
FORMALIZED MATHEMATICS

Volume 13, Number 2, Pages 279–293

University of Bia lystok, 2005

Weighted and Labeled Graphs1

Gilbert Lee2

University of Victoria, Victoria, Canada

Summary. In the graph framework of [17] we introduce new selectors:

weights for edges and labels for both edges and vertices. We introduce also a

number of tools for accessing and modifying these new fields.

MML identifier: GLIB 003, version: 7.5.01 4.39.921

The articles [20], [19], [22], [14], [23], [9], [6], [15], [1], [18], [21], [7], [12], [10], [11],

[3], [24], [4], [13], [2], [5], [8], [17], and [16] provide the notation and terminology

for this paper.

1. Preliminaries

Let D be a set, let f1 be a finite sequence of elements of D, and let f2 be a

FinSubsequence of f1. Then Seq f2 is a finite sequence of elements of D.

Let F be a real-yielding binary relation and let X be a set. One can check

that F ↾X is real-yielding.

Next we state two propositions:

(1) Let x1, x2, x3, x4, x5, x6, x7, x8, x9, x10 be sets and p be a finite sequence.

Suppose p = 〈x1〉
a〈x2〉

a〈x3〉
a〈x4〉

a〈x5〉
a〈x6〉

a〈x7〉
a〈x8〉

a〈x9〉
a〈x10〉.

Then len p = 10 and p(1) = x1 and p(2) = x2 and p(3) = x3 and p(4) = x4

and p(5) = x5 and p(6) = x6 and p(7) = x7 and p(8) = x8 and p(9) = x9

and p(10) = x10.

(2) Let f1 be a finite sequence of elements of R and f2 be a FinSubsequence

of f1. If for every natural number i such that i ∈ dom f1 holds 0 ≤ f1(i),

then
∑

Seq f2 ≤
∑

f1.

1This work has been partially supported by NSERC, Alberta Ingenuity Fund and iCORE.
2Part of author’s MSc work.

279
c© 2005 University of Bia lystok

ISSN 1426–2630



280 gilbert lee

2. Definitions

The natural number WeightSelector is defined by:

(Def. 1) WeightSelector = 5.

The natural number ELabelSelector is defined as follows:

(Def. 2) ELabelSelector = 6.

The natural number VLabelSelector is defined as follows:

(Def. 3) VLabelSelector = 7.

Let G be a graph structure. We say that G is weighted if and only if:

(Def. 4) WeightSelector ∈ domG and G(WeightSelector) is a many sorted set

indexed by the edges of G.

We say that G is elabeled if and only if:

(Def. 5) ELabelSelector ∈ domG and there exists a function f such that

G(ELabelSelector) = f and dom f ⊆ the edges of G.

We say that G is vlabeled if and only if:

(Def. 6) VLabelSelector ∈ domG and there exists a function f such that

G(VLabelSelector) = f and dom f ⊆ the vertices of G.

Let us mention that there exists a graph structure which is graph-like,

weighted, elabeled, and vlabeled.

A w-graph is a weighted graph. A e-graph is a elabeled graph. A v-graph

is a vlabeled graph. A we-graph is a weighted elabeled graph. A wv-graph is a

weighted vlabeled graph. A ev-graph is a elabeled vlabeled graph. A wev-graph

is a weighted elabeled vlabeled graph.

Let G be a w-graph. The weight of G yielding a many sorted set indexed by

the edges of G is defined by:

(Def. 7) The weight of G = G(WeightSelector).

Let G be a e-graph. The elabel of G yields a function and is defined by:

(Def. 8) The elabel of G = G(ELabelSelector).

Let G be a v-graph. The vlabel of G yielding a function is defined by:

(Def. 9) The vlabel of G = G(VLabelSelector).

Let G be a graph and let X be a set. One can check the following observa-

tions:

∗ G.set(WeightSelector, X) is graph-like,

∗ G.set(ELabelSelector, X) is graph-like, and

∗ G.set(VLabelSelector, X) is graph-like.

Let G be a finite graph and let X be a set. One can check the following

observations:

∗ G.set(WeightSelector, X) is finite,



weighted and labeled graphs 281

∗ G.set(ELabelSelector, X) is finite, and

∗ G.set(VLabelSelector, X) is finite.

Let G be a loopless graph and let X be a set. One can check the following

observations:

∗ G.set(WeightSelector, X) is loopless,

∗ G.set(ELabelSelector, X) is loopless, and

∗ G.set(VLabelSelector, X) is loopless.

