
FORMALIZED MATHEMATICS

Volume 13, Number 2, Pages 235–252

University of Bia lystok, 2005

Alternative Graph Structures1

Gilbert Lee2

University of Victoria

Victoria, Canada

Piotr Rudnicki

University of Alberta

Edmonton, Canada

Summary. We define the notion of a graph anew without using the avail-

able Mizar structures. In our approach, we model graph structure as a finite

function whose domain is a subset of natural numbers. The elements of the do-

main of the function play the role of selectors for accessing the components of

the structure. As these selectors are first class objects, many future extensions

of the new graph structure turned out to be easier to formalize in Mizar than

with the traditional Mizar structures.

After introducing graph structure, we define its selectors and then conditions

that the structure needs to satisfy to form a directed graph (in the spirit of [13]).

For these graphs we define a collection of basic graph notions; the presentation

of these notions is continued in articles [16, 15, 17].

We have tried to follow a number of graph theory books in choosing graph

terminology but since the terminology is not commonly agreed upon, we had to

make a number of compromises, see [14].

MML identifier: GLIB 000, version: 7.5.01 4.39.921

The papers [20], [19], [22], [21], [24], [2], [1], [25], [7], [5], [12], [3], [8], [6], [23],

[9], [4], [10], [11], and [18] provide the terminology and notation for this paper.

1. Definitions

A finite function is called a graph structure if:

(Def. 1) dom it ⊆ N.

The natural number VertexSelector is defined as follows:

(Def. 2) VertexSelector = 1.

1This work has been partially supported by NSERC, Alberta Ingenuity Fund and iCORE.
2Part of author’s MSc work.

235
c© 2005 University of Bia lystok

ISSN 1426–2630



236 gilbert lee and piotr rudnicki

The natural number EdgeSelector is defined as follows:

(Def. 3) EdgeSelector = 2.

The natural number SourceSelector is defined by:

(Def. 4) SourceSelector = 3.

The natural number TargetSelector is defined by:

(Def. 5) TargetSelector = 4.

The non empty subset the graph selectors of N is defined by:

(Def. 6) The graph selectors =

{VertexSelector,EdgeSelector,SourceSelector,TargetSelector}.

Let G be a graph structure. The vertices of G is defined by:

(Def. 7) The vertices of G = G(VertexSelector).

The edges of G is defined by:

(Def. 8) The edges of G = G(EdgeSelector).

The source of G is defined by:

(Def. 9) The source of G = G(SourceSelector).

The target of G is defined by:

(Def. 10) The target of G = G(TargetSelector).

Let G be a graph structure. We say that G is graph-like if and only if the

conditions (Def. 11) are satisfied.

(Def. 11) VertexSelector ∈ domG and EdgeSelector ∈ domG and

SourceSelector ∈ domG and TargetSelector ∈ domG and the vertices

of G is a non empty set and the source of G is a function from the edges of

G into the vertices of G and the target of G is a function from the edges

of G into the vertices of G.

Let us note that there exists a graph structure which is graph-like.

A graph is a graph-like graph structure.

Let G be a graph. Observe that the vertices of G is non empty.

Let G be a graph. Then the source of G is a function from the edges of G

into the vertices of G. Then the target of G is a function from the edges of G

into the vertices of G.

Let V be a non empty set, let E be a set, and let S, T be functions from E

into V . The functor createGraph(V,E, S, T ) yielding a graph is defined by:

(Def. 12) createGraph(V,E, S, T ) = 〈V,E, S, T 〉.

Let x, y be sets. One can verify that x7−→. y is finite.

Let G be a graph structure, let n be a natural number, and let x be a set.

The functor G.set(n, x) yielding a graph structure is defined as follows:

(Def. 13) G.set(n, x) = G+·(n 7−→. x).

Let G be a graph structure and let X be a set. The functor G.strict(X)

yielding a graph structure is defined by:



alternative graph structures 237

(Def. 14) G.strict(X) = G↾X.

Let G be a graph. Observe that G.strict(the graph selectors) is graph-like.

Let G be a graph and let x, y, e be sets. We say that e joins x and y in G

if and only if the conditions (Def. 15) are satisfied.

(Def. 15)(i) e ∈ the edges of G, and

(ii) (the source of G)(e) = x and (the target of G)(e) = y or (the source of

G)(e) = y and (the target of G)(e) = x.

Let G be a graph and let x, y, e be sets. We say that e joins x to y in G if

and only if:

(Def. 16) e ∈ the edges of G and (the source of G)(e) = x and (the target of

G)(e) = y.

Let G be a graph and let X, Y , e be sets. We say that e joins a vertex from

X and a vertex from Y in G if and only if the conditions (Def. 17) are satisfied.

(Def. 17)(i) e ∈ the edges of G, and

(ii) (the source of G)(e) ∈ X and (the target of G)(e) ∈ Y or (the source

of G)(e) ∈ Y and (the target of G)(e) ∈ X.

We say that e joins a vertex from X to a vertex from Y in G if and only if:

(Def. 18) e ∈ the edges of G and (the source of G)(e) ∈ X and (the target of

G)(e) ∈ Y.

Let G be a graph. We say that G is finite if and only if:

(Def. 19) The vertices of G is finite and the edges of G is finite.

