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Summary. In the paper we introduce basic properties of lines in the plane

on this space. Lines and planes are expressed by the vector equation and are the

image of R and R
2
. By this, we can say that the properties of the classic Euclid

geometry are satisfied also in Rn as we know them intuitively. Next, we define

the metric between the point and the line of this space.
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The notation and terminology used here are introduced in the following papers:

[1], [5], [12], [4], [9], [14], [13], [8], [15], [6], [2], [3], [7], [11], and [10].

We follow the rules: a, a1, a2, a3, b, b1, b2, b3, r, s, t, u are real numbers, n

is a natural number, and x0, x, x1, x2, x3, y0, y, y1, y2, y3 are elements of Rn.

One can prove the following propositions:

(1) s

t
· (u · x) = s·u

t
· x and 1

t
· (u · x) = u

t
· x.

(2) x1 + (x2 + x3) = (x1 + x2) + x3.

(3) x − 〈0, . . . , 0
︸ ︷︷ ︸

n

〉 = x.

(4) 〈0, . . . , 0
︸ ︷︷ ︸

n

〉 − x = −x.

(5) x1 − (x2 + x3) = x1 − x2 − x3.

(6) x1 − x2 = x1 + −x2.

(7) x − x = 〈0, . . . , 0
︸ ︷︷ ︸

n

〉 and x + −x = 〈0, . . . , 0
︸ ︷︷ ︸

n

〉.

(8) −a · x = (−a) · x and −a · x = a · −x.

(9) x1 − (x2 − x3) = (x1 − x2) + x3.

(10) x1 + (x2 − x3) = (x1 + x2) − x3.
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(11) x1 = x2 + x3 iff x2 = x1 − x3.

(12) x = x1 + x2 + x3 iff x − x1 = x2 + x3.

(13) −(x1 + x2 + x3) = −x1 + −x2 + −x3.

(14) x1 = x2 iff x1 − x2 = 〈0, . . . , 0
︸ ︷︷ ︸

n

〉.

(15) If x1 − x0 = t · x and x1 6= x0, then t 6= 0.

(16) (a− b) ·x = a ·x+(−b) ·x and (a− b) ·x = a ·x+−b · x and (a− b) ·x =

a · x − b · x.

(17) a · (x−y) = a ·x+−a · y and a · (x−y) = a ·x+(−a) ·y and a · (x−y) =

a · x − a · y.

(18) (s − t − u) · x = s · x − t · x − u · x.

(19) x− (a1 · x1 + a2 · x2 + a3 · x3) = x + ((−a1) · x1 + (−a2) · x2 + (−a3) · x3).

(20) x − (s + t + u) · y = x + (−s) · y + (−t) · y + (−u) · y.

(21) (x1 + x2) + (y1 + y2) = x1 + y1 + (x2 + y2).

(22) (x1 + x2 + x3) + (y1 + y2 + y3) = x1 + y1 + (x2 + y2) + (x3 + y3).

(23) (x1 + x2) − (y1 + y2) = (x1 − y1) + (x2 − y2).

(24) (x1 + x2 + x3) − (y1 + y2 + y3) = (x1 − y1) + (x2 − y2) + (x3 − y3).

(25) a · (x1 + x2 + x3) = a · x1 + a · x2 + a · x3.

(26) a · (b1 · x1 + b2 · x2) = a · b1 · x1 + a · b2 · x2.

(27) a · (b1 · x1 + b2 · x2 + b3 · x3) = a · b1 · x1 + a · b2 · x2 + a · b3 · x3.

(28) a1 · x1 + a2 · x2 + (b1 · x1 + b2 · x2) = (a1 + b1) · x1 + (a2 + b2) · x2.

(29) a1 · x1 + a2 · x2 + a3 · x3 + (b1 · x1 + b2 · x2 + b3 · x3) = ((a1 + b1) · x1 +

(a2 + b2) · x2) + (a3 + b3) · x3.

(30) (a1 · x1 + a2 · x2) − (b1 · x1 + b2 · x2) = (a1 − b1) · x1 + (a2 − b2) · x2.

(31) (a1 · x1 + a2 · x2 + a3 · x3) − (b1 · x1 + b2 · x2 + b3 · x3) = (a1 − b1) · x1 +

(a2 − b2) · x2 + (a3 − b3) · x3.

(32) If a1 + a2 + a3 = 1, then a1 · x1 + a2 · x2 + a3 · x3 = x1 + a2 · (x2 − x1) +

a3 · (x3 − x1).