Let G be a trivial graph and let X be a set. One can check the following

observations:

∗ G.set(WeightSelector, X) is trivial,

∗ G.set(ELabelSelector, X) is trivial, and

∗ G.set(VLabelSelector, X) is trivial.

Let G be a non trivial graph and let X be a set. One can verify the following

observations:

∗ G.set(WeightSelector, X) is non trivial,

∗ G.set(ELabelSelector, X) is non trivial, and

∗ G.set(VLabelSelector, X) is non trivial.

Let G be a non-multi graph and let X be a set. One can check the following

observations:

∗ G.set(WeightSelector, X) is non-multi,

∗ G.set(ELabelSelector, X) is non-multi, and

∗ G.set(VLabelSelector, X) is non-multi.

Let G be a non-directed-multi graph and let X be a set. One can verify the

following observations:

∗ G.set(WeightSelector, X) is non-directed-multi,

∗ G.set(ELabelSelector, X) is non-directed-multi, and

∗ G.set(VLabelSelector, X) is non-directed-multi.

Let G be a connected graph and let X be a set. One can check the following

observations:

∗ G.set(WeightSelector, X) is connected,

∗ G.set(ELabelSelector, X) is connected, and

∗ G.set(VLabelSelector, X) is connected.

Let G be an acyclic graph and let X be a set. One can verify the following

observations:

∗ G.set(WeightSelector, X) is acyclic,

∗ G.set(ELabelSelector, X) is acyclic, and

∗ G.set(VLabelSelector, X) is acyclic.



282 gilbert lee

Let G be a w-graph and let X be a set. Observe that G.set(ELabelSelector, X)

is weighted and G.set(VLabelSelector, X) is weighted.

Let G be a graph and let X be a many sorted set indexed by the edges of

G. Note that G.set(WeightSelector, X) is weighted.

Let G be a graph, let W1 be a non empty set, and let W be a function from

the edges of G into W1. Note that G.set(WeightSelector,W ) is weighted.

Let G be a e-graph and let X be a set. Note that G.set(WeightSelector, X)

is elabeled and G.set(VLabelSelector, X) is elabeled.

Let G be a graph, let Y be a set, and let X be a partial function from the

edges of G to Y . One can check that G.set(ELabelSelector, X) is elabeled.

Let G be a graph and let X be a many sorted set indexed by the edges of

G. One can verify that G.set(ELabelSelector, X) is elabeled.

Let G be a v-graph and let X be a set. Note that G.set(WeightSelector, X)

is vlabeled and G.set(ELabelSelector, X) is vlabeled.

Let G be a graph, let Y be a set, and let X be a partial function from the

vertices of G to Y . Note that G.set(VLabelSelector, X) is vlabeled.

Let G be a graph and let X be a many sorted set indexed by the vertices of

G. One can verify that G.set(VLabelSelector, X) is vlabeled.

Let G be a graph. Note that G.set(ELabelSelector, ∅) is elabeled and

G.set(VLabelSelector, ∅) is vlabeled.

Let G be a graph. Note that there exists a subgraph of G which is weighted,

elabeled, and vlabeled.

Let G be a w-graph and let G2 be a weighted subgraph of G. We say that

G2 inherits weight if and only if:

(Def. 10) The weight of G2 = (the weight of G)↾(the edges of G2).

Let G be a e-graph and let G2 be a elabeled subgraph of G. We say that G2

inherits elabel if and only if:

(Def. 11) The elabel of G2 = (the elabel of G)↾(the edges of G2).

Let G be a v-graph and let G2 be a vlabeled subgraph of G. We say that

G2 inherits vlabel if and only if:

(Def. 12) The vlabel of G2 = (the vlabel of G)↾(the vertices of G2).

Let G be a w-graph. Observe that there exists a weighted subgraph of G

which inherits weight.

Let G be a e-graph. One can check that there exists a elabeled subgraph of

G which inherits elabel.

Let G be a v-graph. One can verify that there exists a vlabeled subgraph of

G which inherits vlabel.

Let G be a we-graph. Note that there exists a weighted elabeled subgraph

of G which inherits weight and elabel.

Let G be a wv-graph. Observe that there exists a weighted vlabeled subgraph

of G which inherits weight and vlabel.



weighted and labeled graphs 283

Let G be a ev-graph. Observe that there exists a elabeled vlabeled subgraph

of G which inherits elabel and vlabel.

Let G be a wev-graph. One can verify that there exists a weighted elabeled

vlabeled subgraph of G which inherits weight, elabel, and vlabel.

Let G be a w-graph. A w-subgraph of G is a weighted subgraph of G

inheriting weight.