We say that G is loopless if and only if:

(Def. 20) It is not true that there exists a set e such that e ∈ the edges of G and

(the source of G)(e) = (the target of G)(e).

We say that G is trivial if and only if:

(Def. 21) the vertices of G = 1.

We say that G is non-multi if and only if:

(Def. 22) For all sets e1, e2, v1, v2 such that e1 joins v1 and v2 in G and e2 joins

v1 and v2 in G holds e1 = e2.

We say that G is non-directed-multi if and only if:

(Def. 23) For all sets e1, e2, v1, v2 such that e1 joins v1 to v2 in G and e2 joins v1

to v2 in G holds e1 = e2.

Let G be a graph. We say that G is simple if and only if:

(Def. 24) G is loopless and non-multi.

We say that G is directed-simple if and only if:

(Def. 25) G is loopless and non-directed-multi.

One can verify the following observations:

∗ every graph which is non-multi is also non-directed-multi,



238 gilbert lee and piotr rudnicki

∗ every graph which is simple is also loopless and non-multi,

∗ every graph which is loopless and non-multi is also simple,

∗ every graph which is loopless and non-directed-multi is also directed-

simple,

∗ every graph which is directed-simple is also loopless and non-directed-

multi,

∗ every graph which is trivial and loopless is also finite, and

∗ every graph which is trivial and non-directed-multi is also finite.

Let us note that there exists a graph which is trivial and simple and there

exists a graph which is finite, non trivial, and simple.

Let G be a finite graph. Observe that the vertices of G is finite and the

edges of G is finite.

Let G be a trivial graph. One can verify that the vertices of G is finite.

Let V be a non empty finite set, let E be a finite set, and let S, T be

functions from E into V . One can check that createGraph(V,E, S, T ) is finite.

Let V be a non empty set, let E be an empty set, and let S, T be functions

from E into V . One can check that createGraph(V,E, S, T ) is simple.

Let v be a set, let E be a set, and let S, T be functions from E into {v}.

Observe that createGraph({v}, E, S, T ) is trivial.

Let G be a graph. The functor G.order() yielding a cardinal number is

defined as follows:

(Def. 26) G.order() = the vertices of G.

Let G be a finite graph. Then G.order() is a non empty natural number.

Let G be a graph. The functor G.size() yields a cardinal number and is

defined by:

(Def. 27) G.size() = the edges of G.

Let G be a finite graph. Then G.size() is a natural number.

Let G be a graph and let X be a set. The functor G.edgesInto(X) yields a

subset of the edges of G and is defined as follows:

(Def. 28) For every set e holds e ∈ G.edgesInto(X) iff e ∈ the edges of G and (the

target of G)(e) ∈ X.

The functor G.edgesOutOf(X) yields a subset of the edges of G and is defined

by:

(Def. 29) For every set e holds e ∈ G.edgesOutOf(X) iff e ∈ the edges of G and

(the source of G)(e) ∈ X.

Let G be a graph and let X be a set. The functor G.edgesInOut(X) yields

a subset of the edges of G and is defined by:

(Def. 30) G.edgesInOut(X) = G.edgesInto(X) ∪ G.edgesOutOf(X).



alternative graph structures 239

The functor G.edgesBetween(X) yielding a subset of the edges of G is defined

as follows:

(Def. 31) G.edgesBetween(X) = G.edgesInto(X) ∩ G.edgesOutOf(X).

Let G be a graph and let X, Y be sets. The functor G.edgesBetween(X, Y )

yielding a subset of the edges of G is defined by:

(Def. 32) For every set e holds e ∈ G.edgesBetween(X, Y ) iff e joins a vertex from

X and a vertex from Y in G.

The functor G.edgesDBetween(X, Y ) yields a subset of the edges of G and is

defined as follows:

(Def. 33) For every set e holds e ∈ G.edgesDBetween(X, Y ) iff e joins a vertex

from X to a vertex from Y in G.

In this article we present several logical schemes. The scheme FinGraphOrder-

Ind concerns a unary predicate P, and states that:

For every finite graph G holds P[G]

provided the following conditions are met:

• For every finite graph G such that G.order() = 1 holds P[G], and

• Let k be a non empty natural number. Suppose that for every

finite graph G1 such that G1.order() = k holds P[G1]. Let G2 be

a finite graph. If G2.order() = k + 1, then P[G2].

The scheme FinGraphSizeInd concerns a unary predicate P, and states that:

For every finite graph G holds P[G]

provided the following requirements are met:

• For every finite graph G such that G.size() = 0 holds P[G], and

• Let k be a natural number. Suppose that for every finite graph

G1 such that G1.size() = k holds P[G1]. Let G2 be a finite graph.

If G2.size() = k + 1, then P[G2].

Let G be a graph. A graph is called a subgraph of G if it satisfies the

conditions (Def. 34).

(Def. 34)(i) The vertices of it ⊆ the vertices of G,

(ii) the edges of it ⊆ the edges of G, and

(iii) for every set e such that e ∈ the edges of it holds (the source of it)(e) =

(the source of G)(e) and (the target of it)(e) = (the target of G)(e).

Let G3 be a graph and let G4 be a subgraph of G3. Then the vertices of G4

is a non empty subset of the vertices of G3. Then the edges of G4 is a subset of

the edges of G3.

