Properties of First and Second Order Cutting of Binary Relations

Krzysztof Retel
School of Mathematical and Computer Sciences
Heriot-Watt University
Riccarton, Edinburgh EH14 4AS, Scotland

Abstract

Summary. This paper introduces some notions concerning binary relations according to [9]. It is also an attempt to complement the knowledge contained in the Mizar Mathematical Library regarding binary relations. We define here an image and inverse image of element of set A under binary relation of two sets A, B as image and inverse image of singleton of the element under this relation, respectively. Next, we define "The First Order Cutting Relation of two sets A, B under a subset of the set $A^{\prime \prime}$ as the union of images of elements of this subset under the relation. We also define "The Second Order Cutting Subset of the Cartesian Product of two sets A, B under a subset of the set A" as an intersection of images of elements of this subset under the subset of the Cartesian Product. The paper also defines first and second projection of binary relations. The main goal of the article is to prove properties and collocations of definitions introduced in this paper.

MML identifier: RELSET_2, version: 7.5.01 4.39.921

The articles [10], [6], [11], [7], [12], [13], [5], [3], [4], [2], [8], and [1] provide the notation and terminology for this paper.

1. Preliminaries

We adopt the following rules: x, y, X, Y, A, B, C, M are sets and P, Q, R, R_{1}, R_{2} are binary relations.

Let X be a set. We introduce $\{\{*\}: * \in X\}$ as a synonym of SmallestPartition (X).

The following propositions are true:
(1) $y \in\{\{*\}: * \in X\}$ iff there exists x such that $y=\{x\}$ and $x \in X$.
(2) $X=\emptyset$ iff $\{\{*\}: * \in X\}=\emptyset$.
(3) $\{\{*\}: * \in X \cup Y\}=\{\{*\}: * \in X\} \cup\{\{*\}: * \in Y\}$.
(4) $\{\{*\}: * \in X \cap Y\}=\{\{*\}: * \in X\} \cap\{\{*\}: * \in Y\}$.
(5) $\{\{*\}: * \in X \backslash Y\}=\{\{*\}: * \in X\} \backslash\{\{*\}: * \in Y\}$.
(6) $X \subseteq Y$ iff $\{\{*\}: * \in X\} \subseteq\{\{*\}: * \in Y\}$.

Let M be a set and let X, Y be families of subsets of M. Then $X \cap Y$ is a family of subsets of M.

We now state two propositions:
(7) For all families B_{1}, B_{2} of subsets of M holds $\operatorname{Intersect}\left(B_{1}\right) \cap$ Intersect $\left(B_{2}\right) \subseteq \operatorname{Intersect}\left(B_{1} \cap B_{2}\right)$.
(8) $\quad(P \cap Q) \cdot R \subseteq(P \cdot R) \cap(Q \cdot R)$.

2. The First Order Cutting of Binary Relation of Two Sets A, B under Subset of the Set A

Let X, Y be sets, let R be a relation between X and Y, and let x be an element of X. The functor $R^{\circ} x$ yielding a subset of Y is defined as follows:
(Def. 1) $R^{\circ} x=R^{\circ}\{x\}$.
The following propositions are true:
(9) $y \in R^{\circ}\{x\}$ iff $\langle x, y\rangle \in R$.
(10) $\left(R_{1} \cup R_{2}\right)^{\circ}\{x\}=R_{1}{ }^{\circ}\{x\} \cup R_{2}{ }^{\circ}\{x\}$.
(11) $\left(R_{1} \cap R_{2}\right)^{\circ}\{x\}=R_{1}{ }^{\circ}\{x\} \cap R_{2}{ }^{\circ}\{x\}$.
(12) $\left(R_{1} \backslash R_{2}\right)^{\circ}\{x\}=R_{1}{ }^{\circ}\{x\} \backslash R_{2}{ }^{\circ}\{x\}$.
(13) $\left(R_{1} \cap R_{2}\right)^{\circ}\{\{*\}: * \in X\} \subseteq R_{1}{ }^{\circ}\{\{*\}: * \in X\} \cap R_{2}{ }^{\circ}\{\{*\}: * \in X\}$.

