Lines on Planes in n-Dimensional Euclidean Spaces

Akihiro Kubo
Shinshu University, Nagano, Japan

Abstract

Summary. In the paper we introduce basic properties of lines in the plane on this space. Lines and planes are expressed by the vector equation and are the image of \mathbb{R} and \mathbb{R}^{2}. By this, we can say that the properties of the classic Euclid geometry are satisfied also in \mathcal{R}^{n} as we know them intuitively. Next, we define the metric between the point and the line of this space.

MML identifier: EUCLIDLP, version: 7.5.01 4.39.921

The notation and terminology used here are introduced in the following papers: [1], [5], [12], [4], [9], [14], [13], [8], [15], [6], [2], [3], [7], [11], and [10].

We follow the rules: $a, a_{1}, a_{2}, a_{3}, b, b_{1}, b_{2}, b_{3}, r, s, t, u$ are real numbers, n is a natural number, and $x_{0}, x, x_{1}, x_{2}, x_{3}, y_{0}, y, y_{1}, y_{2}, y_{3}$ are elements of \mathcal{R}^{n}.

One can prove the following propositions:
(1) $\frac{s}{t} \cdot(u \cdot x)=\frac{s \cdot u}{t} \cdot x$ and $\frac{1}{t} \cdot(u \cdot x)=\frac{u}{t} \cdot x$.
(2) $x_{1}+\left(x_{2}+x_{3}\right)=\left(x_{1}+x_{2}\right)+x_{3}$.
(3) $x-\langle\underbrace{0, \ldots, 0}_{n}\rangle=x$.
(4) $\langle\underbrace{0, \ldots, 0}_{n}\rangle-x=-x$.
(5) $x_{1}-\left(x_{2}+x_{3}\right)=x_{1}-x_{2}-x_{3}$.
(6) $x_{1}-x_{2}=x_{1}+-x_{2}$.
(7) $x-x=\langle\underbrace{0, \ldots, 0}_{n}\rangle$ and $x+-x=\langle\underbrace{0, \ldots, 0}_{n}\rangle$.
(8) $\quad-a \cdot x=(-a) \cdot x$ and $-a \cdot x=a \cdot-x$.
(9) $x_{1}-\left(x_{2}-x_{3}\right)=\left(x_{1}-x_{2}\right)+x_{3}$.
(10) $x_{1}+\left(x_{2}-x_{3}\right)=\left(x_{1}+x_{2}\right)-x_{3}$.
(11) $x_{1}=x_{2}+x_{3}$ iff $x_{2}=x_{1}-x_{3}$.
(12) $x=x_{1}+x_{2}+x_{3}$ iff $x-x_{1}=x_{2}+x_{3}$.
(13) $-\left(x_{1}+x_{2}+x_{3}\right)=-x_{1}+-x_{2}+-x_{3}$.
(14) $x_{1}=x_{2}$ iff $x_{1}-x_{2}=\langle\underbrace{0, \ldots, 0}_{n}\rangle$.
(15) If $x_{1}-x_{0}=t \cdot x$ and $x_{1} \neq x_{0}$, then $t \neq 0$.
(16) $(a-b) \cdot x=a \cdot x+(-b) \cdot x$ and $(a-b) \cdot x=a \cdot x+-b \cdot x$ and $(a-b) \cdot x=$ $a \cdot x-b \cdot x$.
(17) $a \cdot(x-y)=a \cdot x+-a \cdot y$ and $a \cdot(x-y)=a \cdot x+(-a) \cdot y$ and $a \cdot(x-y)=$ $a \cdot x-a \cdot y$.
(18) $(s-t-u) \cdot x=s \cdot x-t \cdot x-u \cdot x$.
(19) $x-\left(a_{1} \cdot x_{1}+a_{2} \cdot x_{2}+a_{3} \cdot x_{3}\right)=x+\left(\left(-a_{1}\right) \cdot x_{1}+\left(-a_{2}\right) \cdot x_{2}+\left(-a_{3}\right) \cdot x_{3}\right)$.
(20) $x-(s+t+u) \cdot y=x+(-s) \cdot y+(-t) \cdot y+(-u) \cdot y$.
(21) $\left(x_{1}+x_{2}\right)+\left(y_{1}+y_{2}\right)=x_{1}+y_{1}+\left(x_{2}+y_{2}\right)$.
(22) $\left(x_{1}+x_{2}+x_{3}\right)+\left(y_{1}+y_{2}+y_{3}\right)=x_{1}+y_{1}+\left(x_{2}+y_{2}\right)+\left(x_{3}+y_{3}\right)$.
(23) $\left(x_{1}+x_{2}\right)-\left(y_{1}+y_{2}\right)=\left(x_{1}-y_{1}\right)+\left(x_{2}-y_{2}\right)$.
