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Summary. In this paper we define class of functions and operators needed

for the proof of the principle of inclusions and the disconnections. We also given

certain cardinal numbers concerning elementary class of functions (this function

mapping finite set in finite set).
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The articles [21], [10], [24], [17], [26], [6], [27], [2], [9], [11], [1], [25], [7], [8],

[22], [19], [5], [15], [12], [20], [16], [14], [18], [13], [3], [23], and [4] provide the

terminology and notation for this paper.

For simplicity, we use the following convention: x, x1, x2, y, z, X ′ denote

sets, X, Y denote finite sets, n, k, m denote natural numbers, and f denotes a

function.

Next we state the proposition

(1) If X ⊆ Y and cardX = cardY, then X = Y.

In the sequel F is a function from X ∪ {x} into Y ∪ {y}.

One can prove the following proposition

(2) For all X, Y , x, y such that if Y = ∅, then X = ∅ and x /∈ X holds

card(Y X) = {F : rng(F ↾X) ⊆ Y ∧ F (x) = y} .

In the sequel F is a function from X ∪ {x} into Y .

One can prove the following two propositions:

(3) For all X, Y , x, y such that x /∈ X and y ∈ Y holds card(Y X) =

{F : F (x) = y} .
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(4) If if Y = ∅, then X = ∅, then card(Y X) = (cardY )card X .

In the sequel F1 denotes a function from X into Y and F2 denotes a function

from X ∪ {x} into Y ∪ {y}.

One can prove the following two propositions:

(5) Let given X, Y , x, y. Suppose if Y is empty, then X is

empty and x /∈ X and y /∈ Y. Then {F1 : F1 is one-to-one} =

{F2 : F2 is one-to-one ∧ F2(x) = y} .

(6) n!
(n−′k)! is a natural number.

In the sequel F is a function from X into Y .

The following proposition is true

(7) If cardX ≤ cardY, then {F : F is one-to-one} = (card Y )!
(card Y −

′card X)! .

In the sequel F denotes a function from X into X.

The following proposition is true

(8) {F : F is a permutation of X} = (cardX)!.

Let us consider X, k, x1, x2. The functor Choose(X, k, x1, x2) yields a subset

of {x1, x2}
X and is defined as follows:

(Def. 1) x ∈ Choose(X, k, x1, x2) iff there exists a function f from X into {x1, x2}

such that f = x and f−1({x1}) = k.

We now state several propositions:

(9) If cardX 6= k, then Choose(X, k, x1, x1) is empty.

(10) If cardX < k, then Choose(X, k, x1, x2) is empty.

(11) If x1 6= x2, then cardChoose(X, 0, x1, x2) = 1.

(12) cardChoose(X, card X, x1, x2) = 1.

(13) If f(y) = x and y ∈ dom f, then {y} ∪ (f↾(dom f \ {y}))−1({x}) =

f−1({x}).

In the sequel g denotes a function from X ∪ {z} into {x, y}.

The following propositions are true:

(14) If z /∈ X, then cardChoose(X, k, x, y) =

{g : g−1({x}) = k + 1 ∧ g(z) = x} .

(15) If f(y) 6= x, then (f↾(dom f \ {y}))−1({x}) = f−1({x}).

(16) If z /∈ X and x 6= y, then cardChoose(X, k, x, y) =

{g : g−1({x}) = k ∧ g(z) = y} .

(17) If x 6= y and z /∈ X, then cardChoose(X ∪ {z}, k + 1, x, y) =

cardChoose(X, k + 1, x, y) + cardChoose(X, k, x, y).

(18) If x 6= y, then cardChoose(X, k, x, y) =
(

card X

k

)

.

(19) If x 6= y, then (Y 7−→ y)+·(X 7−→ x) ∈ Choose(X ∪ Y, cardX, x, y).



cardinal numbers and finite sets 401

(20) If x 6= y and X misses Y , then (X 7−→ x)+·(Y 7−→ y) ∈ Choose(X ∪

Y, card X, x, y).

Let F , C1 be functions and let y be a set. The functor Intersection(F,C1, y)

yielding a subset of
⋃

rng F is defined as follows:

(Def. 2) z ∈ Intersection(F,C1, y) iff z ∈
⋃

rng F and for every x such that

x ∈ domC1 and C1(x) = y holds z ∈ F (x).

In the sequel F , C1 denote functions.