Let X, Y be sets, let R be a relation between X and Y, and let x be an element of X. The functor $R^{-1}(x)$ yields a subset of X and is defined by:
(Def. 2) $\quad R^{-1}(x)=R^{-1}(\{x\})$.
One can prove the following propositions:
(14) Let A be a set, F be a family of subsets of A, and R be a binary relation. Then $R^{\circ} \bigcup F=\bigcup\left\{R^{\circ} X ; X\right.$ ranges over subsets of $\left.A: X \in F\right\}$.
(15) For every non empty set A and for every subset X of A holds $X=$ $\bigcup\{\{x\} ; x$ ranges over elements of $A: x \in X\}$.
(16) For every non empty set A and for every subset X of A holds $\{\{x\} ; x$ ranges over elements of $A: x \in X\}$ is a family of subsets of A.
(17) Let A be a non empty set, B be a set, X be a subset of A, and R be a relation between A and B. Then $R^{\circ} X=\bigcup\left\{R^{\circ} x ; x\right.$ ranges over elements of $A: x \in X\}$.
(18) Let A be a non empty set, B be a set, X be a subset of A, and R be a relation between A and B. Then $\left\{R^{\circ} x ; x\right.$ ranges over elements of A : $x \in X\}$ is a family of subsets of B.
Let A, B be sets, let R be a subset of $\left.: A, 2^{B}:\right]$, and let X be a set. Then $R^{\circ} X$ is a family of subsets of B.

Let A be a set and let R be a binary relation. The functor R^{A} yields a function and is defined as follows:
(Def. 3) $\operatorname{dom}\left(R^{A}\right)=2^{A}$ and for every set X such that $X \subseteq A$ holds $R^{A}(X)=$ $R^{\circ} X$.
Let B, A be sets and let R be a subset of $: A, B:$. We introduce ${ }^{\circ} R$ as a synonym of R^{A}.

One can prove the following propositions:
(19) For all sets A, B and for every subset R of $: A, B$; such that $X \in \operatorname{dom}{ }^{\circ} R$ holds $\left({ }^{\circ} R\right)(X)=R^{\circ} X$.
(20) For all sets A, B and for every subset R of $: A, B:$ holds rng ${ }^{\circ} R \subseteq 2^{\mathrm{rng} R}$.
(21) For all sets A, B and for every subset R of $: A, B:$ holds ${ }^{\circ} R$ is a function from 2^{A} into $2^{\text {rng } R}$.
Let B, A be sets and let R be a subset of : $A, B:$. Then ${ }^{\circ} R$ is a function from 2^{A} into 2^{B}.

Next we state the proposition
(22) For all sets A, B and for every subset R of $: A, B:$ holds $\bigcup\left(\left({ }^{\circ} R\right)^{\circ} A\right) \subseteq$ $R^{\circ} \bigcup A$.

3. The Second Order Cutting of Binary Relation of Two Sets A, B under Subset of the Set A

For simplicity, we adopt the following rules: X, X_{1}, X_{2} are subsets of A, Y is a subset of B, R, R_{1}, R_{2} are subsets of $: A, B:, F$ is a family of subsets of A, and F_{1} is a family of subsets of $: A, B:$.

Let A, B be sets, let X be a subset of A, and let R be a subset of $: A, B:$. The functor $R[X]$ is defined as follows:
(Def. 4) $\quad R[X]=\operatorname{Intersect}\left(\left({ }^{\circ} R\right)^{\circ}\{\{*\}: * \in X\}\right)$.
Let A, B be sets, let X be a subset of A, and let R be a subset of $: A, B:$. Then $R[X]$ is a subset of B.

