Cardinal Numbers and Finite Sets ${ }^{1}$

Karol Pa̧k
Institute of Mathematics
University of Białystok
Akademicka 2, 15-267 Białystok, Poland

Abstract

Summary. In this paper we define class of functions and operators needed for the proof of the principle of inclusions and the disconnections. We also given certain cardinal numbers concerning elementary class of functions (this function mapping finite set in finite set).

MML identifier: CARD_FIN, version: 7.5.01 4.39.921

The articles [21], [10], [24], [17], [26], [6], [27], [2], [9], [11], [1], [25], [7], [8], [22], [19], [5], [15], [12], [20], [16], [14], [18], [13], [3], [23], and [4] provide the terminology and notation for this paper.

For simplicity, we use the following convention: $x, x_{1}, x_{2}, y, z, X^{\prime}$ denote sets, X, Y denote finite sets, n, k, m denote natural numbers, and f denotes a function.

Next we state the proposition
(1) If $X \subseteq Y$ and $\operatorname{card} X=\operatorname{card} Y$, then $X=Y$.

In the sequel F is a function from $X \cup\{x\}$ into $Y \cup\{y\}$.
One can prove the following proposition
(2) For all X, Y, x, y such that if $Y=\emptyset$, then $X=\emptyset$ and $x \notin X$ holds $\operatorname{card}\left(Y^{X}\right)=\overline{\{F: \operatorname{rng}(F \upharpoonright X) \subseteq Y \wedge F(x)=y\}}$.
In the sequel F is a function from $X \cup\{x\}$ into Y.
One can prove the following two propositions:
(3) For all X, Y, x, y such that $x \notin X$ and $y \in Y$ holds $\operatorname{card}\left(Y^{X}\right)=$ $\overline{\overline{\{F: F(x)=y\}}}$.

[^0](4) If if $Y=\emptyset$, then $X=\emptyset$, then $\operatorname{card}\left(Y^{X}\right)=(\operatorname{card} Y)^{\operatorname{card} X}$.

In the sequel F_{1} denotes a function from X into Y and F_{2} denotes a function from $X \cup\{x\}$ into $Y \cup\{y\}$.

One can prove the following two propositions:
(5) Let given X, Y, x, y. Suppose if Y is empty, then X is $\overline{\text { empty and } x \notin X \text { and } y \notin Y}$. Then $\overline{\left.\overline{\left\{F_{2}: F_{2} \text { is one-to-one } \wedge F_{1}(x)=y\right\}} \text { is one-to-one }\right\}}=$
(6) $\frac{n!}{\left(n-{ }^{\prime} k\right)!}$ is a natural number.

In the sequel F is a function from X into Y.
The following proposition is true
(7) If $\operatorname{card} X \leq \operatorname{card} Y$, then $\overline{\overline{\{F: F \text { is one-to-one }\}}}=\frac{(\operatorname{card} Y)!}{\left(\operatorname{card} Y-{ }^{\prime} \operatorname{card} X\right)!}$.

In the sequel F denotes a function from X into X.
The following proposition is true
(8) $\overline{\overline{\{F: F} \text { is a permutation of } X\}}=(\operatorname{card} X)$!.

Let us consider X, k, x_{1}, x_{2}. The functor Choose (X, k, x_{1}, x_{2}) yields a subset of $\left\{x_{1}, x_{2}\right\}^{X}$ and is defined as follows:
(Def. 1) $\quad x \in \operatorname{Choose}\left(X, k, x_{1}, x_{2}\right)$ iff there exists a function f from X into $\left\{x_{1}, x_{2}\right\}$ such that $f=x$ and $\overline{\overline{f^{-1}\left(\left\{x_{1}\right\}\right)}}=k$.
We now state several propositions:
(9) If card $X \neq k$, then Choose $\left(X, k, x_{1}, x_{1}\right)$ is empty.
(10) If card $X<k$, then $\operatorname{Choose}\left(X, k, x_{1}, x_{2}\right)$ is empty.
(11) If $x_{1} \neq x_{2}$, then card Choose $\left(X, 0, x_{1}, x_{2}\right)=1$.
(12) $\quad \operatorname{card} \operatorname{Choose}\left(X, \operatorname{card} X, x_{1}, x_{2}\right)=1$.
(13) If $f(y)=x$ and $y \in \operatorname{dom} f$, then $\{y\} \cup(f \upharpoonright(\operatorname{dom} f \backslash\{y\}))^{-1}(\{x\})=$ $f^{-1}(\{x\})$.
In the sequel g denotes a function from $X \cup\{z\}$ into $\{x, y\}$.
The following propositions are true:
(14)