Let G be a e-graph. A e-subgraph of G is a elabeled subgraph of G inheriting

elabel.

Let G be a v-graph. A v-subgraph of G is a vlabeled subgraph of G inheriting

vlabel.

Let G be a we-graph. A we-subgraph of G is a weighted elabeled subgraph

of G inheriting weight and elabel.

Let G be a wv-graph. A wv-subgraph of G is a weighted vlabeled subgraph

of G inheriting weight and vlabel.

Let G be a ev-graph. A ev-subgraph of G is a elabeled vlabeled subgraph

of G inheriting elabel and vlabel.

Let G be a wev-graph. A wev-subgraph of G is a weighted elabeled vlabeled

subgraph of G inheriting weight, elabel, and vlabel.

Let G be a graph and let V , E be sets. One can verify that there exists a

subgraph of G induced by V and E which is weighted, elabeled, and vlabeled.

Let G be a w-graph and let V , E be sets. One can verify that there exists

a weighted subgraph of G induced by V and E which inherits weight.

Let G be a e-graph and let V , E be sets. One can verify that there exists a

elabeled subgraph of G induced by V and E which inherits elabel.

Let G be a v-graph and let V , E be sets. One can verify that there exists a

vlabeled subgraph of G induced by V and E which inherits vlabel.

Let G be a we-graph and let V , E be sets. Note that there exists a weighted

elabeled subgraph of G induced by V and E which inherits weight and elabel.

Let G be a wv-graph and let V , E be sets. Observe that there exists a

weighted vlabeled subgraph of G induced by V and E which inherits weight

and vlabel.

Let G be a ev-graph and let V , E be sets. Note that there exists a elabeled

vlabeled subgraph of G induced by V and E which inherits elabel and vlabel.

Let G be a wev-graph and let V , E be sets. Observe that there exists a

weighted elabeled vlabeled subgraph of G induced by V and E which inherits

weight, elabel, and vlabel.

Let G be a w-graph and let V , E be sets. A induced w-subgraph of G, V ,

E is a weighted subgraph of G induced by V and E inheriting weight.

Let G be a e-graph and let V , E be sets. A induced e-subgraph of G, V , E

is a elabeled subgraph of G induced by V and E inheriting elabel.

Let G be a v-graph and let V , E be sets. A induced v-subgraph of G, V , E

is a vlabeled subgraph of G induced by V and E inheriting vlabel.



284 gilbert lee

Let G be a we-graph and let V , E be sets. A induced we-subgraph of G, V ,

E is a weighted elabeled subgraph of G induced by V and E inheriting weight

and elabel.

Let G be a wv-graph and let V , E be sets. A induced wv-subgraph of G, V ,

E is a weighted vlabeled subgraph of G induced by V and E inheriting weight

and vlabel.

Let G be a ev-graph and let V , E be sets. A induced ev-subgraph of G, V ,

E is a elabeled vlabeled subgraph of G induced by V and E inheriting elabel

and vlabel.

Let G be a wev-graph and let V , E be sets. A induced wev-subgraph of

G, V , E is a weighted elabeled vlabeled subgraph of G induced by V and E

inheriting weight, elabel, and vlabel.

Let G be a w-graph and let V be a set. A induced w-subgraph of G, V is a

induced w-subgraph of G, V , G.edgesBetween(V ).

Let G be a e-graph and let V be a set. A induced e-subgraph of G, V is a

induced e-subgraph of G, V , G.edgesBetween(V ).

Let G be a v-graph and let V be a set. A induced v-subgraph of G, V is a

induced v-subgraph of G, V , G.edgesBetween(V ).

Let G be a we-graph and let V be a set. A induced we-subgraph of G, V is

a induced we-subgraph of G, V , G.edgesBetween(V ).

Let G be a wv-graph and let V be a set. A induced wv-subgraph of G, V is

a induced wv-subgraph of G, V , G.edgesBetween(V ).

Let G be a ev-graph and let V be a set. A induced ev-subgraph of G, V is

a induced ev-subgraph of G, V , G.edgesBetween(V ).

Let G be a wev-graph and let V be a set. A induced wev-subgraph of G, V

is a induced wev-subgraph of G, V , G.edgesBetween(V ).

Let G be a w-graph. We say that G is real-weighted if and only if:

(Def. 13) The weight of G is real-yielding.

Let G be a w-graph. We say that G is nonnegative-weighted if and only if:

(Def. 14) rng (the weight of G) ⊆ R≥0.

Let us note that every w-graph which is nonnegative-weighted is also real-

weighted.