Let G be a graph. Note that there exists a subgraph of G which is trivial

and simple.

Let G be a finite graph. Note that every subgraph of G is finite.

Let G be a loopless graph. Observe that every subgraph of G is loopless.

Let G be a trivial graph. One can check that every subgraph of G is trivial.

Let G be a non-multi graph. Observe that every subgraph of G is non-multi.



240 gilbert lee and piotr rudnicki

Let G3 be a graph and let G4 be a subgraph of G3. We say that G4 is

spanning if and only if:

(Def. 35) The vertices of G4 = the vertices of G3.

Let G be a graph. One can verify that there exists a subgraph of G which

is spanning.

Let G3, G4 be graphs. The predicate G3 =G G4 is defined by the conditions

(Def. 36).

(Def. 36)(i) The vertices of G3 = the vertices of G4,

(ii) the edges of G3 = the edges of G4,

(iii) the source of G3 = the source of G4, and

(iv) the target of G3 = the target of G4.

Let us notice that the predicate G3 =G G4 is reflexive and symmetric.

Let G3, G4 be graphs. We introduce G3 6=G G4 as an antonym of G3 =G G4.

Let G3, G4 be graphs. The predicate G3 ⊆ G4 is defined as follows:

(Def. 37) G3 is a subgraph of G4.

Let us note that the predicate G3 ⊆ G4 is reflexive.

Let G3, G4 be graphs. The predicate G3 ⊂ G4 is defined as follows:

(Def. 38) G3 ⊆ G4 and G3 6=G G4.

Let us note that the predicate G3 ⊂ G4 is irreflexive.

Let G be a graph and let V , E be sets. A subgraph of G is called a subgraph

of G induced by V and E if:

(Def. 39)(i) The vertices of it = V and the edges of it = E if V is a non empty

subset of the vertices of G and E ⊆ G.edgesBetween(V ),

(ii) it =G G, otherwise.

Let G be a graph and let V be a set. A subgraph of G induced by V is a

subgraph of G induced by V and G.edgesBetween(V ).

Let G be a graph, let V be a finite non empty subset of the vertices of G, and

let E be a finite subset of G.edgesBetween(V ). Observe that every subgraph of

G induced by V and E is finite.

Let G be a graph, let v be an element of the vertices of G, and let E be a

subset of G.edgesBetween({v}). Note that every subgraph of G induced by {v}

and E is trivial.

Let G be a graph and let v be an element of the vertices of G. Note that

every subgraph of G induced by {v} and ∅ is finite and trivial.

Let G be a graph and let V be a non empty subset of the vertices of G. Note

that every subgraph of G induced by V and ∅ is simple.

Let G be a graph and let E be a subset of the edges of G. Observe that

every subgraph of G induced by the vertices of G and E is spanning.

Let G be a graph. One can check that every subgraph of G induced by the

vertices of G and ∅ is spanning.



alternative graph structures 241

Let G be a graph and let v be a set. A subgraph of G with vertex v removed

is a subgraph of G induced by (the vertices of G) \ {v}.

Let G be a graph and let V be a set. A subgraph of G with vertices V

removed is a subgraph of G induced by (the vertices of G) \ V.

Let G be a graph and let e be a set. A subgraph of G with edge e removed

is a subgraph of G induced by the vertices of G and (the edges of G) \ {e}.

Let G be a graph and let E be a set. A subgraph of G with edges E removed

is a subgraph of G induced by the vertices of G and (the edges of G) \ E.

Let G be a graph and let e be a set. Observe that every subgraph of G with

edge e removed is spanning.

Let G be a graph and let E be a set. Observe that every subgraph of G with

edges E removed is spanning.

Let G be a graph. A vertex of G is an element of the vertices of G.

Let G be a graph and let v be a vertex of G. The functor v.edgesIn() yielding

a subset of the edges of G is defined as follows:

(Def. 40) v.edgesIn() = G.edgesInto({v}).

The functor v.edgesOut() yields a subset of the edges of G and is defined as

follows:

(Def. 41) v.edgesOut() = G.edgesOutOf({v}).

The functor v.edgesInOut() yields a subset of the edges of G and is defined by:

(Def. 42) v.edgesInOut() = G.edgesInOut({v}).

Let G be a graph, let v be a vertex of G, and let e be a set. The functor

v.adj(e) yields a vertex of G and is defined by:

(Def. 43) v.adj(e) =























(the source of G)(e), if e ∈ the edges of G and

(the target of G)(e) = v,

(the target of G)(e), if e ∈ the edges of G and

(the source of G)(e) = v and (the target of G)(e) 6= v,

v, otherwise.

Let G be a graph and let v be a vertex of G. The functor v.inDegree() yields

a cardinal number and is defined as follows:

(Def. 44) v.inDegree() = v.edgesIn() .

The functor v.outDegree() yielding a cardinal number is defined as follows:

(Def. 45) v.outDegree() = v.edgesOut() .

Let G be a finite graph and let v be a vertex of G. Then v.inDegree() is a

natural number. Then v.outDegree() is a natural number.

Let G be a graph and let v be a vertex of G. The functor v.degree() yielding

a cardinal number is defined as follows:

(Def. 46) v.degree() = v.inDegree() + v.outDegree().