(24) $\left(x_{1}+x_{2}+x_{3}\right)-\left(y_{1}+y_{2}+y_{3}\right)=\left(x_{1}-y_{1}\right)+\left(x_{2}-y_{2}\right)+\left(x_{3}-y_{3}\right)$.
(25) $a \cdot\left(x_{1}+x_{2}+x_{3}\right)=a \cdot x_{1}+a \cdot x_{2}+a \cdot x_{3}$.
(26) $a \cdot\left(b_{1} \cdot x_{1}+b_{2} \cdot x_{2}\right)=a \cdot b_{1} \cdot x_{1}+a \cdot b_{2} \cdot x_{2}$.
(27) $a \cdot\left(b_{1} \cdot x_{1}+b_{2} \cdot x_{2}+b_{3} \cdot x_{3}\right)=a \cdot b_{1} \cdot x_{1}+a \cdot b_{2} \cdot x_{2}+a \cdot b_{3} \cdot x_{3}$.
(28) $a_{1} \cdot x_{1}+a_{2} \cdot x_{2}+\left(b_{1} \cdot x_{1}+b_{2} \cdot x_{2}\right)=\left(a_{1}+b_{1}\right) \cdot x_{1}+\left(a_{2}+b_{2}\right) \cdot x_{2}$.
(29) $a_{1} \cdot x_{1}+a_{2} \cdot x_{2}+a_{3} \cdot x_{3}+\left(b_{1} \cdot x_{1}+b_{2} \cdot x_{2}+b_{3} \cdot x_{3}\right)=\left(\left(a_{1}+b_{1}\right) \cdot x_{1}+\right.$ $\left.\left(a_{2}+b_{2}\right) \cdot x_{2}\right)+\left(a_{3}+b_{3}\right) \cdot x_{3}$.
(30) $\left(a_{1} \cdot x_{1}+a_{2} \cdot x_{2}\right)-\left(b_{1} \cdot x_{1}+b_{2} \cdot x_{2}\right)=\left(a_{1}-b_{1}\right) \cdot x_{1}+\left(a_{2}-b_{2}\right) \cdot x_{2}$.
(31) $\left(a_{1} \cdot x_{1}+a_{2} \cdot x_{2}+a_{3} \cdot x_{3}\right)-\left(b_{1} \cdot x_{1}+b_{2} \cdot x_{2}+b_{3} \cdot x_{3}\right)=\left(a_{1}-b_{1}\right) \cdot x_{1}+$ $\left(a_{2}-b_{2}\right) \cdot x_{2}+\left(a_{3}-b_{3}\right) \cdot x_{3}$.
(32) If $a_{1}+a_{2}+a_{3}=1$, then $a_{1} \cdot x_{1}+a_{2} \cdot x_{2}+a_{3} \cdot x_{3}=x_{1}+a_{2} \cdot\left(x_{2}-x_{1}\right)+$ $a_{3} \cdot\left(x_{3}-x_{1}\right)$.
(33) If $x=x_{1}+a_{2} \cdot\left(x_{2}-x_{1}\right)+a_{3} \cdot\left(x_{3}-x_{1}\right)$, then there exists a real number a_{1} such that $x=a_{1} \cdot x_{1}+a_{2} \cdot x_{2}+a_{3} \cdot x_{3}$ and $a_{1}+a_{2}+a_{3}=1$.
(34) For every natural number n such that $n \geq 1$ holds $1 * n \neq\langle\underbrace{0, \ldots, 0}_{n}\rangle$.
(35) For every subset A of \mathcal{R}^{n} and for all x_{1}, x_{2} such that A is a line and $x_{1} \in A$ and $x_{2} \in A$ and $x_{1} \neq x_{2}$ holds $A=\operatorname{Line}\left(x_{1}, x_{2}\right)$.
(36) For all elements x_{1}, x_{2} of \mathcal{R}^{n} such that $y_{1} \in \operatorname{Line}\left(x_{1}, x_{2}\right)$ and $y_{2} \in$ Line $\left(x_{1}, x_{2}\right)$ there exists a such that $y_{2}-y_{1}=a \cdot\left(x_{2}-x_{1}\right)$.
Let us consider n and let x_{1}, x_{2} be elements of \mathcal{R}^{n}. The predicate $x_{1} \| x_{2}$ is defined as follows:
(Def. 1) $\quad x_{1} \neq\langle\underbrace{0, \ldots, 0}_{n}\rangle$ and $x_{2} \neq\langle\underbrace{0, \ldots, 0}_{n}\rangle$ and there exists r such that $x_{1}=r \cdot x_{2}$.
One can prove the following proposition
(37) For all elements x_{1}, x_{2} of \mathcal{R}^{n} such that $x_{1} \| x_{2}$ there exists a such that $a \neq 0$ and $x_{1}=a \cdot x_{2}$.
Let us consider n and let x_{1}, x_{2} be elements of \mathcal{R}^{n}. Let us note that the predicate $x_{1} \| x_{2}$ is symmetric.