Let G be a e-graph. We say that G is real-elabeled if and only if:

(Def. 15) The elabel of G is real-yielding.

Let G be a v-graph. We say that G is real-vlabeled if and only if:

(Def. 16) The vlabel of G is real-yielding.

Let G be a wev-graph. We say that G is real-wev if and only if:

(Def. 17) G is real-weighted, real-elabeled, and real-vlabeled.

Let us note that every wev-graph which is real-wev is also real-weighted,

real-elabeled, and real-vlabeled and every wev-graph which is real-weighted,



weighted and labeled graphs 285

real-elabeled, and real-vlabeled is also real-wev.

Let G be a graph and let X be a function from the edges of G into R. Note

that G.set(WeightSelector, X) is real-weighted.

Let G be a graph and let X be a partial function from the edges of G to R.

One can verify that G.set(ELabelSelector, X) is real-elabeled.

Let G be a graph and let X be a real-yielding many sorted set indexed by

the edges of G. One can verify that G.set(ELabelSelector, X) is real-elabeled.

Let G be a graph and let X be a partial function from the vertices of G to

R. Observe that G.set(VLabelSelector, X) is real-vlabeled.

Let G be a graph and let X be a real-yielding many sorted set indexed by

the vertices of G. One can verify that G.set(VLabelSelector, X) is real-vlabeled.

Let G be a graph. Observe that G.set(ELabelSelector, ∅) is real-elabeled and

G.set(VLabelSelector, ∅) is real-vlabeled.

Let G be a graph, let v be a vertex of G, and let v1 be a real number. Note

that G.set(VLabelSelector, v 7−→. v1) is vlabeled.

Let G be a graph, let v be a vertex of G, and let v1 be a real number. One

can verify that G.set(VLabelSelector, v 7−→. v1) is real-vlabeled.

One can check that there exists a wev-graph which is finite, trivial, tree-like,

nonnegative-weighted, and real-wev and there exists a wev-graph which is finite,

non trivial, tree-like, nonnegative-weighted, and real-wev.

Let G be a finite w-graph. Note that the weight of G is finite.

Let G be a finite e-graph. Note that the elabel of G is finite.

Let G be a finite v-graph. Note that the vlabel of G is finite.

Let G be a real-weighted w-graph. Observe that the weight of G is real-

yielding.

Let G be a real-elabeled e-graph. One can verify that the elabel of G is

real-yielding.

Let G be a real-vlabeled v-graph. Observe that the vlabel of G is real-

yielding.

Let G be a real-weighted w-graph and let X be a set. Observe that

G.set(ELabelSelector, X) is real-weighted and G.set(VLabelSelector, X) is real-

weighted.

Let G be a nonnegative-weighted w-graph and let X be a set.

One can check that G.set(ELabelSelector, X) is nonnegative-weighted and

G.set(VLabelSelector, X) is nonnegative-weighted.

Let G be a real-elabeled e-graph and let X be a set. One can verify that

G.set(WeightSelector, X) is real-elabeled and G.set(VLabelSelector, X) is real-

elabeled.

Let G be a real-vlabeled v-graph and let X be a set. Observe that

G.set(WeightSelector, X) is real-vlabeled and G.set(ELabelSelector, X) is real-

vlabeled.



286 gilbert lee

Let G be a w-graph and let W be a walk of G. The functor W.weightSeq()

yielding a finite sequence is defined as follows:

(Def. 18) len(W.weightSeq()) = len(W.edgeSeq()) and for every natural number

n such that 1 ≤ n and n ≤ len(W.weightSeq()) holds W.weightSeq()(n) =

(the weight of G)(W.edgeSeq()(n)).

Let G be a real-weighted w-graph and let W be a walk of G. Then

W.weightSeq() is a finite sequence of elements of R.

Let G be a real-weighted w-graph and let W be a walk of G. The functor

W.cost() yielding a real number is defined as follows:

(Def. 19) W.cost() =
∑

(W.weightSeq()).

Let G be a e-graph. The functor G.labeledE() yields a subset of the edges

of G and is defined as follows:

(Def. 20) G.labeledE() = dom (the elabel of G).

Let G be a e-graph and let e, x be sets. The functor G.labelEdge(e, x)

yielding a e-graph is defined as follows:

(Def. 21) G.labelEdge(e, x) =







G.set(ELabelSelector, (the elabel of G)+·(e7−→. x)),

if e ∈ the edges of G,

G, otherwise.

Let G be a finite e-graph and let e, x be sets. Note that G.labelEdge(e, x)

is finite.