Let G be a finite graph and let v be a vertex of G. Then v.degree() is a

natural number and it can be characterized by the condition:



242 gilbert lee and piotr rudnicki

(Def. 47) v.degree() = v.inDegree() + v.outDegree().

Let G be a graph and let v be a vertex of G. The functor v.inNeighbors()

yields a subset of the vertices of G and is defined as follows:

(Def. 48) v.inNeighbors() = (the source of G)◦v.edgesIn().

The functor v.outNeighbors() yielding a subset of the vertices of G is defined

by:

(Def. 49) v.outNeighbors() = (the target of G)◦v.edgesOut().

Let G be a graph and let v be a vertex of G. The functor v.allNeighbors()

yields a subset of the vertices of G and is defined by:

(Def. 50) v.allNeighbors() = v.inNeighbors() ∪ v.outNeighbors().

Let G be a graph and let v be a vertex of G. We say that v is isolated if and

only if:

(Def. 51) v.edgesInOut() = ∅.

Let G be a finite graph and let v be a vertex of G. Let us observe that v is

isolated if and only if:

(Def. 52) v.degree() = 0.

Let G be a graph and let v be a vertex of G. We say that v is endvertex if

and only if:

(Def. 53) There exists a set e such that v.edgesInOut() = {e} and e does not join

v and v in G.

Let G be a finite graph and let v be a vertex of G. Let us observe that v is

endvertex if and only if:

(Def. 54) v.degree() = 1.

Let F be a many sorted set indexed by N. We say that F is graph-yielding

if and only if:

(Def. 55) For every natural number n holds F (n) is a graph.

We say that F is halting if and only if:

(Def. 56) There exists a natural number n such that F (n) = F (n + 1).

Let F be a many sorted set indexed by N. The functor F .Lifespan() yielding

a natural number is defined by:

(Def. 57)(i) F (F .Lifespan()) = F (F .Lifespan()+1) and for every natural number

n such that F (n) = F (n + 1) holds F .Lifespan() ≤ n if F is halting,

(ii) F .Lifespan() = 0, otherwise.

Let F be a many sorted set indexed by N. The functor F .Result() yielding

a set is defined by:

(Def. 58) F .Result() = F (F .Lifespan()).

Let us mention that there exists a many sorted set indexed by N which is

graph-yielding.



alternative graph structures 243

A graph sequence is a graph-yielding many sorted set indexed by N.

Let G5 be a graph sequence and let x be a natural number. The functor

G5.→x yields a graph and is defined by:

(Def. 59) G5.→x = G5(x).

Let G5 be a graph sequence. We say that G5 is finite if and only if:

(Def. 60) For every natural number x holds G5.→x is finite.

We say that G5 is loopless if and only if:

(Def. 61) For every natural number x holds G5.→x is loopless.

We say that G5 is trivial if and only if:

(Def. 62) For every natural number x holds G5.→x is trivial.

We say that G5 is non-trivial if and only if:

(Def. 63) For every natural number x holds G5.→x is non trivial.

We say that G5 is non-multi if and only if:

(Def. 64) For every natural number x holds G5.→x is non-multi.

We say that G5 is non-directed-multi if and only if:

(Def. 65) For every natural number x holds G5.→x is non-directed-multi.

We say that G5 is simple if and only if:

(Def. 66) For every natural number x holds G5.→x is simple.

We say that G5 is directed-simple if and only if:

(Def. 67) For every natural number x holds G5.→x is directed-simple.

Let G5 be a graph sequence. Let us observe that G5 is halting if and only

if:

(Def. 68) There exists a natural number n such that G5.→n = G5.→(n + 1).

One can verify that there exists a graph sequence which is halting, finite,

loopless, trivial, non-multi, non-directed-multi, simple, and directed-simple and

there exists a graph sequence which is halting, finite, loopless, non-trivial, non-

multi, non-directed-multi, simple, and directed-simple.

Let G5 be a finite graph sequence and let x be a natural number. One can

check that G5.→x is finite.

Let G5 be a loopless graph sequence and let x be a natural number. Note

that G5.→x is loopless.

Let G5 be a trivial graph sequence and let x be a natural number. Observe

that G5.→x is trivial.

Let G5 be a non-trivial graph sequence and let x be a natural number.

Observe that G5.→x is non trivial.

Let G5 be a non-multi graph sequence and let x be a natural number. Note

that G5.→x is non-multi.

Let G5 be a non-directed-multi graph sequence and let x be a natural num-

ber. Observe that G5.→x is non-directed-multi.



244 gilbert lee and piotr rudnicki

Let G5 be a simple graph sequence and let x be a natural number. Note

that G5.→x is simple.

Let G5 be a directed-simple graph sequence and let x be a natural number.

Note that G5.→x is directed-simple.

One can check that every graph sequence which is non-multi is also non-

directed-multi.

Let us observe that every graph sequence which is simple is also loopless and

non-multi.

One can verify that every graph sequence which is loopless and non-multi is

also simple.

Let us note that every graph sequence which is loopless and non-directed-

multi is also directed-simple.

One can verify that every graph sequence which is directed-simple is also

loopless and non-directed-multi.

Let us note that every graph sequence which is trivial and loopless is also

finite.