If $z \notin X$, then $\operatorname{card} \operatorname{Choose}(X, k, x, y)=$ $\overline{\left.\overline{\left\{g: \overline{\overline{g^{-1}(\{x\})}}\right.}=k+1 \wedge g(z)=x\right\}}$.
(15) If $f(y) \neq x$, then $(f \upharpoonright(\operatorname{dom} f \backslash\{y\}))^{-1}(\{x\})=f^{-1}(\{x\})$.
(16) If $\underset{\left\{g \cdot \overline{\overline{g^{-1}(\{x\})}}=k \text { and } x \neq\right.}{ } \quad y$, then $\operatorname{card} \operatorname{Choose}(X, k, x, y) \quad=$
(17) If $x \neq y$ and $z \notin X$, then card Choose $(X \cup\{z\}, k+1, x, y)=$ card Choose $(X, k+1, x, y)+\operatorname{card} \operatorname{Choose}(X, k, x, y)$.
(18) If $x \neq y$, then card $\operatorname{Choose}(X, k, x, y)=\binom{(\underset{a r d}{ } X}{k}$.
(19) If $x \neq y$, then $(Y \longmapsto y)+\cdot(X \longmapsto x) \in \operatorname{Choose}(X \cup Y, \operatorname{card} X, x, y)$.
(20) If $x \neq y$ and X misses Y, then $(X \longmapsto x)+\cdot(Y \longmapsto y) \in \operatorname{Choose}(X \cup$ $Y, \operatorname{card} X, x, y)$.
Let F, C_{1} be functions and let y be a set. The functor $\operatorname{Intersection}\left(F, C_{1}, y\right)$ yielding a subset of $\bigcup \operatorname{rng} F$ is defined as follows:
(Def. 2) $z \in \operatorname{Intersection}\left(F, C_{1}, y\right)$ iff $z \in \bigcup \operatorname{rng} F$ and for every x such that $x \in \operatorname{dom} C_{1}$ and $C_{1}(x)=y$ holds $z \in F(x)$.
In the sequel F, C_{1} denote functions.
The following propositions are true:
(21) For all F, C_{1} such that $\operatorname{dom} F \cap C_{1}^{-1}(\{x\})$ is non empty holds $y \in$ Intersection $\left(F, C_{1}, x\right)$ iff for every z such that $z \in \operatorname{dom} C_{1}$ and $C_{1}(z)=x$ holds $y \in F(z)$.
(22) If Intersection $\left(F, C_{1}, y\right)$ is non empty, then $C_{1}^{-1}(\{y\}) \subseteq \operatorname{dom} F$.
(23) If $\operatorname{Intersection}\left(F, C_{1}, y\right)$ is non empty, then for all x_{1}, x_{2} such that $x_{1} \in$ $C_{1}^{-1}(\{y\})$ and $x_{2} \in C_{1}^{-1}(\{y\})$ holds $F\left(x_{1}\right)$ meets $F\left(x_{2}\right)$.
(24) If $z \in \operatorname{Intersection}\left(F, C_{1}, y\right)$ and $y \in \operatorname{rng} C_{1}$, then there exists x such that $x \in \operatorname{dom} C_{1}$ and $C_{1}(x)=y$ and $z \in F(x)$.