We now state a number of propositions:
(23) $\left({ }^{\circ} R\right)^{\circ}\{\{*\}: * \in X\}=\emptyset$ iff $X=\emptyset$.
(24) If $y \in R[X]$, then for every set x such that $x \in X$ holds $y \in R^{\circ}\{x\}$.
(25) Let B be a non empty set, A be a set, X be a subset of A, y be an element of B, and R be a subset of $: A, B:]$. Then $y \in R[X]$ if and only if for every set x such that $x \in X$ holds $y \in R^{\circ}\{x\}$.
(26) If $\left({ }^{\circ} R\right)^{\circ}\left\{\{*\}: * \in X_{1}\right\}=\emptyset$, then $R\left[X_{1} \cup X_{2}\right]=R\left[X_{2}\right]$.
(27) $R\left[X_{1} \cup X_{2}\right]=R\left[X_{1}\right] \cap R\left[X_{2}\right]$.
(28) Let A be a non empty set, B be a set, F be a family of subsets of A, and R be a relation between A and B. Then $\{R[X] ; X$ ranges over subsets of $A: X \in F\}$ is a family of subsets of B.
(29) If $X=\emptyset$, then $R[X]=B$.
(30) $\bigcup F=\emptyset$ iff for every set X such that $X \in F$ holds $X=\emptyset$.
(31) Let A be a set, B be a non empty set, R be a relation between A and B, F be a family of subsets of A, and G be a family of subsets of B. If $G=$ $\{R[Y] ; Y$ ranges over subsets of $A: Y \in F\}$, then $R[\bigcup F]=\operatorname{Intersect}(G)$.
(32) If $X_{1} \subseteq X_{2}$, then $R\left[X_{2}\right] \subseteq R\left[X_{1}\right]$.
(33) $R\left[X_{1}\right] \cup R\left[X_{2}\right] \subseteq R\left[X_{1} \cap X_{2}\right]$.
(34) $\left(R_{1} \cap R_{2}\right)[X]=R_{1}[X] \cap R_{2}[X]$.
(35) $\left(\bigcup F_{1}\right)^{\circ} X=\bigcup\left\{R^{\circ} X ; R\right.$ ranges over subsets of $\left.: A, B \exists: R \in F_{1}\right\}$.
(36) Let F_{1} be a family of subsets of $: A, B:, A, B$ be sets, and X be a subset of A. Then $\left\{R[X] ; R\right.$ ranges over subsets of $\left.: A, B:: R \in F_{1}\right\}$ is a family of subsets of B.
(37) If $R=\emptyset$ and $X \neq \emptyset$, then $R[X]=\emptyset$.
(38) If $R=: A, B:$, then $R[X]=B$.
(39) For every family G of subsets of B such that $G=\{R[X] ; R$ ranges over subsets of $\left.: A, B:: R \in F_{1}\right\}$ holds $\left(\operatorname{Intersect}\left(F_{1}\right)\right)[X]=\operatorname{Intersect}(G)$.
(40) If $R_{1} \subseteq R_{2}$, then $R_{1}[X] \subseteq R_{2}[X]$.
(41) $\quad R_{1}[X] \cup R_{2}[X] \subseteq\left(R_{1} \cup R_{2}\right)[X]$.
(42) $y \in\left(R^{\mathrm{c}}\right)^{\circ}\{x\}$ iff $\langle x, y\rangle \notin R$ and $x \in A$ and $y \in B$.
(43) If $X \neq \emptyset$, then $R[X] \subseteq R^{\circ} X$.
(44) For all sets X, Y holds X meets $\left(R^{\smile}\right)^{\circ} Y$ iff there exist sets x, y such that $x \in X$ and $y \in Y$ and $x \in\left(R^{\smile}\right)^{\circ}\{y\}$.
(45) For all sets X, Y holds there exist sets x, y such that $x \in X$ and $y \in Y$ and $x \in\left(R^{\smile}\right)^{\circ}\{y\}$ iff Y meets $R^{\circ} X$.
(46) X misses $\left(R^{\smile}\right)^{\circ} Y$ iff Y misses $R^{\circ} X$.
(47) For every set X holds $R^{\circ} X=R^{\circ}\left(X \cap \pi_{1}(R)\right)$.
(48) For every set Y holds $\left(R^{\smile}\right)^{\circ} Y=\left(R^{\smile}\right)^{\circ}\left(Y \cap \pi_{2}(R)\right)$.
(49) $\quad(R[X])^{\mathrm{c}}=\left(R^{\mathrm{c}}\right)^{\circ} X$.