Let us observe that every graph sequence which is trivial and non-directed-

multi is also finite.

2. Theorems

For simplicity, we adopt the following convention: G6 denotes a graph struc-

ture, G, G3, G4, G7 denote graphs, e, x, x1, x2, y, y1, y2, E, V , X, Y denote

sets, n, n1, n2 denote natural numbers, and v, v1, v2 denote vertices of G.

We now state a number of propositions:

(1) VertexSelector = 1 and EdgeSelector = 2 and SourceSelector = 3 and

TargetSelector = 4.

(2) x ∈ the graph selectors iff x = VertexSelector or x = EdgeSelector or

x = SourceSelector or x = TargetSelector .

(3) The graph selectors ⊆ domG.

(4) The vertices of G6 = G6(VertexSelector) and the edges of G6 =

G6(EdgeSelector) and the source of G6 = G6(SourceSelector) and the

target of G6 = G6(TargetSelector).

(5)(i) dom (the source of G) = the edges of G,

(ii) dom (the target of G) = the edges of G,

(iii) rng (the source of G) ⊆ the vertices of G, and

(iv) rng (the target of G) ⊆ the vertices of G.

(7)3 G6 is graph-like if and only if the following conditions are satisfied:

(i) the graph selectors ⊆ domG6,

3The proposition (6) has been removed.



alternative graph structures 245

(ii) the vertices of G6 is non empty,

(iii) the source of G6 is a function from the edges of G6 into the vertices of

G6, and

(iv) the target of G6 is a function from the edges of G6 into the vertices of

G6.

(8) Let V be a non empty set, E be a set, and S, T be functions from E

into V . Then

(i) the vertices of createGraph(V,E, S, T ) = V,

(ii) the edges of createGraph(V,E, S, T ) = E,

(iii) the source of createGraph(V,E, S, T ) = S, and

(iv) the target of createGraph(V,E, S, T ) = T.

(9) dom(G6.set(n, x)) = domG6 ∪ {n}.

(10) domG6 ⊆ dom(G6.set(n, x)).

(11) (G6.set(n, x))(n) = x.

(12) If n1 6= n2, then G6(n2) = (G6.set(n1, x))(n2).

(13) Suppose n /∈ the graph selectors. Then

(i) the vertices of G = the vertices of G.set(n, x),

(ii) the edges of G = the edges of G.set(n, x),

(iii) the source of G = the source of G.set(n, x),

(iv) the target of G = the target of G.set(n, x), and

(v) G.set(n, x) is a graph.

(14) The vertices of G6.set(VertexSelector, x) = x and the edges of

G6.set(EdgeSelector, x) = x and the source of G6.set(SourceSelector, x) =

x and the target of G6.set(TargetSelector, x) = x.

(15) If n1 6= n2, then n1 ∈ dom(G6.set(n1, x).set(n2, y)) and n2 ∈

dom(G6.set(n1, x).set(n2, y)) and (G6.set(n1, x).set(n2, y))(n1) = x and

(G6.set(n1, x).set(n2, y))(n2) = y.

(16) If e joins x and y in G, then x ∈ the vertices of G and y ∈ the vertices

of G.

(17) If e joins x and y in G, then e joins y and x in G.

(18) If e joins x1 and y1 in G and e joins x2 and y2 in G, then x1 = x2 and

y1 = y2 or x1 = y2 and y1 = x2.

(19) e joins x and y in G iff e joins x to y in G or e joins y to x in G.

(20) Suppose e joins x and y in G but x ∈ X and y ∈ Y or x ∈ Y and y ∈ X.

Then e joins a vertex from X and a vertex from Y in G.

(21) G is loopless iff for every set v it is not true that there exists a set e such

that e joins v and v in G.

(22) For every finite loopless graph G and for every vertex v of G holds

v.degree() = card(v.edgesInOut()).



246 gilbert lee and piotr rudnicki

(23) For every non trivial graph G and for every vertex v of G holds (the

vertices of G) \ {v} is non empty.

(24) For every non trivial graph G there exist vertices v1, v2 of G such that

v1 6= v2.

(25) For every trivial graph G there exists a vertex v of G such that the

vertices of G = {v}.

(26) For every trivial loopless graph G holds the edges of G = ∅.

(27) If the edges of G = ∅, then G is simple.

(28) For every finite graph G holds G.order() ≥ 1.

(29) For every finite graph G holds G.order() = 1 iff G is trivial.

(30) For every finite graph G holds G.order() = 1 iff there exists a vertex v

of G such that the vertices of G = {v}.

(31) e ∈ the edges of G but (the source of G)(e) ∈ X or (the target of

G)(e) ∈ X iff e ∈ G.edgesInOut(X).

(32) G.edgesInto(X) ⊆ G.edgesInOut(X) and G.edgesOutOf(X) ⊆

G.edgesInOut(X).

(33) The edges of G = G.edgesInOut(the vertices of G).

(34) e ∈ the edges of G and (the source of G)(e) ∈ X and (the target of

G)(e) ∈ X iff e ∈ G.edgesBetween(X).

(35) If x ∈ X and y ∈ X and e joins x and y in G, then e ∈

G.edgesBetween(X).

(36) G.edgesBetween(X) ⊆ G.edgesInOut(X).

(37) The edges of G = G.edgesBetween(the vertices of G).