(25) If F is empty or $\bigcup \operatorname{rng} F$ is empty, then $\operatorname{Intersection}\left(F, C_{1}, y\right)=\bigcup \operatorname{rng} F$.
(26) If $F \upharpoonright C_{1}^{-1}(\{y\})=C_{1}^{-1}(\{y\}) \longmapsto \bigcup \operatorname{rng} F$, then $\operatorname{Intersection}\left(F, C_{1}, y\right)=$ $\bigcup \mathrm{rng} F$.
(27) If $\bigcup \operatorname{rng} F$ is non empty and $\operatorname{Intersection}\left(F, C_{1}, y\right)=\bigcup \operatorname{rng} F$, then $F \upharpoonright C_{1}^{-1}(\{y\})=C_{1}^{-1}(\{y\}) \longmapsto \bigcup \operatorname{rng} F$.
(28) $\operatorname{Intersection}(F, \emptyset, y)=\bigcup \operatorname{rng} F$.
(29) Intersection $\left(F, C_{1}, y\right) \subseteq \operatorname{Intersection}\left(F, C_{1} \mid X^{\prime}, y\right)$.
(30) If $C_{1}^{-1}(\{y\})=\left(C_{1} \upharpoonright X^{\prime}\right)^{-1}(\{y\})$, then $\operatorname{Intersection}\left(F, C_{1}, y\right)=$ Intersection $\left(F, C_{1} \upharpoonright X^{\prime}, y\right)$.
(31) Intersection $\left(F \upharpoonright X^{\prime}, C_{1}, y\right) \subseteq \operatorname{Intersection}\left(F, C_{1}, y\right)$.
(32) If $y \in \operatorname{rng} C_{1}$ and $C_{1}^{-1}(\{y\}) \subseteq X^{\prime}$, then $\operatorname{Intersection}\left(F \upharpoonright X^{\prime}, C_{1}, y\right)=$ Intersection $\left(F, C_{1}, y\right)$.
(33) If $x \in C_{1}^{-1}(\{y\})$, then Intersection $\left(F, C_{1}, y\right) \subseteq F(x)$.
(34) If $x \in C_{1}^{-1}(\{y\})$, then Intersection $\left(F, C_{1} \upharpoonright\left(\operatorname{dom} C_{1} \backslash\{x\}\right), y\right) \cap F(x)=$ Intersection $\left(F, C_{1}, y\right)$.
(35) For all functions C_{2}, C_{3} such that $C_{2}^{-1}\left(\left\{x_{1}\right\}\right)=C_{3}^{-1}\left(\left\{x_{2}\right\}\right)$ holds Intersection $\left(F, C_{2}, x_{1}\right)=\operatorname{Intersection}\left(F, C_{3}, x_{2}\right)$.
(36) If $C_{1}^{-1}(\{y\})=\emptyset$, then $\operatorname{Intersection}\left(F, C_{1}, y\right)=\bigcup \mathrm{rng} F$.
(37) If $\{x\}=C_{1}^{-1}(\{y\})$, then Intersection $\left(F, C_{1}, y\right)=F(x)$.
(38) If $\left\{x_{1}, x_{2}\right\}=C_{1}^{-1}(\{y\})$, then Intersection $\left(F, C_{1}, y\right)=F\left(x_{1}\right) \cap F\left(x_{2}\right)$.
(39) For every F such that F is non empty holds $y \in \operatorname{Intersection}(F, \operatorname{dom} F \longmapsto$ $x, x)$ iff for every z such that $z \in \operatorname{dom} F$ holds $y \in F(z)$.