The following proposition is true
(38) If $x_{1} \| x_{2}$ and $x_{2} \| x_{3}$, then $x_{1} \| x_{3}$.

Let n be a natural number and let x_{1}, x_{2} be elements of \mathcal{R}^{n}. We say that x_{1} and x_{2} are linearly independent if and only if:
(Def. 2) For all real numbers a_{1}, a_{2} such that $a_{1} \cdot x_{1}+a_{2} \cdot x_{2}=\langle\underbrace{0, \ldots, 0}_{n}\rangle$ holds $a_{1}=0$ and $a_{2}=0$.
Let us note that the predicate x_{1} and x_{2} are linearly independent is symmetric.
Let us consider n and let x_{1}, x_{2} be elements of \mathcal{R}^{n}. We introduce x_{1} and x_{2} are linearly dependent as an antonym of x_{1} and x_{2} are linearly independent.

Next we state a number of propositions:
(39) If x_{1} and x_{2} are linearly independent, then $x_{1} \neq\langle\underbrace{0, \ldots, 0}_{n}\rangle$ and $x_{2} \neq$ $\langle\underbrace{0, \ldots, 0}_{n}\rangle$.
(40) For all x_{1}, x_{2} such that x_{1} and x_{2} are linearly independent holds if $a_{1} \cdot x_{1}+a_{2} \cdot x_{2}=b_{1} \cdot x_{1}+b_{2} \cdot x_{2}$, then $a_{1}=b_{1}$ and $a_{2}=b_{2}$.
(41) Let given $x_{1}, x_{2}, y_{1}, y_{1}$. Suppose y_{1} and y_{2} are linearly independent. Suppose $y_{1}=a_{1} \cdot x_{1}+a_{2} \cdot x_{2}$ and $y_{2}=b_{1} \cdot x_{1}+b_{2} \cdot x_{2}$. Then there exist real numbers $c_{1}, c_{2}, d_{1}, d_{2}$ such that $x_{1}=c_{1} \cdot y_{1}+c_{2} \cdot y_{2}$ and $x_{2}=d_{1} \cdot y_{1}+d_{2} \cdot y_{2}$.
(42) If x_{1} and x_{2} are linearly independent, then $x_{1} \neq x_{2}$.
(43) If $x_{2}-x_{1}$ and $x_{3}-x_{1}$ are linearly independent, then $x_{2} \neq x_{3}$.
(44) If x_{1} and x_{2} are linearly independent, then $x_{1}+t \cdot x_{2}$ and x_{2} are linearly independent.
(45) Suppose $x_{1}-x_{0}$ and $x_{3}-x_{2}$ are linearly independent and $y_{0} \in$ $\operatorname{Line}\left(x_{0}, x_{1}\right)$ and $y_{1} \in \operatorname{Line}\left(x_{0}, x_{1}\right)$ and $y_{0} \neq y_{1}$ and $y_{2} \in \operatorname{Line}\left(x_{2}, x_{3}\right)$ and $y_{3} \in \operatorname{Line}\left(x_{2}, x_{3}\right)$ and $y_{2} \neq y_{3}$. Then $y_{1}-y_{0}$ and $y_{3}-y_{2}$ are linearly independent.
(46) If $x_{1} \| x_{2}$, then x_{1} and x_{2} are linearly dependent and $x_{1} \neq\langle\underbrace{0, \ldots, 0}_{n}\rangle$ and $x_{2} \neq\langle\underbrace{0, \ldots, 0}_{n}\rangle$.
(47) If x_{1} and x_{2} are linearly dependent, then $x_{1}=\langle\underbrace{0, \ldots, 0}_{n}\rangle$ or $x_{2}=$ $\langle\underbrace{0, \ldots, 0}_{n}\rangle$ or $x_{1} \| x_{2}$.
(48) For all elements x_{1}, x_{2}, y_{1} of \mathcal{R}^{n} there exists an element y_{2} of \mathcal{R}^{n} such that $y_{2} \in \operatorname{Line}\left(x_{1}, x_{2}\right)$ and $x_{1}-x_{2}, y_{1}-y_{2}$ are orthogonal.
Let us consider n and let x_{1}, x_{2} be elements of \mathcal{R}^{n}. The predicate $x_{1} \perp x_{2}$ is defined by:
(Def. 3) $x_{1} \neq\langle\underbrace{0, \ldots, 0}_{n}\rangle$ and $x_{2} \neq\langle\underbrace{0, \ldots, 0}_{n}\rangle$ and x_{1}, x_{2} are orthogonal.
Let us note that the predicate $x_{1} \perp x_{2}$ is symmetric.
The following propositions are true:
(49) If $x \perp y_{0}$ and $y_{0} \| y_{1}$, then $x \perp y_{1}$.
(50) If $x \perp y$, then x and y are linearly independent.
(51) If $x_{1} \| x_{2}$, then $x_{1} \not \perp x_{2}$.
(52) If $x_{1} \perp x_{2}$, then $x_{1} \nVdash x_{2}$.