(38) (The edges of G) \G.edgesInOut(X) = G.edgesBetween((the vertices of

G) \ X).

(39) If X ⊆ Y, then G.edgesBetween(X) ⊆ G.edgesBetween(Y ).

(40) For every graph G and for all sets X1, X2, Y1, Y2 such that X1 ⊆ X2

and Y1 ⊆ Y2 holds G.edgesBetween(X1, Y1) ⊆ G.edgesBetween(X2, Y2).

(41) For every graph G and for all sets X1, X2, Y1, Y2 such that X1 ⊆ X2 and

Y1 ⊆ Y2 holds G.edgesDBetween(X1, Y1) ⊆ G.edgesDBetween(X2, Y2).

(42) For every graph G and for every vertex v of G holds v.edgesIn() =

G.edgesDBetween(the vertices of G, {v}) and v.edgesOut() =

G.edgesDBetween({v}, the vertices of G).

(43) G is a subgraph of G.

(44) G3 is a subgraph of G4 and G4 is a subgraph of G3 if and only if the

following conditions are satisfied:

(i) the vertices of G3 = the vertices of G4,

(ii) the edges of G3 = the edges of G4,

(iii) the source of G3 = the source of G4, and



alternative graph structures 247

(iv) the target of G3 = the target of G4.

(45) Let G3 be a graph, G4 be a subgraph of G3, and x be a set. Then

(i) if x ∈ the vertices of G4, then x ∈ the vertices of G3, and

(ii) if x ∈ the edges of G4, then x ∈ the edges of G3.

(46) For every graph G3 and for every subgraph G4 of G3 holds every sub-

graph of G4 is a subgraph of G3.

(47) Let G be a graph and G3, G4 be subgraphs of G. Suppose the vertices

of G3 ⊆ the vertices of G4 and the edges of G3 ⊆ the edges of G4. Then

G3 is a subgraph of G4.

(48) Let G3 be a graph and G4 be a subgraph of G3. Then

(i) the source of G4 = (the source of G3)↾(the edges of G4), and

(ii) the target of G4 = (the target of G3)↾(the edges of G4).

(49) Let G be a graph, V1, V2, E1, E2 be sets, G3 be a subgraph of G induced

by V1 and E1, and G4 be a subgraph of G induced by V2 and E2. Suppose

V2 ⊆ V1 and E2 ⊆ E1 and V2 is a non empty subset of the vertices of G

and E2 ⊆ G.edgesBetween(V2). Then G4 is a subgraph of G3.

(50) Let G3 be a non trivial graph, v be a vertex of G3, and G4 be a subgraph

of G3 with vertex v removed. Then the vertices of G4 = (the vertices

of G3) \ {v} and the edges of G4 = G3.edgesBetween((the vertices of

G3) \ {v}).

(51) Let G3 be a finite non trivial graph, v be a vertex of G3, and G4 be a

subgraph of G3 with vertex v removed. Then G4.order()+ 1 = G3.order()

and G4.size() + card(v.edgesInOut()) = G3.size().

(52) Let G3 be a graph, V be a set, and G4 be a subgraph of G3 with vertices

V removed. Suppose V ⊂ the vertices of G3. Then the vertices of G4 =

(the vertices of G3) \ V and the edges of G4 = G3.edgesBetween((the

vertices of G3) \ V ).

(53) Let G3 be a finite graph, V be a subset of the vertices of G3, and

G4 be a subgraph of G3 with vertices V removed. If V 6= the ver-

tices of G3, then G4.order() + cardV = G3.order() and G4.size() +

card(G3.edgesInOut(V )) = G3.size().

(54) Let G3 be a graph, e be a set, and G4 be a subgraph of G3 with edge e

removed. Then the vertices of G4 = the vertices of G3 and the edges of

G4 = (the edges of G3) \ {e}.

(55) Let G3 be a finite graph, e be a set, and G4 be a subgraph of G3 with

edge e removed. Then G3.order() = G4.order() and if e ∈ the edges of G3,

then G4.size() + 1 = G3.size().

(56) Let G3 be a graph, E be a set, and G4 be a subgraph of G3 with edges

E removed. Then the vertices of G4 = the vertices of G3 and the edges of

G4 = (the edges of G3) \ E.



248 gilbert lee and piotr rudnicki

(57) For every finite graph G3 and for every set E and for every subgraph G4

of G3 with edges E removed holds G3.order() = G4.order().

(58) Let G3 be a finite graph, E be a subset of the edges of G3, and G4

be a subgraph of G3 with edges E removed. Then G4.size() + card E =

G3.size().

(59) e ∈ v.edgesIn() iff e ∈ the edges of G and (the target of G)(e) = v.

(60) e ∈ v.edgesIn() iff there exists a set x such that e joins x to v in G.

(61) e ∈ v.edgesOut() iff e ∈ the edges of G and (the source of G)(e) = v.

(62) e ∈ v.edgesOut() iff there exists a set x such that e joins v to x in G.

(63) v.edgesInOut() = v.edgesIn() ∪ v.edgesOut().

(64) e ∈ v.edgesInOut() iff e ∈ the edges of G but (the source of G)(e) = v

or (the target of G)(e) = v.

(65) If e joins v1 and x in G, then e ∈ v1.edgesInOut().