(33) If x = x1 + a2 · (x2 − x1) + a3 · (x3 − x1), then there exists a real number

a1 such that x = a1 · x1 + a2 · x2 + a3 · x3 and a1 + a2 + a3 = 1.

(34) For every natural number n such that n ≥ 1 holds 1 ∗ n 6= 〈0, . . . , 0
︸ ︷︷ ︸

n

〉.

(35) For every subset A of Rn and for all x1, x2 such that A is a line and

x1 ∈ A and x2 ∈ A and x1 6= x2 holds A = Line(x1, x2).

(36) For all elements x1, x2 of Rn such that y1 ∈ Line(x1, x2) and y2 ∈

Line(x1, x2) there exists a such that y2 − y1 = a · (x2 − x1).

Let us consider n and let x1, x2 be elements of Rn. The predicate x1 ‖ x2

is defined as follows:
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(Def. 1) x1 6= 〈0, . . . , 0
︸ ︷︷ ︸

n

〉 and x2 6= 〈0, . . . , 0
︸ ︷︷ ︸

n

〉 and there exists r such that x1 = r·x2.

One can prove the following proposition

(37) For all elements x1, x2 of Rn such that x1 ‖ x2 there exists a such that

a 6= 0 and x1 = a · x2.

Let us consider n and let x1, x2 be elements of Rn. Let us note that the

predicate x1 ‖ x2 is symmetric.

The following proposition is true

(38) If x1 ‖ x2 and x2 ‖ x3, then x1 ‖ x3.

Let n be a natural number and let x1, x2 be elements of Rn. We say that

x1 and x2 are linearly independent if and only if:

(Def. 2) For all real numbers a1, a2 such that a1 · x1 + a2 · x2 = 〈0, . . . , 0
︸ ︷︷ ︸

n

〉 holds

a1 = 0 and a2 = 0.

Let us note that the predicate x1 and x2 are linearly independent is symmetric.

Let us consider n and let x1, x2 be elements of Rn. We introduce x1 and x2

are linearly dependent as an antonym of x1 and x2 are linearly independent.

Next we state a number of propositions:

(39) If x1 and x2 are linearly independent, then x1 6= 〈0, . . . , 0
︸ ︷︷ ︸

n

〉 and x2 6=

〈0, . . . , 0
︸ ︷︷ ︸

n

〉.

(40) For all x1, x2 such that x1 and x2 are linearly independent holds if

a1 · x1 + a2 · x2 = b1 · x1 + b2 · x2, then a1 = b1 and a2 = b2.

(41) Let given x1, x2, y1, y1. Suppose y1 and y2 are linearly independent.

Suppose y1 = a1 ·x1 +a2 ·x2 and y2 = b1 ·x1 +b2 ·x2. Then there exist real

numbers c1, c2, d1, d2 such that x1 = c1 ·y1+c2 ·y2 and x2 = d1 ·y1+d2 ·y2.

(42) If x1 and x2 are linearly independent, then x1 6= x2.

(43) If x2 − x1 and x3 − x1 are linearly independent, then x2 6= x3.

(44) If x1 and x2 are linearly independent, then x1 + t ·x2 and x2 are linearly

independent.

(45) Suppose x1 − x0 and x3 − x2 are linearly independent and y0 ∈

Line(x0, x1) and y1 ∈ Line(x0, x1) and y0 6= y1 and y2 ∈ Line(x2, x3)

and y3 ∈ Line(x2, x3) and y2 6= y3. Then y1 − y0 and y3 − y2 are linearly

independent.

(46) If x1 ‖ x2, then x1 and x2 are linearly dependent and x1 6= 〈0, . . . , 0
︸ ︷︷ ︸

n

〉

and x2 6= 〈0, . . . , 0
︸ ︷︷ ︸

n

〉.
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(47) If x1 and x2 are linearly dependent, then x1 = 〈0, . . . , 0
︸ ︷︷ ︸

n

〉 or x2 =

〈0, . . . , 0
︸ ︷︷ ︸

n

〉 or x1 ‖ x2.

(48) For all elements x1, x2, y1 of Rn there exists an element y2 of Rn such

that y2 ∈ Line(x1, x2) and x1 − x2, y1 − y2 are orthogonal.

Let us consider n and let x1, x2 be elements of Rn. The predicate x1 ⊥ x2

is defined by:

(Def. 3) x1 6= 〈0, . . . , 0
︸ ︷︷ ︸

n

〉 and x2 6= 〈0, . . . , 0
︸ ︷︷ ︸

n

〉 and x1, x2 are orthogonal.

Let us note that the predicate x1 ⊥ x2 is symmetric.