Let us consider n. The functor $\operatorname{Lines}\left(\mathcal{R}^{n}\right)$ yields a family of subsets of \mathcal{R}^{n} and is defined by:
(Def. 4) $\operatorname{Lines}\left(\mathcal{R}^{n}\right)=\left\{\operatorname{Line}\left(x_{1}, x_{2}\right)\right\}$.
Let us consider n. Note that $\operatorname{Lines}\left(\mathcal{R}^{n}\right)$ is non empty.
The following proposition is true
(53) $\operatorname{Line}\left(x_{1}, x_{2}\right) \in \operatorname{Lines}\left(\mathcal{R}^{n}\right)$.

In the sequel L, L_{0}, L_{1}, L_{2} are elements of $\operatorname{Lines}\left(\mathcal{R}^{n}\right)$.
The following propositions are true:
(54) If $x_{1} \in L$ and $x_{2} \in L$, then Line $\left(x_{1}, x_{2}\right) \subseteq L$.
(55) $\quad L_{1}$ meets L_{2} iff there exists x such that $x \in L_{1}$ and $x \in L_{2}$.
(56) If L_{0} misses L_{1} and $x \in L_{0}$, then $x \notin L_{1}$.
(57) There exist x_{1}, x_{2} such that $L=\operatorname{Line}\left(x_{1}, x_{2}\right)$.
(58) There exists x such that $x \in L$.
(59) If $x_{0} \in L$ and L is a line, then there exists x_{1} such that $x_{1} \neq x_{0}$ and $x_{1} \in L$.
(60) If $x \notin L$ and L is a line, then there exist x_{1}, x_{2} such that $L=\operatorname{Line}\left(x_{1}, x_{2}\right)$ and $x-x_{1} \perp x_{2}-x_{1}$.
(61) If $x \notin L$ and L is a line, then there exist x_{1}, x_{2} such that $L=\operatorname{Line}\left(x_{1}, x_{2}\right)$ and $x-x_{1}$ and $x_{2}-x_{1}$ are linearly independent.
Let n be a natural number, let x be an element of \mathcal{R}^{n}, and let L be an element of $\operatorname{Lines}\left(\mathcal{R}^{n}\right)$. The functor $\rho(x, L)$ yields a real number and is defined by:
(Def. 5) There exists a subset S of \mathbb{R} such that $S=\left\{\left|x-x_{0}\right| ; x_{0}\right.$ ranges over elements of $\left.\mathcal{R}^{n}: x_{0} \in L\right\}$ and $\rho(x, L)=\inf S$.
Next we state three propositions:
(62) There exists x_{0} such that $x_{0} \in L$ and $\left|x-x_{0}\right|=\rho(x, L)$.
(63) $\rho(x, L) \geq 0$.
(64) $x \in L$ iff $\rho(x, L)=0$.