The following propositions are true:

(21) For all F , C1 such that domF ∩ C1
−1({x}) is non empty holds y ∈

Intersection(F,C1, x) iff for every z such that z ∈ domC1 and C1(z) = x

holds y ∈ F (z).

(22) If Intersection(F,C1, y) is non empty, then C1
−1({y}) ⊆ domF.

(23) If Intersection(F,C1, y) is non empty, then for all x1, x2 such that x1 ∈

C1
−1({y}) and x2 ∈ C1

−1({y}) holds F (x1) meets F (x2).

(24) If z ∈ Intersection(F,C1, y) and y ∈ rng C1, then there exists x such that

x ∈ domC1 and C1(x) = y and z ∈ F (x).

(25) If F is empty or
⋃

rng F is empty, then Intersection(F,C1, y) =
⋃

rng F.

(26) If F ↾C1
−1({y}) = C1

−1({y}) 7−→
⋃

rng F, then Intersection(F,C1, y) =
⋃

rng F.

(27) If
⋃

rng F is non empty and Intersection(F,C1, y) =
⋃

rng F, then

F ↾C1
−1({y}) = C1

−1({y}) 7−→
⋃

rng F.

(28) Intersection(F, ∅, y) =
⋃

rng F.

(29) Intersection(F,C1, y) ⊆ Intersection(F,C1↾X
′, y).

(30) If C1
−1({y}) = (C1↾X

′)−1({y}), then Intersection(F,C1, y) =

Intersection(F,C1↾X
′, y).

(31) Intersection(F ↾X ′, C1, y) ⊆ Intersection(F,C1, y).

(32) If y ∈ rng C1 and C1
−1({y}) ⊆ X ′, then Intersection(F ↾X ′, C1, y) =

Intersection(F,C1, y).

(33) If x ∈ C1
−1({y}), then Intersection(F,C1, y) ⊆ F (x).

(34) If x ∈ C1
−1({y}), then Intersection(F,C1↾(dom C1 \ {x}), y) ∩ F (x) =

Intersection(F,C1, y).

(35) For all functions C2, C3 such that C2
−1({x1}) = C3

−1({x2}) holds

Intersection(F,C2, x1) = Intersection(F,C3, x2).

(36) If C1
−1({y}) = ∅, then Intersection(F,C1, y) =

⋃

rng F.

(37) If {x} = C1
−1({y}), then Intersection(F,C1, y) = F (x).

(38) If {x1, x2} = C1
−1({y}), then Intersection(F,C1, y) = F (x1) ∩ F (x2).

(39) For every F such that F is non empty holds y ∈ Intersection(F,domF 7−→

x, x) iff for every z such that z ∈ domF holds y ∈ F (z).
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Let F be a function. We say that F is finite-yielding if and only if:

(Def. 3) For every x holds F (x) is finite.

Let us observe that there exists a function which is non empty and finite-

yielding and there exists a function which is empty and finite-yielding.

Let F be a finite-yielding function and let x be a set. Observe that F (x) is

finite.

Let F be a finite-yielding function and let X be a set. One can check that

F ↾X is finite-yielding.

Let F be a finite-yielding function and let G be a function. Note that F ·G

is finite-yielding and Intersect(F,G) is finite-yielding.

In the sequel F3 is a finite-yielding function.

The following two propositions are true:

(40) If y ∈ rng C1, then Intersection(F3, C1, y) is finite.

(41) If domF3 is finite, then
⋃

rng F3 is finite.

Let F be a finite 0-sequence and let us consider n. Then F ↾n is a finite

0-sequence.

Let D be a set, let F be a finite 0-sequence of D, and let us consider n.

Then F ↾n is a finite 0-sequence of D.

In the sequel D is a non empty set and b is a binary operation on D.

Next we state several propositions:

(42) For every finite 0-sequence F of D and for all b, n such that n ∈ domF

but b has a unity or n 6= 0 holds b(b ⊙ F ↾n, F (n)) = b ⊙ F ↾(n + 1).

(43) For every finite 0-sequence F of D and for every n such that lenF = n+1

holds F = (F ↾n) a 〈F (n)〉.

(44) For every finite 0-sequence F of N and for every n such that n ∈ domF

holds
∑

(F ↾n) + F (n) =
∑

(F ↾(n + 1)).

