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Summary. A concept of “Matrix of Complex” is defined here. Addition,

subtraction, scalar multiplication and product are introduced using correspon-

dent definitions of “Matrix of Field”. Many equations for such operations consist

of a case of “Matrix of Field”. A calculation method of product of matrices is

shown using a finite sequence of Complex in the last theorem.

MML Identifier: MATRIX 5.

The articles [11], [14], [1], [4], [2], [15], [6], [10], [9], [3], [8], [7], [13], [12], and [5]

provide the terminology and notation for this paper.

The following two propositions are true:

(1) 1 = 1CF
.

(2) 0CF
= 0.

Let A be a matrix over C. The functor ACF
yields a matrix over CF and is

defined by:

(Def. 1) ACF
= A.

Let A be a matrix over CF. The functor AC yielding a matrix over C is

defined by:

(Def. 2) AC = A.

We now state four propositions:

(3) For all matrices A, B over C such that ACF
= BCF

holds A = B.

(4) For all matrices A, B over CF such that AC = BC holds A = B.

(5) For every matrix A over C holds A = (ACF
)
C
.

(6) For every matrix A over CF holds A = (AC)
CF

.

Let A, B be matrices over C. The functor A + B yielding a matrix over C

is defined as follows:
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(Def. 3) A + B = (ACF
+ BCF

)
C
.

Let A be a matrix over C. The functor −A yielding a matrix over C is

defined as follows:

(Def. 4) −A = (−ACF
)
C
.

Let A, B be matrices over C. The functor A−B yields a matrix over C and

is defined as follows:

(Def. 5) A − B = (ACF
− BCF

)
C
.

Let A, B be matrices over C. The functor A ·B yielding a matrix over C is

defined as follows:

(Def. 6) A · B = (ACF
· BCF

)
C
.

Let x be a complex number and let A be a matrix over C. The functor x ·A

yielding a matrix over C is defined as follows:

(Def. 7) For every element e1 of CF such that e1 = x holds x · A = (e1 · ACF
)
C
.

One can prove the following propositions:

(7) For every matrix A over C holds lenA = len(ACF
) and widthA =

width(ACF
).

(8) For every matrix A over CF holds lenA = len(AC) and widthA =

width(AC).

(9) For every matrix M over C such that lenM > 0 holds −−M = M.

(10) For every field K and for every matrix M over K holds 1K · M = M.

(11) For every matrix M over C holds 1 · M = M.

(12) For every field K and for all elements a, b of K and for every matrix M

over K holds a · (b · M) = (a · b) · M.

(13) For every field K and for all elements a, b of K and for every matrix M

over K holds (a + b) · M = a · M + b · M.

(14) For every matrix M over C holds M + M = 2 · M.

(15) For every matrix M over C holds M + M + M = 3 · M.

Let n, m be natural numbers. The functor







0 . . . 0
...

. . .
...

0 . . . 0







n×m

C

yields a

matrix over C and is defined by:

(Def. 8)







0 . . . 0
...

. . .
...

0 . . . 0







n×m

C

= (







0 . . . 0
...

. . .
...

0 . . . 0







n×m

CF

)

C

.

One can prove the following propositions:
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(16) For all natural numbers n, m holds







0 . . . 0
...

. . .
...

0 . . . 0







n×m

C CF

=







0 . . . 0
...

. . .
...

0 . . . 0







n×m

CF

.

(17) For every matrix M over C such that lenM > 0 holds M + −M =






0 . . . 0
...

. . .
...

0 . . . 0







(len M)×(width M)

C

.

(18) For every matrix M over C such that lenM > 0 holds M − M =






0 . . . 0
...

. . .
...

0 . . . 0







(len M)×(width M)

C

.

(19) For all matrices M1, M2, M3 over C such that lenM1 = lenM2 and

len M2 = lenM3 and widthM1 = widthM2 and widthM2 = widthM3

and lenM1 > 0 and M1 + M3 = M2 + M3 holds M1 = M2.

(20) For all matrices M1, M2 over C such that lenM2 > 0 holds M1−−M2 =

M1 + M2.

(21) For all matrices M1, M2 over C such that lenM1 = lenM2 and

widthM1 = widthM2 and lenM1 > 0 and M1 = M1 + M2 holds

M2 =







0 . . . 0
...

. . .
...

0 . . . 0







(len M1)×(width M1)

C

.

(22) For all matrices M1, M2 over C such that lenM1 = lenM2

and widthM1 = widthM2 and lenM1 > 0 and M1 − M2 =






0 . . . 0
...

. . .
...

0 . . . 0







(len M1)×(width M1)

C

holds M1 = M2.

(23) For all matrices M1, M2 over C such that lenM1 = lenM2

and widthM1 = widthM2 and lenM1 > 0 and M1 + M2 =






0 . . . 0
...

. . .
...

0 . . . 0







(len M1)×(width M1)

C

holds M2 = −M1.