Let F be a function. We say that F is finite-yielding if and only if:
(Def. 3) For every x holds $F(x)$ is finite.
Let us observe that there exists a function which is non empty and finiteyielding and there exists a function which is empty and finite-yielding.

Let F be a finite-yielding function and let x be a set. Observe that $F(x)$ is finite.

Let F be a finite-yielding function and let X be a set. One can check that $F \upharpoonright X$ is finite-yielding.

Let F be a finite-yielding function and let G be a function. Note that $F \cdot G$ is finite-yielding and $\operatorname{Intersect}(F, G)$ is finite-yielding.

In the sequel F_{3} is a finite-yielding function.
The following two propositions are true:
(40) If $y \in \operatorname{rng} C_{1}$, then $\operatorname{Intersection}\left(F_{3}, C_{1}, y\right)$ is finite.
(41) If $\operatorname{dom} F_{3}$ is finite, then $\bigcup \operatorname{rng} F_{3}$ is finite.

Let F be a finite 0 -sequence and let us consider n. Then $F \upharpoonright n$ is a finite 0 -sequence.

Let D be a set, let F be a finite 0 -sequence of D, and let us consider n. Then $F \upharpoonright n$ is a finite 0 -sequence of D.

In the sequel D is a non empty set and b is a binary operation on D.
Next we state several propositions:
(42) For every finite 0 -sequence F of D and for all b, n such that $n \in \operatorname{dom} F$ but b has a unity or $n \neq 0$ holds $b(b \odot F \upharpoonright n, F(n))=b \odot F \upharpoonright(n+1)$.
(43) For every finite 0 -sequence F of D and for every n such that len $F=n+1$ holds $F=(F \upharpoonright n)^{\wedge}\langle F(n)\rangle$.
(44) For every finite 0 -sequence F of \mathbb{N} and for every n such that $n \in \operatorname{dom} F$ holds $\sum(F \upharpoonright n)+F(n)=\sum(F \upharpoonright(n+1))$.
(45) For every finite 0 -sequence F of \mathbb{N} and for every n such that $\operatorname{rng} F \subseteq$ $\{0, n\}$ holds $\sum F=n \cdot \operatorname{card}\left(F^{-1}(\{n\})\right)$.
(46) $\quad x \in \operatorname{Choose}(n, k, 1,0)$ iff there exists a finite 0 -sequence F of \mathbb{N} such that $F=x$ and $\operatorname{dom} F=n$ and $\operatorname{rng} F \subseteq\{0,1\}$ and $\sum F=k$.
(47) For every finite 0 -sequence F of D and for every b such that b has a unity or len $F \geq 1$ holds $b \odot F=b \odot \operatorname{XFS} 2 \mathrm{FS}(F)$.
(48) Let F, G be finite 0 -sequences of D and P be a permutation of $\operatorname{dom} F$. Suppose b is commutative and associative but b has a unity or len $F \geq 1$ but $G=F \cdot P$. Then $b \odot F=b \odot G$.
Let us consider k and let F be a finite-yielding function. Let us assume that dom F is finite. The card intersection of F wrt k yielding a natural number is defined by the condition (Def. 4).
(Def. 4) Let x, y be sets, X be a finite set, and P be a function from card Choose (X, k, x, y) into Choose (X, k, x, y). Suppose dom $F=X$ and
P is one-to-one and $x \neq y$. Then there exists a finite 0 -sequence X_{1} of \mathbb{N} such that $\operatorname{dom} X_{1}=\operatorname{dom} P$ and for all z, f such that $z \in \operatorname{dom} X_{1}$ and $f=P(z)$ holds $X_{1}(z)=\overline{\overline{\operatorname{Intersection}(F, f, x)}}$ and the card intersection of F wrt $k=\sum X_{1}$.
One can prove the following propositions:
