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The Fundamental Group of the Circle
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Summary. The article formalizes a proof of the theorem counting the
fundamental group of a circle taken from [18]. The last result describes an
isomorphism between the additive group of integers and the fundamental group
of a simple closed curve.
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The notation and terminology used in this paper have been introduced in the
following articles: [38], [10], [44], [2], [45], [33], [7], [1], [46], [9], [27], [8], [6], [40],
[12], [3], [37], [19], [41], [26], [4], [34], [28], [32], [42], [36], [43], [20], [35], [39],

[11], [30], [31], [29], [22], [21], [14], [13], [5], [15], [47), [16], [17], [25], [23], and
[24].

1. PRELIMINARIES

Let us observe that every element of ZT is integer.

Let us note that ZT is infinite.

Let S be an infinite 1-sorted structure. Note that the carrier of .S is infinite.
In the sequel a, r, s denote real numbers.

One can prove the following propositions:

(1) Ifr < sandO0 < a, then for every point p of [r, s|y holds Ball(p, a) = [r, 5]
or Ball(p,a) = [r,p+a[ or Ball(p,a) = |p—a, s] or Ball(p,a) = |p—a,p+al.
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(2) Suppose r < s. Then there exists a basis B of [r, s|t such that
(i)  there exists a many sorted set f indexed by [r, s]T such that for every
point y of [r, slu holds f(y) = {Ball(y, 2); n ranges over natural numbers:
n#0} and B =] f, and
(ii)  for every subset X of [r, s|T such that X € B holds X is connected.
(3) For every topological structure 7" and for every subset A of T and for
every point ¢ of T" such that ¢ € A holds skl(¢, A) C A.
Let T be a topological space and let A be an open subset of T'. Observe that
TTA is open.
Next we state several propositions:
(4) Let T be a topological space, S be a subspace of T', A be a subset of T,
and B be a subset of S. If A = B, then T[A = S[B.

(5) Let S, T be topological spaces, A, B be subsets of T', and C, D be
subsets of S. Suppose that
(i)  the topological structure of S = the topological structure of T,
(i) A=C,
(ili) B =D, and
(iv) A and B are separated.
Then C and D are separated.

(6) Let S, T be topological spaces. Suppose the topological structure of S =
the topological structure of T" and S is connected. Then T' is connected.

(7) Let S, T be topological spaces, A be a subset of S, and B be a subset
of T'. Suppose the topological structure of S = the topological structure
of T'and A = B and A is connected. Then B is connected.

(8) Let S, T be non empty topological spaces, s be a point of S, t be a point
of T', and A be a neighbourhood of s. Suppose the topological structure of
S = the topological structure of T" and s = t. Then A is a neighbourhood
of t.

(9) Let S, T be non empty topological spaces, A be a subset of S, B be a
subset of T, and N be a neighbourhood of A. Suppose the topological
structure of S = the topological structure of 7" and A = B. Then N is a
neighbourhood of B.

(10) Let S, T be non empty topological spaces, A, B be subsets of T', and
f be a map from S into T. Suppose f is a homeomorphism and A is a
component of B. Then f~!(A) is a component of f~!(B).
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2. LocAL CONNECTEDNESS

The following propositions are true:

(11) Let T be a non empty topological space, S be a non empty subspace of
T, A be a non empty subset of T', and B be a non empty subset of S. If
A = B and A is locally connected, then B is locally connected.

(12) Let S, T be non empty topological spaces. Suppose the topological
structure of S = the topological structure of T" and S' is locally connected.
Then T is locally connected.

(13) For every non empty topological space T" holds T is locally connected iff
Qr is locally connected.

(14) Let T be a non empty topological space and S be a non empty open
subspace of T'. If T is locally connected, then S is locally connected.

(15) Let S, T' be non empty topological spaces. Suppose S and T" are home-
omorphic and S is locally connected. Then T is locally connected.

(16) Let T be a non empty topological space. Given a basis B of T such that
let X be a subset of T. If X € B, then X is connected. Then T is locally
connected.

(17) If r <'s, then [r, s|t is locally connected.

Let us mention that I is locally connected.
Let A be a non empty open subset of I. Observe that I A is locally connected.

3. SOME USEFUL FUNCTIONS

Let 7 be a real number. The functor ExtendInt r yielding a map from I into
R?! is defined as follows:
(Def. 1)  For every point z of I holds (ExtendIntr)(z) = r - .
Let 7 be a real number. One can check that ExtendInt r is continuous.
Let r be a real number. Then ExtendInt r is a path from R'0 to R'r.
Let S, T, Y be non empty topological spaces, let H be a map from [ .S, T']
into Y, and let ¢ be a point of T. The functor Prjl(¢, H) yields a map from S
into Y and is defined by:
(Def. 2) For every point s of S holds (Prjl(¢t, H))(s) = H(s, t).
Let S, T, Y be non empty topological spaces, let H be a map from [.S, T']
into Y, and let s be a point of S. The functor Prj2(s, H) yields a map from T’
into Y and is defined as follows:
(Def. 3) For every point ¢t of T holds (Prj2(s, H))(t) = H(s, t).
Let S, T, Y be non empty topological spaces, let H be a continuous map
from [ .S, T'] into Y, and let ¢ be a point of T'. Note that Prj1(¢, H) is continuous.
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Let S, T, Y be non empty topological spaces, let H be a continuous map
from [.S, T] into Y, and let s be a point of S. One can check that Prj2(s, H)
is continuous.