The following propositions are true:

(49) If x ⊥ y0 and y0 ‖ y1, then x ⊥ y1.

(50) If x ⊥ y, then x and y are linearly independent.

(51) If x1 ‖ x2, then x1 6⊥ x2.

(52) If x1 ⊥ x2, then x1 ∦ x2.

Let us consider n. The functor Lines(Rn) yields a family of subsets of Rn

and is defined by:

(Def. 4) Lines(Rn) = {Line(x1, x2)}.

Let us consider n. Note that Lines(Rn) is non empty.

The following proposition is true

(53) Line(x1, x2) ∈ Lines(Rn).

In the sequel L, L0, L1, L2 are elements of Lines(Rn).

The following propositions are true:

(54) If x1 ∈ L and x2 ∈ L, then Line(x1, x2) ⊆ L.

(55) L1 meets L2 iff there exists x such that x ∈ L1 and x ∈ L2.

(56) If L0 misses L1 and x ∈ L0, then x /∈ L1.

(57) There exist x1, x2 such that L = Line(x1, x2).

(58) There exists x such that x ∈ L.

(59) If x0 ∈ L and L is a line, then there exists x1 such that x1 6= x0 and

x1 ∈ L.

(60) If x /∈ L and L is a line, then there exist x1, x2 such that L = Line(x1, x2)

and x − x1 ⊥ x2 − x1.

(61) If x /∈ L and L is a line, then there exist x1, x2 such that L = Line(x1, x2)

and x − x1 and x2 − x1 are linearly independent.

Let n be a natural number, let x be an element of Rn, and let L be an

element of Lines(Rn). The functor ρ(x, L) yields a real number and is defined

by:



lines on planes in n-dimensional . . . 393

(Def. 5) There exists a subset S of R such that S = {|x − x0|;x0 ranges over

elements of Rn: x0 ∈ L} and ρ(x, L) = inf S.

Next we state three propositions:

(62) There exists x0 such that x0 ∈ L and |x − x0| = ρ(x, L).

(63) ρ(x, L) ≥ 0.

(64) x ∈ L iff ρ(x, L) = 0.

Let us consider n and let us consider L1, L2. The predicate L1 ‖ L2 is

defined as follows:

(Def. 6) There exist elements x1, x2, y1, y2 of Rn such that L1 = Line(x1, x2)

and L2 = Line(y1, y2) and x2 − x1 ‖ y2 − y1.

Let us note that the predicate L1 ‖ L2 is symmetric.

The following proposition is true

(65) If L0 ‖ L1 and L1 ‖ L2, then L0 ‖ L2.

Let us consider n and let us consider L1, L2. The predicate L1 ⊥ L2 is

defined by:

(Def. 7) There exist elements x1, x2, y1, y2 of Rn such that L1 = Line(x1, x2)

and L2 = Line(y1, y2) and x2 − x1 ⊥ y2 − y1.

Let us note that the predicate L1 ⊥ L2 is symmetric.

We now state a number of propositions:

(66) If L0 ⊥ L1 and L1 ‖ L2, then L0 ⊥ L2.

(67) If x /∈ L and L is a line, then there exists L0 such that x ∈ L0 and

L0 ⊥ L and L0 meets L.

(68) If L1 misses L2, then there exists x such that x ∈ L1 and x /∈ L2.

(69) If x1 ∈ L and x2 ∈ L and x1 6= x2, then Line(x1, x2) = L and L is a line.

(70) If L1 is a line and L2 is a line and L1 = L2, then L1 ‖ L2.

(71) If L1 ‖ L2, then L1 is a line and L2 is a line.

(72) If L1 ⊥ L2, then L1 is a line and L2 is a line.

(73) If x ∈ L and a 6= 1 and a · x ∈ L, then 〈0, . . . , 0
︸ ︷︷ ︸

n

〉 ∈ L.

(74) If x1 ∈ L and x2 ∈ L, then there exists x3 such that x3 ∈ L and

x3 − x1 = a · (x2 − x1).

(75) If x1 ∈ L and x2 ∈ L and x3 ∈ L and x1 6= x2, then there exists a such

that x3 − x1 = a · (x2 − x1).

(76) If L1 ‖ L2 and L1 6= L2, then L1 misses L2.

(77) If L1 ‖ L2, then L1 = L2 or L1 misses L2.

(78) If L1 ‖ L2 and L1 meets L2, then L1 = L2.

(79) If L is a line, then there exists L0 such that x ∈ L0 and L0 ‖ L.
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(80) For all x, L such that x /∈ L and L is a line there exists L0 such that

x ∈ L0 and L0 ‖ L and L0 6= L.

