (e) · f1

f2
)′↾Z(x) = 2·a−x

x·(x−a) .

(27) Suppose Z ⊆ dom((
3

2

R
) · f) and for every x such that x ∈ Z holds f(x) =

a + x and f(x) > 0. Then (
3

2

R
) · f is differentiable on Z and for every x

such that x ∈ Z holds ((
3

2

R
) · f)′↾Z(x) = 3

2 · (a + x)
1

2

R
.

(28) Suppose Z ⊆ dom(2
3 ((

3

2

R
) · f)) and for every x such that x ∈ Z holds

f(x) = a + x and f(x) > 0. Then 2
3 ((

3

2

R
) · f) is differentiable on Z and for

every x such that x ∈ Z holds (2
3 ((

3

2

R
) · f))′↾Z(x) = (a + x)

1

2

R
.

(29) Suppose Z ⊆ dom((−2
3) ((

3

2

R
) · f)) and for every x such that x ∈ Z holds

f(x) = a − x and f(x) > 0. Then (−2
3) ((

3

2

R
) · f) is differentiable on Z and

for every x such that x ∈ Z holds ((−2
3) ((

3

2

R
) · f))′↾Z(x) = (a − x)

1

2

R
.

(30) Suppose Z ⊆ dom(2 ((
1

2

R
) · f)) and for every x such that x ∈ Z holds

f(x) = a + x and f(x) > 0. Then 2 ((
1

2

R
) · f) is differentiable on Z and for

every x such that x ∈ Z holds (2 ((
1

2

R
) · f))′↾Z(x) = (a + x)

−
1

2

R
.

(31) Suppose Z ⊆ dom((−2) ((
1

2

R
) · f)) and for every x such that x ∈ Z holds

f(x) = a − x and f(x) > 0. Then (−2) ((
1

2

R
) · f) is differentiable on Z and

for every x such that x ∈ Z holds ((−2) ((
1

2

R
) · f))′↾Z(x) = (a − x)

−
1

2

R
.

(32) Suppose Z ⊆ dom( 2
3·b ((

3

2

R
) · f)) and for every x such that x ∈ Z holds

f(x) = a + b · x and b 6= 0 and f(x) > 0. Then 2
3·b ((

3

2

R
) · f) is differentiable

on Z and for every x such that x ∈ Z holds ( 2
3·b ((

3

2

R
)·f))′↾Z(x) = (a+b·x)

1

2

R
.

(33) Suppose Z ⊆ dom((− 2
3·b) ((

3

2

R
) ·f)) and for every x such that x ∈ Z holds

f(x) = a−b·x and b 6= 0 and f(x) > 0. Then (− 2
3·b) ((

3

2

R
)·f) is differentiable

on Z and for every x such that x ∈ Z holds ((− 2
3·b) ((

3

2

R
) · f))′↾Z(x) =

(a − b · x)
1

2

R
.

(34) Suppose Z ⊆ dom((
1

2

R
)·f) and f = f1+f2 and f2 = 2

Z
and for every x such

that x ∈ Z holds f1(x) = a2 and f(x) > 0. Then (
1

2

R
) ·f is differentiable on
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Z and for every x such that x ∈ Z holds ((
1

2

R
) · f)′↾Z(x) = x · (a2 + x2)

−
1

2

R
.

(35) Suppose Z ⊆ dom(−(
1

2

R
) · f) and f = f1 − f2 and f2 = 2

Z
and for every

x such that x ∈ Z holds f1(x) = a2 and f(x) > 0. Then −(
1

2

R
) · f is

differentiable on Z and for every x such that x ∈ Z holds (−(
1

2

R
) · f)′↾Z(x) =

x · (a2 − x2)
−

1

2

R
.

(36) Suppose Z ⊆ dom(2 ((
1

2

R
) · f)) and f = f1 + f2 and f2 = 2

Z
and for

every x such that x ∈ Z holds f1(x) = x and f(x) > 0. Then 2 ((
1

2

R
) · f)

is differentiable on Z and for every x such that x ∈ Z holds (2 ((
1

2

R
) ·

f))′↾Z(x) = (2 · x + 1) · (x2 + x)
−

1

2

R
.