(24) For all natural numbers n, m such that n > 0 holds
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−







0 . . . 0
...

. . .
...

0 . . . 0







n×m

C

=







0 . . . 0
...

. . .
...

0 . . . 0







n×m

C

.

(25) For all matrices M1, M2 over C such that lenM1 = lenM2 and

widthM1 = widthM2 and lenM1 > 0 and M2 − M1 = M2 holds

M1 =







0 . . . 0
...

. . .
...

0 . . . 0







(len M1)×(width M1)

C

.

(26) For all matrices M1, M2 over C such that lenM1 = lenM2 and

widthM1 = widthM2 and lenM1 > 0 holds M1 = M1 − (M2 − M2).

(27) For all matrices M1, M2 over C such that lenM1 = lenM2 and

widthM1 = widthM2 and lenM1 > 0 holds −(M1 + M2) = −M1 +−M2.

(28) For all matrices M1, M2 over C such that lenM1 = lenM2 and

widthM1 = widthM2 and lenM1 > 0 holds M1 − (M1 − M2) = M2.

(29) For all matrices M1, M2, M3 over C such that lenM1 = lenM2 and

len M2 = lenM3 and widthM1 = widthM2 and widthM2 = widthM3

and lenM1 > 0 and M1 − M3 = M2 − M3 holds M1 = M2.

(30) For all matrices M1, M2, M3 over C such that lenM1 = lenM2 and

len M2 = lenM3 and widthM1 = widthM2 and widthM2 = widthM3

and lenM1 > 0 and M3 − M1 = M3 − M2 holds M1 = M2.

(31) For all matrices M1, M2, M3 over C such that lenM2 = lenM3 and

widthM2 = widthM3 and widthM1 = lenM2 and lenM1 > 0 and

len M2 > 0 holds M1 · (M2 + M3) = M1 · M2 + M1 · M3.

(32) For all matrices M1, M2, M3 over C such that lenM2 = lenM3 and

widthM2 = widthM3 and lenM1 = widthM2 and lenM2 > 0 and

len M1 > 0 holds (M2 + M3) · M1 = M2 · M1 + M3 · M1.

(33) For all matrices M1, M2 over C such that lenM1 = lenM2 and

widthM1 = widthM2 holds M1 + M2 = M2 + M1.

(34) For all matrices M1, M2, M3 over C such that lenM1 = lenM2 and

len M1 = lenM3 and widthM1 = widthM2 and widthM1 = widthM3

holds (M1 + M2) + M3 = M1 + (M2 + M3).

(35) For every matrix M over C such that lenM > 0 holds M +






0 . . . 0
...

. . .
...

0 . . . 0







(len M)×(width M)

C

= M.

(36) Let K be a field, b be an element of K, and M1, M2 be matrices over

K. If lenM1 = lenM2 and widthM1 = widthM2 and lenM1 > 0, then

b · (M1 + M2) = b · M1 + b · M2.
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(37) Let M1, M2 be matrices over C and a be a complex number. If lenM1 =

len M2 and widthM1 = widthM2 and lenM1 > 0, then a · (M1 + M2) =

a · M1 + a · M2.

(38) For every field K and for all matrices M1, M2 over K such

that widthM1 = len M2 and lenM1 > 0 and lenM2 > 0 holds






0 . . . 0
...

. . .
...

0 . . . 0







(len M1)×(width M1)

K

· M2 =







0 . . . 0
...

. . .
...

0 . . . 0







(len M1)×(width M2)

K

.

(39) For all matrices M1, M2 over C such that widthM1 = lenM2 and

len M1 > 0 and lenM2 > 0 holds







0 . . . 0
...

. . .
...

0 . . . 0







(len M1)×(width M1)

C

· M2 =







0 . . . 0
...

. . .
...

0 . . . 0







(len M1)×(width M2)

C

.

(40) For every field K and for every matrix M1 over K such that lenM1 > 0

holds 0K · M1 =







0 . . . 0
...

. . .
...

0 . . . 0







(len M1)×(width M1)

K

.

(41) For every matrix M1 over C such that lenM1 > 0 holds 0 · M1 =






0 . . . 0
...

. . .
...

0 . . . 0







(len M1)×(width M1)

C

.

Let s be a finite sequence of elements of C and let k be a natural number.

Then s(k) is an element of C.

We now state the proposition

(42) Let i, j be natural numbers and M1, M2 be matrices over C. Suppose

len M1 > 0 and lenM2 > 0 and widthM1 = lenM2 and 1 ≤ i and i ≤

len M1 and 1 ≤ j and j ≤ widthM2. Then there exists a finite sequence s of

elements of C such that len s = lenM2 and s(1) = (M1◦(i, 1))·(M2◦(1, j))

and for every natural number k such that 1 ≤ k and k < len M2 holds

s(k + 1) = s(k) + (M1 ◦ (i, k + 1)) · (M2 ◦ (k + 1, j)).
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