(66) If e joins v1 and v2 in G, then e ∈ v1.edgesIn() and e ∈ v2.edgesOut() or

e ∈ v2.edgesIn() and e ∈ v1.edgesOut().

(67) e ∈ v1.edgesInOut() iff there exists a vertex v2 of G such that e joins v1

and v2 in G.

(68) If e ∈ v.edgesInOut() and e joins x and y in G, then v = x or v = y.

(69) If e joins v1 and v2 in G, then v1.adj(e) = v2 and v2.adj(e) = v1.

(70) e ∈ v.edgesInOut() iff e joins v and v.adj(e) in G.

(71) Let G be a finite graph, e be a set, and v1, v2 be vertices of G. If e joins

v1 and v2 in G, then 1 ≤ v1.degree() and 1 ≤ v2.degree().

(72) x ∈ v.inNeighbors() iff there exists a set e such that e joins x to v in G.

(73) x ∈ v.outNeighbors() iff there exists a set e such that e joins v to x in

G.

(74) x ∈ v.allNeighbors() iff there exists a set e such that e joins v and x in

G.

(75) Let G3 be a graph, G4 be a subgraph of G3, and x, y, e be sets. Then

(i) if e joins x and y in G4, then e joins x and y in G3,

(ii) if e joins x to y in G4, then e joins x to y in G3,

(iii) if e joins a vertex from x and a vertex from y in G4, then e joins a

vertex from x and a vertex from y in G3, and

(iv) if e joins a vertex from x to a vertex from y in G4, then e joins a vertex

from x to a vertex from y in G3.

(76) Let G3 be a graph, G4 be a subgraph of G3, and x, y, e be sets such

that e ∈ the edges of G4. Then

(i) if e joins x and y in G3, then e joins x and y in G4,

(ii) if e joins x to y in G3, then e joins x to y in G4,



alternative graph structures 249

(iii) if e joins a vertex from x and a vertex from y in G3, then e joins a

vertex from x and a vertex from y in G4, and

(iv) if e joins a vertex from x to a vertex from y in G3, then e joins a vertex

from x to a vertex from y in G4.

(77) For every graph G3 and for every spanning subgraph G4 of G3 holds

every spanning subgraph of G4 is a spanning subgraph of G3.

(78) For every finite graph G3 and for every subgraph G4 of G3 holds

G4.order() ≤ G3.order() and G4.size() ≤ G3.size().

(79) Let G3 be a graph, G4 be a subgraph of G3, and X be a set.

Then G4.edgesInto(X) ⊆ G3.edgesInto(X) and G4.edgesOutOf(X) ⊆

G3.edgesOutOf(X) and G4.edgesInOut(X) ⊆ G3.edgesInOut(X) and

G4.edgesBetween(X) ⊆ G3.edgesBetween(X).

(80) For every graph G3 and for every subgraph G4 of G3 and for all

sets X, Y holds G4.edgesBetween(X, Y ) ⊆ G3.edgesBetween(X, Y ) and

G4.edgesDBetween(X, Y ) ⊆ G3.edgesDBetween(X, Y ).

(81) Let G3 be a graph, G4 be a subgraph of G3, v1 be a vertex of G3, and

v2 be a vertex of G4. If v1 = v2, then v2.edgesIn() ⊆ v1.edgesIn() and

v2.edgesOut() ⊆ v1.edgesOut() and v2.edgesInOut() ⊆ v1.edgesInOut().

(82) Let G3 be a graph, G4 be a subgraph of G3, v1 be a vertex of G3, and v2

be a vertex of G4. Suppose v1 = v2. Then v2.edgesIn() = v1.edgesIn()∩the

edges of G4 and v2.edgesOut() = v1.edgesOut() ∩ the edges of G4 and

v2.edgesInOut() = v1.edgesInOut() ∩ the edges of G4.

(83) Let G3 be a graph, G4 be a subgraph of G3, v1 be a vertex of G3, v2 be

a vertex of G4, and e be a set. If v1 = v2 and e ∈ the edges of G4, then

v1.adj(e) = v2.adj(e).

(84) Let G3 be a finite graph, G4 be a subgraph of G3, v1 be a vertex of G3,

and v2 be a vertex of G4. If v1 = v2, then v2.inDegree() ≤ v1.inDegree()

and v2.outDegree() ≤ v1.outDegree() and v2.degree() ≤ v1.degree().

(85) Let G3 be a graph, G4 be a subgraph of G3, v1 be a vertex of G3, and

v2 be a vertex of G4. If v1 = v2, then v2.inNeighbors() ⊆ v1.inNeighbors()

and v2.outNeighbors() ⊆ v1.outNeighbors() and v2.allNeighbors() ⊆

v1.allNeighbors().

(86) Let G3 be a graph, G4 be a subgraph of G3, v1 be a vertex of G3, and

v2 be a vertex of G4. If v1 = v2 and v1 is isolated, then v2 is isolated.

(87) Let G3 be a graph, G4 be a subgraph of G3, v1 be a vertex of G3, and

v2 be a vertex of G4. If v1 = v2 and v1 is endvertex, then v2 is endvertex

or isolated.

(88) If G3 =G G4 and G4 =G G7, then G3 =G G7.