(45) For every finite 0-sequence F of N and for every n such that rng F ⊆

{0, n} holds
∑

F = n · card(F−1({n})).

(46) x ∈ Choose(n, k, 1, 0) iff there exists a finite 0-sequence F of N such that

F = x and domF = n and rng F ⊆ {0, 1} and
∑

F = k.

(47) For every finite 0-sequence F of D and for every b such that b has a

unity or lenF ≥ 1 holds b ⊙ F = b ⊙ XFS2FS(F ).

(48) Let F , G be finite 0-sequences of D and P be a permutation of domF.

Suppose b is commutative and associative but b has a unity or lenF ≥ 1

but G = F · P. Then b ⊙ F = b ⊙ G.

Let us consider k and let F be a finite-yielding function. Let us assume that

domF is finite. The card intersection of F wrt k yielding a natural number is

defined by the condition (Def. 4).

(Def. 4) Let x, y be sets, X be a finite set, and P be a function from

cardChoose(X, k, x, y) into Choose(X, k, x, y). Suppose domF = X and
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P is one-to-one and x 6= y. Then there exists a finite 0-sequence X1 of N

such that domX1 = domP and for all z, f such that z ∈ domX1 and

f = P (z) holds X1(z) = Intersection(F, f, x) and the card intersection of

F wrt k =
∑

X1.

One can prove the following propositions:

(49) Let x, y be sets, X be a finite set, and P be a function from

cardChoose(X, k, x, y) into Choose(X, k, x, y). Suppose domF3 = X and

P is one-to-one and x 6= y. Let X1 be a finite 0-sequence of N. Suppose

domX1 = domP and for all z, f such that z ∈ domX1 and f = P (z)

holds X1(z) = Intersection(F3, f, x) . Then the card intersection of F3 wrt

k =
∑

X1.

(50) If domF3 is finite and k = 0, then the card intersection of F3 wrt k =
⋃

rng F3 .

(51) If domF3 = X and k > card X, then the card intersection of F3 wrt

k = 0.

(52) Let given F3, X. Suppose domF3 = X. Let P be a function from

cardX into X. Suppose P is one-to-one. Then there exists a finite 0-

sequence X1 of N such that domX1 = cardX and for every z such that

z ∈ domX1 holds X1(z) = card(F3 ·P )(z) and the card intersection of F3

wrt 1 =
∑

X1.

(53) If domF3 = X, then the card intersection of F3 wrt cardX =

Intersection(F3, X 7−→ x, x) .

(54) If F3 = {x} 7−→ X, then the card intersection of F3 wrt 1 = cardX.

(55) Suppose x 6= y and F3 = [x 7−→ X, y 7−→ Y ]. Then the card intersection

of F3 wrt 1 = cardX + cardY and the card intersection of F3 wrt 2

= card(X ∩ Y ).

(56) Let given F3, x. Suppose domF3 is finite and x ∈ domF3. Then the

card intersection of F3 wrt 1 = (the card intersection of F3↾(dom F3 \{x})

wrt 1)+ cardF3(x).

(57) dom Intersect(F,domF 7−→ X ′) = domF and for every x such that

x ∈ domF holds (Intersect(F,domF 7−→ X ′))(x) = F (x) ∩ X ′.

(58)
⋃

rng F ∩ X ′ =
⋃

rng Intersect(F,domF 7−→ X ′).

(59) Intersection(F,C1, y) ∩ X ′ = Intersection(Intersect(F,domF 7−→

X ′), C1, y).

(60) Let F , G be finite 0-sequences. Suppose F is one-to-one and G is one-

to-one and rng F misses rng G. Then F a G is one-to-one.

(61) Let given F3, X, x, n. Suppose domF3 = X and x ∈ domF3 and

k > 0. Then the card intersection of F3 wrt k + 1 = (the card in-

tersection of F3↾(dom F3 \ {x}) wrt k + 1) + (the card intersection of
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Intersect(F3↾(dom F3 \ {x}),domF3 \ {x} 7−→ F3(x)) wrt k).

(62) Let F , G, b1 be finite 0-sequences of D. Suppose that

(i) b is commutative and associative,

(ii) b has a unity or lenF ≥ 1,

(iii) lenF = lenG,

(iv) lenF = len b1, and

(v) for every n such that n ∈ dom b1 holds b1(n) = b(F (n), G(n)).

Then b ⊙ F a G = b ⊙ b1.