Let G be a loopless e-graph and let e, x be sets. Observe that

G.labelEdge(e, x) is loopless.

Let G be a trivial e-graph and let e, x be sets. One can check that

G.labelEdge(e, x) is trivial.

Let G be a non trivial e-graph and let e, x be sets. One can verify that

G.labelEdge(e, x) is non trivial.

Let G be a non-multi e-graph and let e, x be sets. Observe that

G.labelEdge(e, x) is non-multi.

Let G be a non-directed-multi e-graph and let e, x be sets. One can check

that G.labelEdge(e, x) is non-directed-multi.

Let G be a connected e-graph and let e, x be sets. Observe that

G.labelEdge(e, x) is connected.

Let G be an acyclic e-graph and let e, x be sets. Observe that

G.labelEdge(e, x) is acyclic.

Let G be a we-graph and let e, x be sets. Observe that G.labelEdge(e, x) is

weighted.

Let G be a ev-graph and let e, x be sets. Note that G.labelEdge(e, x) is

vlabeled.

Let G be a real-weighted we-graph and let e, x be sets. Observe that

G.labelEdge(e, x) is real-weighted.



weighted and labeled graphs 287

Let G be a nonnegative-weighted we-graph and let e, x be sets. Observe

that G.labelEdge(e, x) is nonnegative-weighted.

Let G be a real-elabeled e-graph, let e be a set, and let x be a real number.

Observe that G.labelEdge(e, x) is real-elabeled.

Let G be a real-vlabeled ev-graph and let e, x be sets. Note that

G.labelEdge(e, x) is real-vlabeled.

Let G be a v-graph and let v, x be sets. The functor G.labelVertex(v, x)

yielding a v-graph is defined as follows:

(Def. 22) G.labelVertex(v, x) =















G.set(VLabelSelector,

(the vlabel of G)+·(v 7−→. x)),

if v ∈ the vertices of G,

G, otherwise.

Let G be a v-graph. The functor G.labeledV() yielding a subset of the

vertices of G is defined as follows:

(Def. 23) G.labeledV() = dom (the vlabel of G).

Let G be a finite v-graph and let v, x be sets. One can check that

G.labelVertex(v, x) is finite.

Let G be a loopless v-graph and let v, x be sets. One can check that

G.labelVertex(v, x) is loopless.

Let G be a trivial v-graph and let v, x be sets. One can check that

G.labelVertex(v, x) is trivial.

Let G be a non trivial v-graph and let v, x be sets. Observe that

G.labelVertex(v, x) is non trivial.

Let G be a non-multi v-graph and let v, x be sets. Note that

G.labelVertex(v, x) is non-multi.

Let G be a non-directed-multi v-graph and let v, x be sets. One can verify

that G.labelVertex(v, x) is non-directed-multi.

Let G be a connected v-graph and let v, x be sets. Observe that

G.labelVertex(v, x) is connected.

Let G be an acyclic v-graph and let v, x be sets. Note that

G.labelVertex(v, x) is acyclic.

Let G be a wv-graph and let v, x be sets. One can check that

G.labelVertex(v, x) is weighted.

Let G be a ev-graph and let v, x be sets. Observe that G.labelVertex(v, x)

is elabeled.

Let G be a real-weighted wv-graph and let v, x be sets. Observe that

G.labelVertex(v, x) is real-weighted.

Let G be a nonnegative-weighted wv-graph and let v, x be sets. Note that

G.labelVertex(v, x) is nonnegative-weighted.

Let G be a real-elabeled ev-graph and let v, x be sets. Observe that

G.labelVertex(v, x) is real-elabeled.



288 gilbert lee

Let G be a real-vlabeled v-graph, let v be a set, and let x be a real number.

Note that G.labelVertex(v, x) is real-vlabeled.

Let G be a real-weighted w-graph. Observe that every w-subgraph of G is

real-weighted.

Let G be a nonnegative-weighted w-graph. Observe that every w-subgraph

of G is nonnegative-weighted.

Let G be a real-elabeled e-graph. Observe that every e-subgraph of G is

real-elabeled.

Let G be a real-vlabeled v-graph. Observe that every v-subgraph of G is

real-vlabeled.

Let G1 be a graph sequence. We say that G1 is weighted if and only if:

(Def. 24) For every natural number x holds G1.→x is weighted.

We say that G1 is elabeled if and only if:

(Def. 25) For every natural number x holds G1.→x is elabeled.

We say that G1 is vlabeled if and only if:

(Def. 26) For every natural number x holds G1.→x is vlabeled.