In the sequel R denotes a relation between A and B and S denotes a relation between B and C.

Let A, B, C be sets, let R be a subset of $: A, B!$, and let S be a subset of : B, C]. Then $R \cdot S$ is a relation between A and C.

One can prove the following propositions:
(50) $\quad\left(R^{\circ} X\right)^{\mathrm{c}}=R^{\mathrm{c}}[X]$.
(51) $\pi_{1}(R)=\left(R^{\smile}\right)^{\circ} B$ and $\pi_{2}(R)=R^{\circ} A$.
(52) $\quad \pi_{1}(R \cdot S)=\left(R^{\smile}\right)^{\circ} \pi_{1}(S)$ and $\pi_{1}(R \cdot S) \subseteq \pi_{1}(R)$.
(53) $\quad \pi_{2}(R \cdot S)=S^{\circ} \pi_{2}(R)$ and $\pi_{2}(R \cdot S) \subseteq \pi_{2}(S)$.
(54) $\quad X \subseteq \pi_{1}(R)$ iff $X \subseteq\left(R \cdot R^{\smile}\right)^{\circ} X$.
(55) $Y \subseteq \pi_{2}(R)$ iff $Y \subseteq\left(R^{\smile} \cdot R\right)^{\circ} Y$.
(56) $\quad \pi_{1}(R)=\left(R^{\smile}\right)^{\circ} B$ and $\left(R^{\smile}\right)^{\circ} R^{\circ} A=\left(R^{\smile}\right)^{\circ} \pi_{2}(R)$.
(57) $\quad\left(R^{\smile}\right)^{\circ} B=\left(R \cdot R^{\smile}\right)^{\circ} A$.
(58) $\quad R^{\circ} A=\left(R^{\smile} \cdot R\right)^{\circ} B$.
(59) $\quad S\left[R^{\circ} X\right]=\left(R \cdot S^{\mathrm{c}}\right)^{\mathrm{c}}[X]$.
(60) $\quad\left(R^{\mathrm{c}}\right)^{\smile}=\left(R^{\smile}\right)^{\mathrm{c}}$.
(61) $\quad X \subseteq R^{\smile}[Y]$ iff $Y \subseteq R[X]$.
(62) $\quad R^{\circ} X^{\mathrm{c}} \subseteq Y^{\mathrm{c}}$ iff $\left(R^{\smile}\right)^{\circ} Y \subseteq X$.
(63) $\quad X \subseteq R^{\smile}[R[X]]$ and $Y \subseteq R\left[R^{\smile}[Y]\right]$.
(64) $\quad R[X]=R\left[R^{\smile}[R[X]]\right]$ and $R^{\smile}[Y]=R^{\smile}\left[R\left[R^{\smile}[Y]\right]\right]$.
(65) $\operatorname{id}_{A} \cdot R=R \cdot \mathrm{id}_{B}$.

References

[1] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537541, 1990.
[2] Grzegorz Bancerek. Minimal signature for partial algebra. Formalized Mathematics, 5(3):405-414, 1996.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[7] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[8] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
[9] Jacques Riguet. Relations binaires, fermetures, correspondances de Galois. Bulletin de la S.M.F., 76:114-155, 1948. On WWW: http://www.numdam.org/item?id=BSFM_1948_76_114_0.
[10] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[11] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[12] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[13] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

The Inner Product and Conjugate of Finite Sequences of Complex Numbers

Wenpai Chang
Shinshu University
Nagano, Japan

Hiroshi Yamazaki
Shinshu University
Nagano, Japan

Yatsuka Nakamura
Shinshu University
Nagano, Japan

Abstract

Summary. The concept of "the inner product and conjugate of finite sequences of complex numbers" is defined here. Addition, subtraction, scalar multiplication and inner product are introduced using correspondent definitions of "conjugate of finite sequences of field". Many equations for such operations consist like a case of "conjugate of finite sequences of field". Some operations on the set of n-tuples of complex numbers are introduced as well. Additionally, difference of such n-tuples, complement of a n-tuple and multiplication of these are defined in terms of complex numbers.