(49) Let x, y be sets, X be a finite set, and P be a function from card Choose (X, k, x, y) into Choose (X, k, x, y). Suppose dom $F_{3}=X$ and P is one-to-one and $x \neq y$. Let X_{1} be a finite 0 -sequence of \mathbb{N}. Suppose $\operatorname{dom} X_{1}=\operatorname{dom} P$ and for all z, f such that $z \in \operatorname{dom} X_{1}$ and $f=P(z)$ holds $X_{1}(z)=\overline{\overline{\operatorname{Intersection}\left(F_{3}, f, x\right)}}$. Then the card intersection of F_{3} wrt $k=\sum X_{1}$.
(50) If dom F_{3} is finite and $k=0$, then the card intersection of F_{3} wrt $k=$ $\overline{\overline{U \operatorname{rng} F_{3}}}$.
(51) If dom $F_{3}=X$ and $k>\operatorname{card} X$, then the card intersection of F_{3} wrt $k=0$.
(52) Let given F_{3}, X. Suppose dom $F_{3}=X$. Let P be a function from card X into X. Suppose P is one-to-one. Then there exists a finite 0 sequence X_{1} of \mathbb{N} such that $\operatorname{dom} X_{1}=\operatorname{card} X$ and for every z such that $z \in \operatorname{dom} X_{1}$ holds $X_{1}(z)=\operatorname{card}\left(F_{3} \cdot P\right)(z)$ and the card intersection of F_{3} wrt $1=\sum X_{1}$.
(53) If $\operatorname{dom} F_{3}=X$, then the card intersection of F_{3} wrt $\operatorname{card} X=$ $\overline{\text { Intersection }\left(F_{3}, X \longmapsto x, x\right)}$.
(54) If $F_{3}=\{x\} \longmapsto X$, then the card intersection of F_{3} wrt $1=\operatorname{card} X$.
(55) Suppose $x \neq y$ and $F_{3}=[x \longmapsto X, y \longmapsto Y]$. Then the card intersection of F_{3} wrt $1=\operatorname{card} X+\operatorname{card} Y$ and the card intersection of F_{3} wrt 2 $=\operatorname{card}(X \cap Y)$.
(56) Let given F_{3}, x. Suppose $\operatorname{dom} F_{3}$ is finite and $x \in \operatorname{dom} F_{3}$. Then the card intersection of F_{3} wrt $1=\left(\right.$ the card intersection of $F_{3} \upharpoonright\left(\operatorname{dom} F_{3} \backslash\{x\}\right)$ wrt 1) $+\operatorname{card} F_{3}(x)$.
(57) dom $\operatorname{Intersect}\left(F, \operatorname{dom} F \longmapsto X^{\prime}\right)=\operatorname{dom} F$ and for every x such that $x \in \operatorname{dom} F$ holds $\left(\operatorname{Intersect}\left(F, \operatorname{dom} F \longmapsto X^{\prime}\right)\right)(x)=F(x) \cap X^{\prime}$.
(58) $\bigcup \operatorname{rng} F \cap X^{\prime}=\bigcup \operatorname{rng} \operatorname{Intersect}\left(F, \operatorname{dom} F \longmapsto X^{\prime}\right)$.
(59) Intersection $\left(F, C_{1}, y\right) \cap X^{\prime}=\operatorname{Intersection}(\operatorname{Intersect}(F, \operatorname{dom} F \longmapsto$ $\left.\left.X^{\prime}\right), C_{1}, y\right)$.
(60) Let F, G be finite 0 -sequences. Suppose F is one-to-one and G is one-to-one and $\operatorname{rng} F$ misses $\operatorname{rng} G$. Then $F^{\wedge} G$ is one-to-one.
(61) Let given F_{3}, X, x, n. Suppose $\operatorname{dom} F_{3}=X$ and $x \in \operatorname{dom} F_{3}$ and $k>0$. Then the card intersection of F_{3} wrt $k+1=$ (the card intersection of $F_{3} \upharpoonright\left(\right.$ dom $\left.F_{3} \backslash\{x\}\right)$ wrt $\left.k+1\right)+($ the card intersection of

Intersect $\left(F_{3} \upharpoonright\left(\operatorname{dom} F_{3} \backslash\{x\}\right)\right.$, dom $\left.F_{3} \backslash\{x\} \longmapsto F_{3}(x)\right)$ wrt $\left.k\right)$.
(62) Let F, G, b_{1} be finite 0 -sequences of D. Suppose that
(i) b is commutative and associative,
(ii) b has a unity or len $F \geq 1$,
(iii) $\operatorname{len} F=\operatorname{len} G$,
(iv) $\operatorname{len} F=\operatorname{len} b_{1}$, and
(v) for every n such that $n \in \operatorname{dom} b_{1}$ holds $b_{1}(n)=b(F(n), G(n))$.