(89) Let G be a graph and G3, G4 be subgraphs of G. Suppose the vertices

of G3 = the vertices of G4 and the edges of G3 = the edges of G4. Then



250 gilbert lee and piotr rudnicki

G3 =G G4.

(90) G3 =G G4 iff G3 is a subgraph of G4 and G4 is a subgraph of G3.

(91) Suppose G3 =G G4. Then

(i) if e joins x and y in G3, then e joins x and y in G4,

(ii) if e joins x to y in G3, then e joins x to y in G4,

(iii) if e joins a vertex from X and a vertex from Y in G3, then e joins a

vertex from X and a vertex from Y in G4, and

(iv) if e joins a vertex from X to a vertex from Y in G3, then e joins a

vertex from X to a vertex from Y in G4.

(92) Suppose G3 =G G4. Then

(i) if G3 is finite, then G4 is finite,

(ii) if G3 is loopless, then G4 is loopless,

(iii) if G3 is trivial, then G4 is trivial,

(iv) if G3 is non-multi, then G4 is non-multi,

(v) if G3 is non-directed-multi, then G4 is non-directed-multi,

(vi) if G3 is simple, then G4 is simple, and

(vii) if G3 is directed-simple, then G4 is directed-simple.

(93) If G3 =G G4, then G3.order() = G4.order() and G3.size() = G4.size()

and G3.edgesInto(X) = G4.edgesInto(X) and G3.edgesOutOf(X) =

G4.edgesOutOf(X) and G3.edgesInOut(X) = G4.edgesInOut(X) and

G3.edgesBetween(X) = G4.edgesBetween(X) and G3.edgesDBetween(X, Y )

= G4.edgesDBetween(X, Y ).

(94) If G3 =G G4 and G7 is a subgraph of G3, then G7 is a subgraph of G4.

(95) If G3 =G G4 and G3 is a subgraph of G7, then G4 is a subgraph of G7.

(96) For all subgraphs G3, G4 of G induced by V and E holds G3 =G G4.

(97) For every graph G3 and for every subgraph G4 of G3 induced by the

vertices of G3 holds G3 =G G4.

(98) Let G3, G4 be graphs, V , E be sets, and G7 be a subgraph of G3 induced

by V and E. If G3 =G G4, then G7 is a subgraph of G4 induced by V and

E.

(99) Let v1 be a vertex of G3 and v2 be a vertex of G4. Suppose

v1 = v2 and G3 =G G4. Then v1.edgesIn() = v2.edgesIn() and

v1.edgesOut() = v2.edgesOut() and v1.edgesInOut() = v2.edgesInOut()

and v1.adj(e) = v2.adj(e) and v1.inDegree() = v2.inDegree() and

v1.outDegree() = v2.outDegree() and v1.degree() = v2.degree()

and v1.inNeighbors() = v2.inNeighbors() and v1.outNeighbors() =

v2.outNeighbors() and v1.allNeighbors() = v2.allNeighbors().

(100) Let v1 be a vertex of G3 and v2 be a vertex of G4 such that v1 = v2 and

G3 =G G4. Then

(i) if v1 is isolated, then v2 is isolated, and



alternative graph structures 251

(ii) if v1 is endvertex, then v2 is endvertex.

(101) Let G be a graph and G3, G4 be subgraphs of G. Suppose G3 ⊂ G4.

Then the vertices of G3 ⊂ the vertices of G4 or the edges of G3 ⊂ the

edges of G4.

(102) Let G be a graph and G3, G4 be subgraphs of G. Suppose G3 ⊂ G4.

Then

(i) there exists a set v such that v ∈ the vertices of G4 and v /∈ the vertices

of G3, or

(ii) there exists a set e such that e ∈ the edges of G4 and e /∈ the edges of

G3.

References

[1] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543–547, 1990.
[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41–46, 1990.
[4] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281–

290, 1990.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[6] Czes law Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676,

1990.
[7] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[8] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[9] Czes law Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.

[10] Czes law Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E2. Formalized
Mathematics, 6(3):427–440, 1997.

[11] Jing-Chao Chen. A small computer model with push-down stack. Formalized Mathemat-
ics, 8(1):175–182, 1999.

[12] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[13] Krzysztof Hryniewiecki. Graphs. Formalized Mathematics, 2(3):365–370, 1991.
[14] Gilbert Lee. Verification of graph algorithms in Mizar. Dept. of Comp. Sci., Univer-

sity of Alberta, Edmonton, Canada, 2004. M Sc thesis, http://www.cs.ualberta.ca/-
~piotr/Mizar/Doc/GL-thesis.ps.

[15] Gilbert Lee. Trees and Graph Components. Formalized Mathematics, 13(2):271–277,
2005.

[16] Gilbert Lee. Walks in Graphs. Formalized Mathematics, 13(2):253–269, 2005.
[17] Gilbert Lee. Weighted and Labeled Graphs. Formalized Mathematics, 13(2):279–293,

2005.
[18] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[19] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,

1(1):115–122, 1990.
[20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[21] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
[22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[23] Josef Urban. Basic facts about inaccessible and measurable cardinals. Formalized Math-

ematics, 9(2):323–329, 2001.



252 gilbert lee and piotr rudnicki

[24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

[25] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,
1990.

Received February 22, 2005