Let us consider n and let us consider L_{1}, L_{2}. The predicate $L_{1} \| L_{2}$ is defined as follows:
(Def. 6) There exist elements $x_{1}, x_{2}, y_{1}, y_{2}$ of \mathcal{R}^{n} such that $L_{1}=\operatorname{Line}\left(x_{1}, x_{2}\right)$ and $L_{2}=\operatorname{Line}\left(y_{1}, y_{2}\right)$ and $x_{2}-x_{1} \| y_{2}-y_{1}$.
Let us note that the predicate $L_{1} \| L_{2}$ is symmetric.
The following proposition is true
(65) If $L_{0} \| L_{1}$ and $L_{1} \| L_{2}$, then $L_{0} \| L_{2}$.

Let us consider n and let us consider L_{1}, L_{2}. The predicate $L_{1} \perp L_{2}$ is defined by:
(Def. 7) There exist elements $x_{1}, x_{2}, y_{1}, y_{2}$ of \mathcal{R}^{n} such that $L_{1}=\operatorname{Line}\left(x_{1}, x_{2}\right)$ and $L_{2}=\operatorname{Line}\left(y_{1}, y_{2}\right)$ and $x_{2}-x_{1} \perp y_{2}-y_{1}$.
Let us note that the predicate $L_{1} \perp L_{2}$ is symmetric.
We now state a number of propositions:
(66) If $L_{0} \perp L_{1}$ and $L_{1} \| L_{2}$, then $L_{0} \perp L_{2}$.
(67) If $x \notin L$ and L is a line, then there exists L_{0} such that $x \in L_{0}$ and $L_{0} \perp L$ and L_{0} meets L.
(68) If L_{1} misses L_{2}, then there exists x such that $x \in L_{1}$ and $x \notin L_{2}$.
(69) If $x_{1} \in L$ and $x_{2} \in L$ and $x_{1} \neq x_{2}$, then $\operatorname{Line}\left(x_{1}, x_{2}\right)=L$ and L is a line.
(70) If L_{1} is a line and L_{2} is a line and $L_{1}=L_{2}$, then $L_{1} \| L_{2}$.
(71) If $L_{1} \| L_{2}$, then L_{1} is a line and L_{2} is a line.
(72) If $L_{1} \perp L_{2}$, then L_{1} is a line and L_{2} is a line.
(73) If $x \in L$ and $a \neq 1$ and $a \cdot x \in L$, then $\langle\underbrace{0, \ldots, 0}_{n}\rangle \in L$.
(74) If $x_{1} \in L$ and $x_{2} \in L$, then there exists x_{3} such that $x_{3} \in L$ and $x_{3}-x_{1}=a \cdot\left(x_{2}-x_{1}\right)$.
(75) If $x_{1} \in L$ and $x_{2} \in L$ and $x_{3} \in L$ and $x_{1} \neq x_{2}$, then there exists a such that $x_{3}-x_{1}=a \cdot\left(x_{2}-x_{1}\right)$.
(76) If $L_{1} \| L_{2}$ and $L_{1} \neq L_{2}$, then L_{1} misses L_{2}.