(81) For all x0, x1, y0, y1, L1, L2 such that x0 ∈ L1 and x1 ∈ L1 and x0 6= x1

and y0 ∈ L2 and y1 ∈ L2 and y0 6= y1 and L1 ⊥ L2 holds x1−x0 ⊥ y1−y0.

(82) For all L1, L2 such that L1 ⊥ L2 holds L1 6= L2.

(83) For all x1, x2, L such that L is a line and L = Line(x1, x2) holds x1 6= x2.

(84) If x0 ∈ L1 and x1 ∈ L1 and x0 6= x1 and y0 ∈ L2 and y1 ∈ L2 and

y0 6= y1 and L1 ‖ L2, then x1 − x0 ‖ y1 − y0.

(85) Suppose x2 − x1 and x3 − x1 are linearly independent and y2 ∈

Line(x1, x2) and y3 ∈ Line(x1, x3) and L1 = Line(x2, x3) and L2 =

Line(y2, y3). Then L1 ‖ L2 if and only if there exists a such that a 6= 0

and y2 − x1 = a · (x2 − x1) and y3 − x1 = a · (x3 − x1).

(86) For all L1, L2 such that L1 is a line and L2 is a line and L1 6= L2 there

exists x such that x ∈ L1 and x /∈ L2.

(87) For all x, L1, L2 such that L1 ⊥ L2 and x ∈ L2 there exists L0 such that

x ∈ L0 and L0 ⊥ L2 and L0 ‖ L1.

(88) For all x, L1, L2 such that x ∈ L1 and x ∈ L2 and L1 ⊥ L2 there exists

x0 such that x 6= x0 and x0 ∈ L1 and x0 /∈ L2.

Let n be a natural number and let x1, x2, x3 be elements of Rn. The functor

Plane(x1, x2, x3) yielding a subset of Rn is defined as follows:

(Def. 8) Plane(x1, x2, x3) = {a1 · x1 + a2 · x2 + a3 · x3 : a1 + a2 + a3 = 1}.

Let n be a natural number and let x1, x2, x3 be elements of Rn. One can

check that Plane(x1, x2, x3) is non empty.

Let us consider n and let A be a subset of Rn. We say that A is plane if

and only if:

(Def. 9) There exist x1, x2, x3 such that x2 − x1 and x3 − x1 are linearly inde-

pendent and A = Plane(x1, x2, x3).

One can prove the following propositions:

(89) x1 ∈ Plane(x1, x2, x3) and x2 ∈ Plane(x1, x2, x3) and x3 ∈

Plane(x1, x2, x3).

(90) If x1 ∈ Plane(y1, y2, y3) and x2 ∈ Plane(y1, y2, y3) and x3 ∈

Plane(y1, y2, y3), then Plane(x1, x2, x3) ⊆ Plane(y1, y2, y3).

(91) Let A be a subset of Rn and given x, x1, x2, x3. Suppose x ∈

Plane(x1, x2, x3) and there exist real numbers c1, c2, c3 such that c1 +c2 +

c3 = 0 and x = c1 ·x1 + c2 ·x2 + c3 ·x3. Then 〈0, . . . , 0
︸ ︷︷ ︸

n

〉 ∈ Plane(x1, x2, x3).

(92) If y1 ∈ Plane(x1, x2, x3) and y2 ∈ Plane(x1, x2, x3), then Line(y1, y2) ⊆

Plane(x1, x2, x3).
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(93) For every subset A of Rn and for every x such that A is plane and x ∈ A

and there exists a such that a 6= 1 and a · x ∈ A holds 〈0, . . . , 0
︸ ︷︷ ︸

n

〉 ∈ A.

(94) If x1 −x1 and x3 −x1 are linearly independent and x ∈ Plane(x1, x2, x3)

and x = a1 · x1 + a2 · x2 + a3 · x3, then a1 + a2 + a3 = 1 or 〈0, . . . , 0
︸ ︷︷ ︸

n

〉 ∈

Plane(x1, x2, x3).

(95) x ∈ Plane(x1, x2, x3) iff there exist a1, a2, a3 such that a1 + a2 + a3 = 1

and x = a1 · x1 + a2 · x2 + a3 · x3.

(96) Suppose that

(i) x2 − x1 and x3 − x1 are linearly independent,

(ii) x ∈ Plane(x1, x2, x3),

(iii) a1 + a2 + a3 = 1,

(iv) x = a1 · x1 + a2 · x2 + a3 · x3,

(v) b1 + b2 + b3 = 1, and

(vi) x = b1 · x1 + b2 · x2 + b3 · x3.