One can prove the following two propositions:

(18) Let T be a non empty topological space, a, b be points of T\, P, @ be
paths from a to b, H be a homotopy between P and (), and ¢ be a point
of I. If H is continuous, then Prjl(¢, H) is continuous.

(19) Let T be a non empty topological space, a, b be points of T, P, @ be
paths from a to b, H be a homotopy between P and (), and s be a point
of I. If H is continuous, then Prj2(s, H) is continuous.

Let r be a real number. The functor cLoopr yielding a map from I into
TopUnitCircle 2 is defined as follows:

(Def. 4) For every point x of I holds (cLoop r)(z) = [cos(2-7-7-z),sin(2-7-7-x)].

The following proposition is true

(20) cLoopr = CircleMap - ExtendInt .

Let n be an integer. Then cLoopn is a loop of ¢[10].

4. MAIN THEOREMS

Next we state four propositions:

(21) Let Uy be a family of subsets of TopUnitCircle 2. Suppose U; is a cover
of TopUnitCircle2 and open. Let Y be a non empty topological space, F
be a continuous map from [ Y, I] into TopUnitCircle 2, and y be a point
of Y. Then there exists a non empty finite sequence 1" of elements of R

such that
) 7(1) =0,
(i) T(lenT) =1,
(iii) T is increasing, and
(iv)  there exists an open subset N of Y such that y € N and for every

natural number ¢ such that ¢ € dom7 and ¢ +1 € dom 7T there exists a
non empty subset Us of TopUnitCircle2 such that Uy € Uy and F°[ N,
[T(i),T(i +1)]] C Us.

(22) Let Y be a non empty topological space, F' be a map from [Y, I] into
TopUnitCircle 2, and Fy be a map from [Y, Sspace(0p) ] into Rt. Suppose
F' is continuous and F} is continuous and F'[[the carrier of Y, {0}] =
CircleMap - F;. Then there exists a map G from [ Y, I] into R! such that

(i) G is continuous,

(i) F = CircleMap -G,

(iii)  G[}the carrier of Y, {0} ] = F1, and

(iv)  for every map H from [Y, I] into R! such that H is continuous and
F = CircleMap -H and H || the carrier of Y, {0} ] = F} holds G = H.
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(23) Let zg, yo be points of TopUnitCircle 2, z1 be a point of R, and f be a
path from z to yo. Suppose x1 € CircleMap ~!({zo}). Then there exists
amap f1 from I into R! such that

(i) £(0) =21,
(i)  f = CircleMap - fi,
(iii)  f1 is continuous, and
(iv)  for every map fo from I into R! such that f; is continuous and f =

CircleMap - fo and f2(0) = 21 holds f1 = fo.

(24) Let z, yo be points of TopUnitCircle2, P, @ be paths from zy to yo,
F be a homotopy between P and @, and 1 be a point of R!. Suppose
P, @ are homotopic and x; € CircleMap ~*({zo}). Then there exists a
point y; of R and there exist paths P;, Q1 from z1 to y; and there exists
a homotopy Fj between P; and Q)1 such that P, ()1 are homotopic and
F = CircleMap -F; and y; € CircleMap ~!({yo}) and for every homotopy
F5 between P; and Q1 such that F' = CircleMap -F5 holds F; = Fs.

The map Ciso from Z* into 71 (TopUnitCircle 2, ¢[10]) is defined by:
(Def. 5)  For every integer n holds (Ciso)(n) = [cLoop n]gqrel(TopUnitCircle 2,¢[10]) -
One can prove the following proposition
(25) For every integer i and for every path f from R0 to R'i holds (Ciso)(i) =

[CircleMap - f]gqrel(TopUnitCircle 2,¢[10]) -

Ciso is a homomorphism from Z* to m;(TopUnitCircle 2, ¢[10]).

Let us mention that Ciso is one-to-one and onto.

We now state two propositions:

(26) Ciso is isomorphism.
(27) Let S be a subspace of £% satisfying conditions of simple closed curve
and z be a point of S. Then Z* and 71(S,x) are isomorphic.

Let S be a subspace of 8% satisfying conditions of simple closed curve and
let = be a point of S. Note that 71 (95, z) is infinite.
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