Let us mention that there exists a graph sequence which is weighted, ela-

beled, and vlabeled.

A w-graph sequence is a weighted graph sequence. A e-graph sequence is a

elabeled graph sequence. A v-graph sequence is a vlabeled graph sequence. A

we-graph sequence is a weighted elabeled graph sequence. A wv-graph sequence

is a weighted vlabeled graph sequence. A ev-graph sequence is a elabeled vla-

beled graph sequence. A wev-graph sequence is a weighted elabeled vlabeled

graph sequence.

Let G1 be a w-graph sequence and let x be a natural number. One can check

that G1.→x is weighted.

Let G1 be a e-graph sequence and let x be a natural number. One can check

that G1.→x is elabeled.

Let G1 be a v-graph sequence and let x be a natural number. Observe that

G1.→x is vlabeled.

Let G1 be a w-graph sequence. We say that G1 is real-weighted if and only

if:

(Def. 27) For every natural number x holds G1.→x is real-weighted.

We say that G1 is nonnegative-weighted if and only if:

(Def. 28) For every natural number x holds G1.→x is nonnegative-weighted.

Let G1 be a e-graph sequence. We say that G1 is real-elabeled if and only

if:

(Def. 29) For every natural number x holds G1.→x is real-elabeled.

Let G1 be a v-graph sequence. We say that G1 is real-vlabeled if and only

if:



weighted and labeled graphs 289

(Def. 30) For every natural number x holds G1.→x is real-vlabeled.

Let G1 be a wev-graph sequence. We say that G1 is real-wev if and only if:

(Def. 31) For every natural number x holds G1.→x is real-wev.

Let us note that every wev-graph sequence which is real-wev is also real-

weighted, real-elabeled, and real-vlabeled and every wev-graph sequence which

is real-weighted, real-elabeled, and real-vlabeled is also real-wev.

Let us observe that there exists a wev-graph sequence which is halting,

finite, loopless, trivial, non-multi, simple, real-wev, nonnegative-weighted, and

tree-like.

Let G1 be a real-weighted w-graph sequence and let x be a natural number.

One can check that G1.→x is real-weighted.

Let G1 be a nonnegative-weighted w-graph sequence and let x be a natural

number. Observe that G1.→x is nonnegative-weighted.

Let G1 be a real-elabeled e-graph sequence and let x be a natural number.

Note that G1.→x is real-elabeled.

Let G1 be a real-vlabeled v-graph sequence and let x be a natural number.

One can verify that G1.→x is real-vlabeled.

3. Theorems

The following propositions are true:

(3) WeightSelector = 5 and ELabelSelector = 6 and VLabelSelector = 7.

(4)(i) For every w-graph G holds the weight of G = G(WeightSelector),

(ii) for every e-graph G holds the elabel of G = G(ELabelSelector), and

(iii) for every v-graph G holds the vlabel of G = G(VLabelSelector).

(6)3 For every e-graph G holds dom (the elabel of G) ⊆ the edges of G.

(7) For every v-graph G holds dom (the vlabel of G) ⊆ the vertices of G.

(8) For every graph G and for every set X holds

G =G G.set(WeightSelector, X) and G =G G.set(ELabelSelector, X) and

G =G G.set(VLabelSelector, X).

(9) For every e-graph G and for every set X holds the elabel of G = the

elabel of G.set(WeightSelector, X).

(10) For every v-graph G and for every set X holds the vlabel of G = the

vlabel of G.set(WeightSelector, X).

(11) For every w-graph G and for every set X holds the weight of G = the

weight of G.set(ELabelSelector, X).

(12) For every v-graph G and for every set X holds the vlabel of G = the

vlabel of G.set(ELabelSelector, X).

3The proposition (5) has been removed.



290 gilbert lee

(13) For every w-graph G and for every set X holds the weight of G = the

weight of G.set(VLabelSelector, X).

(14) For every e-graph G and for every set X holds the elabel of G = the

elabel of G.set(VLabelSelector, X).

(15) Let G3, G2 be w-graphs and G4 be a w-graph. Suppose G3 =G G2 and

the weight of G3 = the weight of G2 and G3 is a w-subgraph of G4. Then

G2 is a w-subgraph of G4.

(16) For every w-graph G3 and for every w-subgraph G2 of G3 holds every

w-subgraph of G2 is a w-subgraph of G3.

(17) Let G3, G2 be w-graphs and G4 be a w-subgraph of G3. Suppose G3 =G

G2 and the weight of G3 = the weight of G2. Then G4 is a w-subgraph of

G2.