Then a1 = b1 and a2 = b2 and a3 = b3.

Let us consider n. The functor Planes(Rn) yielding a family of subsets of

Rn is defined by:

(Def. 10) Planes(Rn) = {Plane(x1, x2, x3)}.

Let us consider n. Note that Planes(Rn) is non empty.

The following proposition is true

(97) Plane(x1, x2, x3) ∈ Planes(Rn).

In the sequel P , P0, P1, P2 are elements of Planes(Rn).

Next we state several propositions:

(98) If x1 ∈ P and x2 ∈ P and x3 ∈ P, then Plane(x1, x2, x3) ⊆ P.

(99) If x1 ∈ P and x2 ∈ P and x3 ∈ P and x2 − x1 and x3 − x1 are linearly

independent, then P = Plane(x1, x2, x3).

(100) If P1 is plane and P1 ⊆ P2, then P1 = P2.

(101) Line(x1, x2) ⊆ Plane(x1, x2, x3) and Line(x2, x3) ⊆ Plane(x1, x2, x3) and

Line(x3, x1) ⊆ Plane(x1, x2, x3).

(102) If x1 ∈ P and x2 ∈ P, then Line(x1, x2) ⊆ P.

Let n be a natural number and let L1, L2 be elements of Lines(Rn). We say

that L1 and L2 are coplanar if and only if:

(Def. 11) There exist elements x1, x2, x3 of Rn such that L1 ⊆ Plane(x1, x2, x3)

and L2 ⊆ Plane(x1, x2, x3).

We now state a number of propositions:

(103) L1 and L2 are coplanar iff there exists P such that L1 ⊆ P and L2 ⊆ P.

(104) If L1 ‖ L2, then L1 and L2 are coplanar.
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(105) Suppose L1 is a line and L2 is a line and L1 and L2 are coplanar and L1

misses L2. Then there exists P such that L1 ⊆ P and L2 ⊆ P and P is

plane.

(106) There exists P such that x ∈ P and L ⊆ P.

(107) If x /∈ L and L is a line, then there exists P such that x ∈ P and L ⊆ P

and P is plane.

(108) If x ∈ P and L ⊆ P and x /∈ L and L is a line, then P is plane.

(109) If x /∈ L and L is a line and x ∈ P0 and L ⊆ P0 and x ∈ P1 and L ⊆ P1,

then P0 = P1.

(110) If L1 is a line and L2 is a line and L1 and L2 are coplanar and L1 6= L2,

then there exists P such that L1 ⊆ P and L2 ⊆ P and P is plane.

(111) For all L1, L2 such that L1 is a line and L2 is a line and L1 6= L2 and

L1 meets L2 there exists P such that L1 ⊆ P and L2 ⊆ P and P is plane.

(112) If L1 is a line and L2 is a line and L1 6= L2 and L1 meets L2 and L1 ⊆ P1

and L2 ⊆ P1 and L1 ⊆ P2 and L2 ⊆ P2, then P1 = P2.

(113) If L1 ‖ L2 and L1 6= L2, then there exists P such that L1 ⊆ P and

L2 ⊆ P and P is plane.

(114) If L1 ⊥ L2 and L1 meets L2, then there exists P such that P is plane

and L1 ⊆ P and L2 ⊆ P.

(115) If L0 ⊆ P and L1 ⊆ P and L2 ⊆ P and x ∈ L0 and x ∈ L1 and x ∈ L2

and L0 ⊥ L2 and L1 ⊥ L2, then L0 = L1.

(116) If L1 and L2 are coplanar and L1 ⊥ L2, then L1 meets L2.

(117) If L1 ⊆ P and L2 ⊆ P and L1 ⊥ L2 and x ∈ P and L0 ‖ L2 and x ∈ L0,

then L0 ⊆ P and L0 ⊥ L1.

(118) If L ⊆ P and L1 ⊆ P and L2 ⊆ P and L ⊥ L1 and L ⊥ L2, then L1 ‖ L2.

(119) Suppose L0 ⊆ P and L1 ⊆ P and L2 ⊆ P and L0 ‖ L1 and L1 ‖ L2

and L0 6= L1 and L1 6= L2 and L2 6= L0 and L meets L0 and L meets L1.

Then L meets L2.

(120) If L1 and L2 are coplanar and L1 is a line and L2 is a line and L1 misses

L2, then L1 ‖ L2.

(121) If x1 ∈ P and x2 ∈ P and y1 ∈ P and y2 ∈ P and x2 − x1 and y2 − y1

are linearly independent, then Line(x1, x2) meets Line(y1, y2).
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