Let F4 be a finite 0-sequence of Z. The functor
∑

F4 yielding an integer is

defined as follows:

(Def. 5)
∑

F4 = +Z ⊙ F4.

Let F4 be a finite 0-sequence of Z and let us consider x. Then F4(x) is an

integer.

Next we state several propositions:

(63) For every finite 0-sequence F5 of N and for every finite 0-sequence F4 of

Z such that F4 = F5 holds
∑

F4 =
∑

F5.

(64) Let F , F4 be finite 0-sequences of Z and i be an integer. If domF =

domF4 and for every n such that n ∈ domF holds i · F (n) = F4(n), then

i ·
∑

F =
∑

F4.

(65) If x ∈ domF, then
⋃

rng F =
⋃

rng(F ↾(dom F \ {x})) ∪ F (x).

(66) Let F3 be a finite-yielding function and given X. Then there exists a

finite 0-sequence X1 of Z such that domX1 = cardX and for every n such

that n ∈ domX1 holds X1(n) = (−1)n · the card intersection of F3 wrt

n + 1.

(67) Let F3 be a finite-yielding function and given X. Suppose domF3 = X.

Let X1 be a finite 0-sequence of Z. Suppose domX1 = cardX and for

every n such that n ∈ domX1 holds X1(n) = (−1)n · the card intersection

of F3 wrt n + 1. Then
⋃

rng F3 =
∑

X1.

(68) Let given F3, X, n, k. Suppose domF3 = X. Given x, y such

that x 6= y and for every f such that f ∈ Choose(X, k, x, y) holds

Intersection(F3, f, x) = n. Then the card intersection of F3 wrt k =

n ·
(

card X

k

)

.

(69) Let given F3, X. Suppose domF3 = X. Let X2 be a finite 0-sequence of

N. Suppose domX2 = cardX and for every n such that n ∈ domX2 there

exist x, y such that x 6= y and for every f such that f ∈ Choose(X, n +

1, x, y) holds Intersection(F3, f, x) = X2(n). Then there exists a finite 0-

sequence F of Z such that domF = card X and
⋃

rng F3 =
∑

F and for

every n such that n ∈ domF holds F (n) = (−1)n · X2(n) ·
(

card X

n+1

)

.

In the sequel g denotes a function from X into Y .
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The following propositions are true:

(70) Let X, Y be finite sets. Suppose X is non empty and Y is non empty.

Then there exists a finite 0-sequence F of Z such that domF = cardY +1

and
∑

F = {g : g is onto} and for every n such that n ∈ domF holds

F (n) = (−1)n ·
(

card Y

n

)

· (cardY − n)card X .

(71) Let given n, k. Suppose k ≤ n. Then there exists a finite 0-sequence F

of Z such that n block k = 1
k! ·

∑

F and domF = k + 1 and for every m

such that m ∈ domF holds F (m) = (−1)m ·
(

k

m

)

· (k − m)n.

In the sequel A, B are finite sets and f is a function from A into B.

One can prove the following proposition

(72) Let given A, B and X be a finite set. Suppose if B is empty, then

A is empty and X ⊆ A. Let F be a function from A into B. Sup-

pose F is one-to-one and cardA = cardB. Then (cardA −′ cardX)! =

{f : f is one-to-one ∧ rng(f↾(A \ X)) ⊆ F ◦(A \ X) ∧
∧

x
(x ∈ X ⇒ f(x) = F (x))} .

In the sequel F denotes a function and h denotes a function from X into

rng F.

The following proposition is true

(73) Let given F . Suppose domF = X and F is one-to-one. Then there

exists a finite 0-sequence X2 of Z such that

(i)
∑

X2 = {h : h is one-to-one ∧
∧

x
(x ∈ X ⇒ h(x) 6= F (x))} ,

(ii) domX2 = cardX + 1, and

(iii) for every n such that n ∈ domX2 holds X2(n) = (−1)n
·(card X)!
n! .

In the sequel h is a function from X into X.

The following proposition is true

(74) There exists a finite 0-sequence X2 of Z such that

(i)
∑

X2 = {h : h is one-to-one ∧
∧

x
(x ∈ X ⇒ h(x) 6= x)} ,

(ii) domX2 = cardX + 1, and

(iii) for every n such that n ∈ domX2 holds X2(n) = (−1)n
·(card X)!
n! .
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