(18) Let G3 be a w-graph, G2 be a w-subgraph of G3, and x be a set. If

x ∈ the edges of G2, then (the weight of G2)(x) = (the weight of G3)(x).

(19) For every w-graph G and for every walk W of G such that W is trivial

holds W.weightSeq() = ∅.

(20) For every w-graph G and for every walk W of G holds

len(W.weightSeq()) = W.length().

(21) For every w-graph G and for all sets x, y, e such that e joins x and y in

G holds (G.walkOf(x, e, y)).weightSeq() = 〈(the weight of G)(e)〉.

(22) For every w-graph G and for every walk W of G holds

W.reverse().weightSeq() = Rev(W.weightSeq()).

(23) For every w-graph G and for all walks W2, W3 of G such that W2.last() =

W3.first() holds (W2.append(W3)).weightSeq() = W2.weightSeq() a

W3.weightSeq().

(24) Let G be a w-graph, W be a walk of G, and e be a set.

If e ∈ W.last().edgesInOut(), then (W.addEdge(e)).weightSeq() =

W.weightSeq() a 〈(the weight of G)(e)〉.

(25) Let G be a real-weighted w-graph, W2 be a walk of G, and W3 be a

subwalk of W2. Then there exists a FinSubsequence w1 of W2.weightSeq()

such that W3.weightSeq() = Seqw1.

(26) Let G3, G2 be w-graphs, W2 be a walk of G3, and W3 be a walk of G2. If

W2 = W3 and the weight of G3 = the weight of G2, then W2.weightSeq() =

W3.weightSeq().

(27) Let G3 be a w-graph, G2 be a w-subgraph of G3, W2 be a walk of G3, and

W3 be a walk of G2. If W2 = W3, then W2.weightSeq() = W3.weightSeq().

(28) For every real-weighted w-graph G and for every walk W of G such that

W is trivial holds W.cost() = 0.

(29) Let G be a real-weighted w-graph, v2, v3 be vertices of G, and e be a set.



weighted and labeled graphs 291

If e joins v2 and v3 in G, then (G.walkOf(v2, e, v3)).cost() = (the weight

of G)(e).

(30) For every real-weighted w-graph G and for every walk W of G holds

W.cost() = W.reverse().cost().

(31) For every real-weighted w-graph G and for all walks W2, W3 of G such

that W2.last() = W3.first() holds (W2.append(W3)).cost() = W2.cost() +

W3.cost().

(32) Let G be a real-weighted w-graph, W be a walk of G, and e be a set. If

e ∈ W.last().edgesInOut(), then (W.addEdge(e)).cost() = W.cost()+(the

weight of G)(e).

(33) Let G3, G2 be real-weighted w-graphs, W2 be a walk of G3, and W3 be

a walk of G2. If W2 = W3 and the weight of G3 = the weight of G2, then

W2.cost() = W3.cost().

(34) Let G3 be a real-weighted w-graph, G2 be a w-subgraph of G3, W2 be

a walk of G3, and W3 be a walk of G2. If W2 = W3, then W2.cost() =

W3.cost().

(35) Let G be a nonnegative-weighted w-graph, W be a walk of G, and n be a

natural number. If n ∈ dom(W.weightSeq()), then 0 ≤ W.weightSeq()(n).

(36) For every nonnegative-weighted w-graph G and for every walk W of G

holds 0 ≤ W.cost().

(37) For every nonnegative-weighted w-graph G and for every walk W2 of G

and for every subwalk W3 of W2 holds W3.cost() ≤ W2.cost().

(38) Let G be a nonnegative-weighted w-graph and e be a set. If e ∈ the

edges of G, then 0 ≤ (the weight of G)(e).

(39) Let G be a e-graph and e, x be sets. Suppose e ∈ the edges of G. Then

the elabel of G.labelEdge(e, x) = (the elabel of G)+·(e7−→. x).

(40) For every e-graph G and for all sets e, x such that e ∈ the edges of G

holds (the elabel of G.labelEdge(e, x))(e) = x.

(41) For every e-graph G and for all sets e, x holds G =G G.labelEdge(e, x).

(42) For every we-graph G and for all sets e, x holds the weight of G = the

weight of G.labelEdge(e, x).

(43) For every ev-graph G and for all sets e, x holds the vlabel of G = the

vlabel of G.labelEdge(e, x).

(44) For every e-graph G and for all sets e1, e2, x such that e1 6= e2 holds

(the elabel of G.labelEdge(e1, x))(e2) = (the elabel of G)(e2).