(77) If $L_{1} \| L_{2}$, then $L_{1}=L_{2}$ or L_{1} misses L_{2}.
(78) If $L_{1} \| L_{2}$ and L_{1} meets L_{2}, then $L_{1}=L_{2}$.
(79) If L is a line, then there exists L_{0} such that $x \in L_{0}$ and $L_{0} \| L$.
(80) For all x, L such that $x \notin L$ and L is a line there exists L_{0} such that $x \in L_{0}$ and $L_{0} \| L$ and $L_{0} \neq L$.
(81) For all $x_{0}, x_{1}, y_{0}, y_{1}, L_{1}, L_{2}$ such that $x_{0} \in L_{1}$ and $x_{1} \in L_{1}$ and $x_{0} \neq x_{1}$ and $y_{0} \in L_{2}$ and $y_{1} \in L_{2}$ and $y_{0} \neq y_{1}$ and $L_{1} \perp L_{2}$ holds $x_{1}-x_{0} \perp y_{1}-y_{0}$.
(82) For all L_{1}, L_{2} such that $L_{1} \perp L_{2}$ holds $L_{1} \neq L_{2}$.
(83) For all x_{1}, x_{2}, L such that L is a line and $L=\operatorname{Line}\left(x_{1}, x_{2}\right)$ holds $x_{1} \neq x_{2}$.
(84) If $x_{0} \in L_{1}$ and $x_{1} \in L_{1}$ and $x_{0} \neq x_{1}$ and $y_{0} \in L_{2}$ and $y_{1} \in L_{2}$ and $y_{0} \neq y_{1}$ and $L_{1} \| L_{2}$, then $x_{1}-x_{0} \| y_{1}-y_{0}$.
(85) Suppose $x_{2}-x_{1}$ and $x_{3}-x_{1}$ are linearly independent and $y_{2} \in$ $\operatorname{Line}\left(x_{1}, x_{2}\right)$ and $y_{3} \in \operatorname{Line}\left(x_{1}, x_{3}\right)$ and $L_{1}=\operatorname{Line}\left(x_{2}, x_{3}\right)$ and $L_{2}=$ $\operatorname{Line}\left(y_{2}, y_{3}\right)$. Then $L_{1} \| L_{2}$ if and only if there exists a such that $a \neq 0$ and $y_{2}-x_{1}=a \cdot\left(x_{2}-x_{1}\right)$ and $y_{3}-x_{1}=a \cdot\left(x_{3}-x_{1}\right)$.
(86) For all L_{1}, L_{2} such that L_{1} is a line and L_{2} is a line and $L_{1} \neq L_{2}$ there exists x such that $x \in L_{1}$ and $x \notin L_{2}$.
(87) For all x, L_{1}, L_{2} such that $L_{1} \perp L_{2}$ and $x \in L_{2}$ there exists L_{0} such that $x \in L_{0}$ and $L_{0} \perp L_{2}$ and $L_{0} \| L_{1}$.
(88) For all x, L_{1}, L_{2} such that $x \in L_{1}$ and $x \in L_{2}$ and $L_{1} \perp L_{2}$ there exists x_{0} such that $x \neq x_{0}$ and $x_{0} \in L_{1}$ and $x_{0} \notin L_{2}$.