(37) Suppose Z ⊆ dom((the function sin) ·f) and for every x such that x ∈ Z

holds f(x) = a · x + b. Then

(i) (the function sin) ·f is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) ·f)′↾Z(x) = a · (the

function cos)(a · x + b).

(38) Suppose Z ⊆ dom((the function cos) ·f) and for every x such that x ∈ Z

holds f(x) = a · x + b. Then

(i) (the function cos) ·f is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) ·f)′↾Z(x) =

−a · (the function sin)(a · x + b).

(39) Suppose that for every x such that x ∈ Z holds (the function cos)(x) 6= 0.

Then

(i) 1
the function cos is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( 1
the function cos)

′

↾Z(x) =
(the function sin)(x)
(the function cos)(x)2

.

(40) Suppose that for every x such that x ∈ Z holds (the function sin)(x) 6= 0.

Then

(i) 1
the function sin is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( 1
the function sin)′↾Z(x) =

−
(the function cos)(x)
(the function sin)(x)2

.

(41) Suppose Z ⊆ dom((the function sin) (the function cos)). Then

(i) (the function sin) (the function cos) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) (the function

cos))′↾Z(x) = cos(2 · x).

(42) Suppose Z ⊆ dom(log (e) · (the function cos)) and for every x such that

x ∈ Z holds (the function cos)(x) > 0. Then log (e) · (the function cos) is

differentiable on Z and for every x such that x ∈ Z holds (log (e) · (the

function cos))′↾Z(x) = −tanx.
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(43) Suppose Z ⊆ dom(log (e) · (the function sin)) and for every x such that

x ∈ Z holds (the function sin)(x) > 0. Then log (e) · (the function sin) is

differentiable on Z and for every x such that x ∈ Z holds (log (e) · (the

function sin))′↾Z(x) = cot x.

(44) Suppose Z ⊆ dom((−idZ) (the function cos)). Then

(i) (−idZ) (the function cos) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((−idZ) (the function cos))′↾Z(x) =

−(the function cos)(x) + x · (the function sin)(x).

(45) Suppose Z ⊆ dom(idZ (the function sin)). Then

(i) idZ (the function sin) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (idZ (the function sin))′↾Z(x) = (the

function sin)(x) + x · (the function cos)(x).

(46) Suppose Z ⊆ dom((−idZ) (the function cos)+the function sin). Then

(i) (−idZ) (the function cos)+the function sin is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((−idZ) (the function cos)+the

function sin)′↾Z(x) = x · (the function sin)(x).

(47) Suppose Z ⊆ dom(idZ (the function sin)+the function cos). Then

(i) idZ (the function sin)+the function cos is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (idZ (the function sin)+the function

cos)′↾Z(x) = x · (the function cos)(x).

(48) Suppose Z ⊆ dom(2 ((
1

2

R
) · (the function sin))) and for every x such that

x ∈ Z holds (the function sin)(x) > 0. Then

(i) 2 ((
1

2

R
) · (the function sin)) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (2 ((
1

2

R
) · (the function sin)))′↾Z(x) =

(the function cos)(x) · (the function sin)(x)
−

1

2

R
.

(49) Suppose Z ⊆ dom(1
2 ((2

Z
) · (the function sin))). Then

(i) 1
2 ((2

Z
) · (the function sin)) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (1
2 ((2

Z
) · (the function sin)))′↾Z(x) =

(the function sin)(x) · (the function cos)(x).

(50) Suppose that

(i) Z ⊆ dom((the function sin)+1
2 ((2

Z
) · (the function sin))), and

(ii) for every x such that x ∈ Z holds (the function sin)(x) > 0 and (the

function sin)(x) < 1.