(45) Let G be a v-graph and v, x be sets. Suppose v ∈ the vertices of G.

Then the vlabel of G.labelVertex(v, x) = (the vlabel of G)+·(v 7−→. x).

(46) For every v-graph G and for all sets v, x such that v ∈ the vertices of G

holds (the vlabel of G.labelVertex(v, x))(v) = x.



292 gilbert lee

(47) For every v-graph G and for all sets v, x holds G =G G.labelVertex(v, x).

(48) For every wv-graph G and for all sets v, x holds the weight of G = the

weight of G.labelVertex(v, x).

(49) For every ev-graph G and for all sets v, x holds the elabel of G = the

elabel of G.labelVertex(v, x).

(50) For every v-graph G and for all sets v2, v3, x such that v2 6= v3 holds

(the vlabel of G.labelVertex(v2, x))(v3) = (the vlabel of G)(v3).

(51) For all e-graphs G3, G2 such that the elabel of G3 = the elabel of G2

holds G3.labeledE() = G2.labeledE().

(52) For every e-graph G and for all sets e, x such that e ∈ the edges of G

holds (G.labelEdge(e, x)).labeledE() = G.labeledE() ∪ {e}.

(53) For every e-graph G and for all sets e, x such that e ∈ the edges of G

holds G.labeledE() ⊆ (G.labelEdge(e, x)).labeledE().

(54) For every finite e-graph G and for all sets e, x such that e ∈ the edges

of G and e /∈ G.labeledE() holds card((G.labelEdge(e, x)).labeledE()) =

card(G.labeledE()) + 1.

(55) For every e-graph G and for all sets e1, e2, x such that e2 /∈ G.labeledE()

and e2 ∈ (G.labelEdge(e1, x)).labeledE() holds e1 = e2 and e1 ∈ the edges

of G.

(56) For every ev-graph G and for all sets v, x holds G.labeledE() =

(G.labelVertex(v, x)).labeledE().

(57) For every e-graph G and for all sets e, x such that e ∈ the edges of G

holds e ∈ (G.labelEdge(e, x)).labeledE().

(58) For all v-graphs G3, G2 such that the vlabel of G3 = the vlabel of G2

holds G3.labeledV() = G2.labeledV().

(59) For every v-graph G and for all sets v, x such that v ∈ the vertices of G

holds (G.labelVertex(v, x)).labeledV() = G.labeledV() ∪ {v}.

(60) For every v-graph G and for all sets v, x such that v ∈ the vertices of G

holds G.labeledV() ⊆ (G.labelVertex(v, x)).labeledV().

(61) For every finite v-graph G and for all sets v, x such that v ∈ the vertices

of G and v /∈ G.labeledV() holds card((G.labelVertex(v, x)).labeledV()) =

card(G.labeledV()) + 1.

(62) For every v-graph G and for all sets v2, v3, x such that v3 /∈ G.labeledV()

and v3 ∈ (G.labelVertex(v2, x)).labeledV() holds v2 = v3 and v2 ∈ the

vertices of G.

(63) For every ev-graph G and for all sets e, x holds G.labeledV() =

(G.labelEdge(e, x)).labeledV().

(64) For every v-graph G and for every vertex v of G and for every set x

holds v ∈ (G.labelVertex(v, x)).labeledV().



weighted and labeled graphs 293

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41–46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[5] Czes law Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676,

1990.
[6] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[7] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[8] Czes law Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[9] Czes law Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.

[10] Czes law Byliński. The sum and product of finite sequences of real numbers. Formalized
Mathematics, 1(4):661–668, 1990.

[11] Czes law Byliński. Some properties of restrictions of finite sequences. Formalized Mathe-
matics, 5(2):241–245, 1996.

[12] Jing-Chao Chen and Yatsuka Nakamura. The underlying principle of Dijkstra’s shortest
path algorithm. Formalized Mathematics, 11(2):143–152, 2003.

[13] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[14] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[15] Jaros law Kotowicz. Real sequences and basic operations on them. Formalized Mathemat-

ics, 1(2):269–272, 1990.
[16] Gilbert Lee. Walks in Graphs. Formalized Mathematics, 13(2):253–269, 2005.
[17] Gilbert Lee and Piotr Rudnicki. Alternative graph structures. Formalized Mathematics,

13(2):235–252, 2005.
[18] Yatsuka Nakamura and Piotr Rudnicki. Vertex sequences induced by chains. Formalized

Mathematics, 5(3):297–304, 1996.
[19] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[21] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
[22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[24] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.

Received February 8, 2005