Let n be a natural number and let x_{1}, x_{2}, x_{3} be elements of \mathcal{R}^{n}. The functor Plane $\left(x_{1}, x_{2}, x_{3}\right)$ yielding a subset of \mathcal{R}^{n} is defined as follows:
(Def. 8) Plane $\left(x_{1}, x_{2}, x_{3}\right)=\left\{a_{1} \cdot x_{1}+a_{2} \cdot x_{2}+a_{3} \cdot x_{3}: a_{1}+a_{2}+a_{3}=1\right\}$.
Let n be a natural number and let x_{1}, x_{2}, x_{3} be elements of \mathcal{R}^{n}. One can check that $\operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$ is non empty.

Let us consider n and let A be a subset of \mathcal{R}^{n}. We say that A is plane if and only if:
(Def. 9) There exist x_{1}, x_{2}, x_{3} such that $x_{2}-x_{1}$ and $x_{3}-x_{1}$ are linearly independent and $A=\operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$.

One can prove the following propositions:
(89) $x_{1} \in \operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$ and $x_{2} \in \operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$ and $x_{3} \in$ Plane $\left(x_{1}, x_{2}, x_{3}\right)$
(90) If $x_{1} \in \operatorname{Plane}\left(y_{1}, y_{2}, y_{3}\right)$ and $x_{2} \in \operatorname{Plane}\left(y_{1}, y_{2}, y_{3}\right)$ and $x_{3} \in$ $\operatorname{Plane}\left(y_{1}, y_{2}, y_{3}\right)$, then $\operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right) \subseteq \operatorname{Plane}\left(y_{1}, y_{2}, y_{3}\right)$.
(91) Let A be a subset of \mathcal{R}^{n} and given x, x_{1}, x_{2}, x_{3}. Suppose $x \in$ Plane $\left(x_{1}, x_{2}, x_{3}\right)$ and there exist real numbers c_{1}, c_{2}, c_{3} such that $c_{1}+c_{2}+$ $c_{3}=0$ and $x=c_{1} \cdot x_{1}+c_{2} \cdot x_{2}+c_{3} \cdot x_{3}$. Then $\langle\underbrace{0, \ldots, 0}_{n}\rangle \in \operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$.
(92) If $y_{1} \in \operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$ and $y_{2} \in \operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$, then $\operatorname{Line}\left(y_{1}, y_{2}\right) \subseteq$ Plane $\left(x_{1}, x_{2}, x_{3}\right)$.
(93) For every subset A of \mathcal{R}^{n} and for every x such that A is plane and $x \in A$ and there exists a such that $a \neq 1$ and $a \cdot x \in A$ holds $\langle\underbrace{0, \ldots, 0}_{n}\rangle \in A$.
(94) If $x_{1}-x_{1}$ and $x_{3}-x_{1}$ are linearly independent and $x \in \operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$ and $x=a_{1} \cdot x_{1}+a_{2} \cdot x_{2}+a_{3} \cdot x_{3}$, then $a_{1}+a_{2}+a_{3}=1$ or $\langle\underbrace{0, \ldots, 0}_{n}\rangle \in$ Plane $\left(x_{1}, x_{2}, x_{3}\right)$.
(95) $\quad x \in \operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$ iff there exist a_{1}, a_{2}, a_{3} such that $a_{1}+a_{2}+a_{3}=1$ and $x=a_{1} \cdot x_{1}+a_{2} \cdot x_{2}+a_{3} \cdot x_{3}$.
(96) Suppose that
(i) $x_{2}-x_{1}$ and $x_{3}-x_{1}$ are linearly independent,
(ii) $\quad x \in \operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$,
(iii) $a_{1}+a_{2}+a_{3}=1$,
(iv) $x=a_{1} \cdot x_{1}+a_{2} \cdot x_{2}+a_{3} \cdot x_{3}$,
(v) $b_{1}+b_{2}+b_{3}=1$, and
(vi) $x=b_{1} \cdot x_{1}+b_{2} \cdot x_{2}+b_{3} \cdot x_{3}$.

Then $a_{1}=b_{1}$ and $a_{2}=b_{2}$ and $a_{3}=b_{3}$.
Let us consider n. The functor $\operatorname{Planes}\left(\mathcal{R}^{n}\right)$ yielding a family of subsets of \mathcal{R}^{n} is defined by:
(Def. 10) $\operatorname{Planes}\left(\mathcal{R}^{n}\right)=\left\{\operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)\right\}$.
Let us consider n. Note that $\operatorname{Planes}\left(\mathcal{R}^{n}\right)$ is non empty.
The following proposition is true
(97) $\operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right) \in \operatorname{Planes}\left(\mathcal{R}^{n}\right)$.

In the sequel P, P_{0}, P_{1}, P_{2} are elements of $\operatorname{Planes}\left(\mathcal{R}^{n}\right)$.
Next we state several propositions:
(98) If $x_{1} \in P$ and $x_{2} \in P$ and $x_{3} \in P$, then Plane $\left(x_{1}, x_{2}, x_{3}\right) \subseteq P$.
(99) If $x_{1} \in P$ and $x_{2} \in P$ and $x_{3} \in P$ and $x_{2}-x_{1}$ and $x_{3}-x_{1}$ are linearly independent, then $P=\operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$.
(100) If P_{1} is plane and $P_{1} \subseteq P_{2}$, then $P_{1}=P_{2}$.
(101) Line $\left(x_{1}, x_{2}\right) \subseteq \operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$ and Line $\left(x_{2}, x_{3}\right) \subseteq \operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$ and Line $\left(x_{3}, x_{1}\right) \subseteq \operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$.
(102) If $x_{1} \in P$ and $x_{2} \in P$, then $\operatorname{Line}\left(x_{1}, x_{2}\right) \subseteq P$.