Then

(iii) (the function sin)+1
2 ((2

Z
) · (the function sin)) is differentiable on Z, and

(iv) for every x such that x ∈ Z holds ((the function sin)+1
2 ((2

Z
) · (the

function sin)))′↾Z(x) = (the function cos)(x)3

1−(the function sin)(x) .

(51) Suppose that

(i) Z ⊆ dom(1
2 ((2

Z
) · (the function sin))−the function cos), and



several differentiable formulas . . . 433

(ii) for every x such that x ∈ Z holds (the function sin)(x) > 0 and (the

function cos)(x) < 1.

Then

(iii) 1
2 ((2

Z
) · (the function sin))−the function cos is differentiable on Z, and

(iv) for every x such that x ∈ Z holds (1
2 ((2

Z
) · (the function sin))−the

function cos)′↾Z(x) = (the function sin)(x)3

1−(the function cos)(x) .

(52) Suppose that

(i) Z ⊆ dom((the function sin)−1
2 ((2

Z
) · (the function sin))), and

(ii) for every x such that x ∈ Z holds (the function sin)(x) > 0 and (the

function sin)(x) > −1.

Then

(iii) (the function sin)−1
2 ((2

Z
) · (the function sin)) is differentiable on Z, and

(iv) for every x such that x ∈ Z holds ((the function sin)−1
2 ((2

Z
) · (the

function sin)))′↾Z(x) = (the function cos)(x)3

1+(the function sin)(x) .

(53) Suppose that

(i) Z ⊆ dom(−the function cos − 1
2 ((2

Z
) · (the function sin))), and

(ii) for every x such that x ∈ Z holds (the function sin)(x) > 0 and (the

function cos)(x) > −1.

Then

(iii) −the function cos − 1
2 ((2

Z
) · (the function sin)) is differentiable on Z,

and

(iv) for every x such that x ∈ Z holds (−the function cos − 1
2 ((2

Z
) · (the

function sin)))′↾Z(x) = (the function sin)(x)3

1+(the function cos)(x) .

(54) Suppose Z ⊆ dom( 1
n

((n
Z
) · (the function sin))) and n > 0. Then

(i) 1
n

((n
Z
) · (the function sin)) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( 1
n

((n
Z
) · (the function sin)))′↾Z(x) =

((the function sin)(x)n−1
Z

) · (the function cos)(x).

(55) Suppose Z ⊆ dom(exp f) and for every x such that x ∈ Z holds f(x) =

x − 1. Then exp f is differentiable on Z and for every x such that x ∈ Z

holds (exp f)′↾Z(x) = x · exp(x).

(56) Suppose Z ⊆ dom(log (e) · exp
exp+f

) and for every x such that x ∈ Z holds

f(x) = 1. Then log (e) · exp
exp+f

is differentiable on Z and for every x such

that x ∈ Z holds (log (e) · exp
exp+f

)′↾Z(x) = 1
exp(x)+1 .

(57) Suppose Z ⊆ dom(log (e) · exp−f
exp ) and for every x such that x ∈ Z holds

f(x) = 1 and (exp−f)(x) > 0. Then log (e) · exp−f
exp is differentiable on Z

and for every x such that x ∈ Z holds (log (e) · exp−f
exp )′↾Z(x) = 1

exp(x)−1 .



434 yan zhang and xiquan liang

References

[1] Czes law Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[2] Pacharapokin Chanapat, Kanchun, and Hiroshi Yamazaki. Formulas and identities of

trigonometric functions. Formalized Mathematics, 12(2):139–141, 2004.
[3] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[4] Jaros law Kotowicz. Partial functions from a domain to a domain. Formalized Mathemat-

ics, 1(4):697–702, 1990.
[5] Jaros law Kotowicz. Partial functions from a domain to the set of real numbers. Formalized

Mathematics, 1(4):703–709, 1990.
[6] Jaros law Kotowicz. Real sequences and basic operations on them. Formalized Mathemat-

ics, 1(2):269–272, 1990.
[7] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125–

130, 1991.
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