Then $b \odot F^{\frown} G=b \odot b_{1}$.
Let F_{4} be a finite 0 -sequence of \mathbb{Z}. The functor $\sum F_{4}$ yielding an integer is defined as follows:
(Def. 5) $\quad \sum F_{4}=+_{\mathbb{Z}} \odot F_{4}$.
Let F_{4} be a finite 0 -sequence of \mathbb{Z} and let us consider x. Then $F_{4}(x)$ is an integer.

Next we state several propositions:
(63) For every finite 0 -sequence F_{5} of \mathbb{N} and for every finite 0 -sequence F_{4} of \mathbb{Z} such that $F_{4}=F_{5}$ holds $\sum F_{4}=\sum F_{5}$.
(64) Let F, F_{4} be finite 0 -sequences of \mathbb{Z} and i be an integer. If $\operatorname{dom} F=$ dom F_{4} and for every n such that $n \in \operatorname{dom} F$ holds $i \cdot F(n)=F_{4}(n)$, then $i \cdot \sum F=\sum F_{4}$.
(65) If $x \in \operatorname{dom} F$, then $\bigcup \operatorname{rng} F=\bigcup \operatorname{rng}(F \upharpoonright(\operatorname{dom} F \backslash\{x\})) \cup F(x)$.
(66) Let F_{3} be a finite-yielding function and given X. Then there exists a finite 0-sequence X_{1} of \mathbb{Z} such that dom $X_{1}=\operatorname{card} X$ and for every n such that $n \in \operatorname{dom} X_{1}$ holds $X_{1}(n)=(-1)^{n}$. the card intersection of F_{3} wrt $n+1$.
(67) Let F_{3} be a finite-yielding function and given X. Suppose dom $F_{3}=X$. Let X_{1} be a finite 0 -sequence of \mathbb{Z}. Suppose $\operatorname{dom} X_{1}=\operatorname{card} X$ and for every n such that $n \in \operatorname{dom} X_{1}$ holds $X_{1}(n)=(-1)^{n}$. the card intersection of F_{3} wrt $n+1$. Then $\overline{\overline{\bigcup \mathrm{rng} F_{3}}}=\sum X_{1}$.
(68) Let given F_{3}, X, n, k. Suppose $\operatorname{dom} F_{3}=X$. Given x, y such that $x \neq y$ and for every f such that $f \in \operatorname{Choose}(X, k, x, y)$ holds $\overline{\overline{\text { Intersection }\left(F_{3}, f, x\right)}}=n$. Then the card intersection of F_{3} wrt $k=$ $n \cdot\binom{\operatorname{card} X}{k}$.
(69) Let given F_{3}, X. Suppose dom $F_{3}=X$. Let X_{2} be a finite 0 -sequence of \mathbb{N}. Suppose dom $X_{2}=\operatorname{card} X$ and for every n such that $n \in \operatorname{dom} X_{2}$ there exist x, y such that $x \neq y$ and for every f such that $f \in \operatorname{Choose}(X, n+$ $1, x, y)$ holds $\overline{\overline{\operatorname{Intersection}\left(F_{3}, f, x\right)}}=X_{2}(n)$. Then there exists a finite 0sequence F of \mathbb{Z} such that $\operatorname{dom} F=\operatorname{card} X$ and $\overline{\overline{\bigcup \mathrm{rng} F_{3}}}=\sum F$ and for every n such that $n \in \operatorname{dom} F$ holds $F(n)=(-1)^{n} \cdot X_{2}(n) \cdot\binom{\operatorname{card} X}{n+1}$.
In the sequel g denotes a function from X into Y.