Let n be a natural number and let L_{1}, L_{2} be elements of Lines $\left(\mathcal{R}^{n}\right)$. We say that L_{1} and L_{2} are coplanar if and only if:
(Def. 11) There exist elements x_{1}, x_{2}, x_{3} of \mathcal{R}^{n} such that $L_{1} \subseteq \operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$ and $L_{2} \subseteq \operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$.
We now state a number of propositions:
(103) $\quad L_{1}$ and L_{2} are coplanar iff there exists P such that $L_{1} \subseteq P$ and $L_{2} \subseteq P$.
(104) If $L_{1} \| L_{2}$, then L_{1} and L_{2} are coplanar.
(105) Suppose L_{1} is a line and L_{2} is a line and L_{1} and L_{2} are coplanar and L_{1} misses L_{2}. Then there exists P such that $L_{1} \subseteq P$ and $L_{2} \subseteq P$ and P is plane.
(106) There exists P such that $x \in P$ and $L \subseteq P$.
(107) If $x \notin L$ and L is a line, then there exists P such that $x \in P$ and $L \subseteq P$ and P is plane.
(108) If $x \in P$ and $L \subseteq P$ and $x \notin L$ and L is a line, then P is plane.
(109) If $x \notin L$ and L is a line and $x \in P_{0}$ and $L \subseteq P_{0}$ and $x \in P_{1}$ and $L \subseteq P_{1}$, then $P_{0}=P_{1}$.
(110) If L_{1} is a line and L_{2} is a line and L_{1} and L_{2} are coplanar and $L_{1} \neq L_{2}$, then there exists P such that $L_{1} \subseteq P$ and $L_{2} \subseteq P$ and P is plane.
(111) For all L_{1}, L_{2} such that L_{1} is a line and L_{2} is a line and $L_{1} \neq L_{2}$ and L_{1} meets L_{2} there exists P such that $L_{1} \subseteq P$ and $L_{2} \subseteq P$ and P is plane.
(112) If L_{1} is a line and L_{2} is a line and $L_{1} \neq L_{2}$ and L_{1} meets L_{2} and $L_{1} \subseteq P_{1}$ and $L_{2} \subseteq P_{1}$ and $L_{1} \subseteq P_{2}$ and $L_{2} \subseteq P_{2}$, then $P_{1}=P_{2}$.
(113) If $L_{1} \| L_{2}$ and $L_{1} \neq L_{2}$, then there exists P such that $L_{1} \subseteq P$ and $L_{2} \subseteq P$ and P is plane.
(114) If $L_{1} \perp L_{2}$ and L_{1} meets L_{2}, then there exists P such that P is plane and $L_{1} \subseteq P$ and $L_{2} \subseteq P$.
(115) If $L_{0} \subseteq P$ and $L_{1} \subseteq P$ and $L_{2} \subseteq P$ and $x \in L_{0}$ and $x \in L_{1}$ and $x \in L_{2}$ and $L_{0} \perp L_{2}$ and $L_{1} \perp L_{2}$, then $L_{0}=L_{1}$.
(116) If L_{1} and L_{2} are coplanar and $L_{1} \perp L_{2}$, then L_{1} meets L_{2}.
(117) If $L_{1} \subseteq P$ and $L_{2} \subseteq P$ and $L_{1} \perp L_{2}$ and $x \in P$ and $L_{0} \| L_{2}$ and $x \in L_{0}$, then $L_{0} \subseteq P$ and $L_{0} \perp L_{1}$.
(118) If $L \subseteq P$ and $L_{1} \subseteq P$ and $L_{2} \subseteq P$ and $L \perp L_{1}$ and $L \perp L_{2}$, then $L_{1} \| L_{2}$.
(119) Suppose $L_{0} \subseteq P$ and $L_{1} \subseteq P$ and $L_{2} \subseteq P$ and $L_{0} \| L_{1}$ and $L_{1} \| L_{2}$ and $L_{0} \neq L_{1}$ and $L_{1} \neq L_{2}$ and $L_{2} \neq L_{0}$ and L meets L_{0} and L meets L_{1}. Then L meets L_{2}.
(120) If L_{1} and L_{2} are coplanar and L_{1} is a line and L_{2} is a line and L_{1} misses L_{2}, then $L_{1} \| L_{2}$.
(121) If $x_{1} \in P$ and $x_{2} \in P$ and $y_{1} \in P$ and $y_{2} \in P$ and $x_{2}-x_{1}$ and $y_{2}-y_{1}$ are linearly independent, then $\operatorname{Line}\left(x_{1}, x_{2}\right)$ meets Line $\left(y_{1}, y_{2}\right)$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[6] Czesław Bylinski. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[9] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[10] Akihiro Kubo. Lines in n-dimensional Euclidean spaces. Formalized Mathematics, 11(4):371-376, 2003.
[11] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. Formalized Mathematics, 8(1):1-13, 1999.
[12] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[13] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[14] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

Received May 24, 2005