The following propositions are true:
(70) Let X, Y be finite sets. Suppose X is non empty and Y is non empty. Then there exists a finite 0-sequence F of \mathbb{Z} such that dom $F=\operatorname{card} Y+1$ and $\sum F=\overline{\overline{\{g: g \text { is onto }\}}}$ and for every n such that $n \in \operatorname{dom} F$ holds $F(n)=(-1)^{n} \cdot\binom{\operatorname{card} Y}{n} \cdot(\operatorname{card} Y-n)^{\operatorname{card} X}$.
(71) Let given n, k. Suppose $k \leq n$. Then there exists a finite 0 -sequence F of \mathbb{Z} such that n block $k=\frac{1}{k!} \cdot \sum F$ and $\operatorname{dom} F=k+1$ and for every m such that $m \in \operatorname{dom} F$ holds $F(m)=(-1)^{m} \cdot\binom{k}{m} \cdot(k-m)^{n}$.
In the sequel A, B are finite sets and f is a function from A into B.
One can prove the following proposition
(72) Let given A, B and X be a finite set. Suppose if B is empty, then A is empty and $X \subseteq A$. Let F be a function from A into B. Suppose F is one-to-one and card $A=\operatorname{card} B$. Then $\left(\operatorname{card} A-^{\prime} \operatorname{card} X\right)!=$

$$
\begin{aligned}
& \overline{\overline{\left\{f: f \text { is one-to-one } \wedge \operatorname{rng}(f \upharpoonright(A \backslash X)) \subseteq F^{\circ}(A \backslash X) \wedge\right.}} \\
& \left.\hline \hline \bigwedge_{x}(x \in X \Rightarrow f(x)=F(x))\right\}
\end{aligned}
$$

In the sequel F denotes a function and h denotes a function from X into rng F.

The following proposition is true
(73) Let given F. Suppose $\operatorname{dom} F=X$ and F is one-to-one. Then there exists a finite 0 -sequence X_{2} of \mathbb{Z} such that
(i) $\sum X_{2}=\overline{\left.\overline{\{h: h} \text { is one-to-one } \wedge \bigwedge_{x}(x \in X \Rightarrow h(x) \neq F(x))\right\}}$,
(ii) $\operatorname{dom} X_{2}=\operatorname{card} X+1$, and
(iii) for every n such that $n \in \operatorname{dom} X_{2}$ holds $X_{2}(n)=\frac{(-1)^{n} \cdot(\operatorname{card} X)!}{n!}$.

In the sequel h is a function from X into X.
The following proposition is true
(74) There exists a finite 0 -sequence X_{2} of \mathbb{Z} such that
(i) $\sum X_{2}=\overline{\left\{h: h \text { is one-to-one } \wedge \bigwedge_{x}(x \in X \Rightarrow h(x) \neq x)\right\}}$,
(ii) $\operatorname{dom} X_{2}=\operatorname{card} X+1$, and
(iii) for every n such that $n \in \operatorname{dom} X_{2}$ holds $X_{2}(n)=\frac{(-1)^{n} \cdot(\operatorname{card} X)!}{n!}$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281290, 1990.
[3] Grzegorz Bancerek. Miscellaneous facts about functors. Formalized Mathematics, 9(4):745-754, 2001.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[12] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[13] Takaya Nishiyama, Hirofumi Fukura, and Yatsuka Nakamura. Logical correctness of vector calculation programs. Formalized Mathematics, 12(3):375-380, 2004.
[14] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[15] Library Committee of the Association of Mizar Users. Binary operations on numbers. To appear in Formalized Mathematics.
[16] Karol Pa̧k. Stirling numbers of the second kind. Formalized Mathematics, 13(2):337-345, 2005.
[17] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[18] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[19] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[20] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369-376, 1990.
[21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[22] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[23] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979-981, 1990.
[24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[25] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825-829, 2001.
[26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[27] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

[^0]: ${ }^{1}$ This work has been partially supported by the KBN grant 4 T11C 03924 and the FP6 IST grant TYPES No. 510096.