MML identifier: COMPLSP2, version: 7.5.01 4.39.921

The terminology and notation used here are introduced in the following articles: [17], [18], [15], [19], [8], [9], [10], [4], [16], [3], [5], [12], [6], [11], [7], [14], [1], [2], and [13].

1. Preliminaries

For simplicity, we adopt the following convention: i, j are natural numbers, x, y, z are finite sequences of elements of \mathbb{C}, c is an element of \mathbb{C}, and R, R_{1}, R_{2} are elements of \mathbb{C}^{2}.

Let z be a finite sequence of elements of \mathbb{C}. The functor \bar{z} yielding a finite sequence of elements of \mathbb{C} is defined by:
(Def. 1) $\operatorname{len} \bar{z}=\operatorname{len} z$ and for every natural number i such that $1 \leq i$ and $i \leq \operatorname{len} z$ holds $\bar{z}(i)=\overline{z(i)}$.
The following propositions are true:
(1) If $i \in \operatorname{dom}(x+y)$, then $(x+y)(i)=x(i)+y(i)$.
(2) If $i \in \operatorname{dom}(x-y)$, then $(x-y)(i)=x(i)-y(i)$.

Let us consider i, R_{1}, R_{2}. Then $R_{1}-R_{2}$ is an element of \mathbb{C}^{i}.
Let us consider i, R_{1}, R_{2}. Then $R_{1}+R_{2}$ is an element of \mathbb{C}^{i}.
Let us consider i, let r be a complex number, and let us consider R. Then $r \cdot R$ is an element of \mathbb{C}^{i}.

We now state a number of propositions:
(3) For every complex number a and for every finite sequence x of elements of \mathbb{C} holds $\operatorname{len}(a \cdot x)=\operatorname{len} x$.
(4) For every finite sequence x of elements of \mathbb{C} holds $\operatorname{dom} x=\operatorname{dom}(-x)$.
(5) For every finite sequence x of elements of \mathbb{C} holds len $(-x)=\operatorname{len} x$.
(6) For all finite sequences x_{1}, x_{2} of elements of \mathbb{C} such that len $x_{1}=\operatorname{len} x_{2}$ holds len $\left(x_{1}+x_{2}\right)=\operatorname{len} x_{1}$.
(7) For all finite sequences x_{1}, x_{2} of elements of \mathbb{C} such that len $x_{1}=\operatorname{len} x_{2}$ holds len $\left(x_{1}-x_{2}\right)=\operatorname{len} x_{1}$.
(8) Every finite sequence f of elements of \mathbb{C} is an element of $\mathbb{C}^{\operatorname{len} f}$.
(9) $\quad R_{1}-R_{2}=R_{1}+-R_{2}$.
(10) For all finite sequences x, y of elements of \mathbb{C} such that len $x=\operatorname{len} y$ holds $x-y=x+-y$.
(11) $(-1) \cdot R=-R$.
(12) For every finite sequence x of elements of \mathbb{C} holds $(-1) \cdot x=-x$.
(13) For every finite sequence x of elements of \mathbb{C} holds $(-x)(i)=-x(i)$.

Let us consider i, R. Then $-R$ is an element of \mathbb{C}^{i}.
The following propositions are true:
(14) If $c=R(j)$, then $(-R)(j)=-c$.
(15) For every complex number a holds $\operatorname{dom}(a \cdot x)=\operatorname{dom} x$.
(16) For every complex number a holds $(a \cdot x)(i)=a \cdot x(i)$.
(17) For every complex number a holds $\overline{a \cdot x}=\bar{a} \cdot \bar{x}$.
(18) $\quad\left(R_{1}+R_{2}\right)(j)=R_{1}(j)+R_{2}(j)$.
(19) For all finite sequences x_{1}, x_{2} of elements of \mathbb{C} such that len $x_{1}=\operatorname{len} x_{2}$ holds $\overline{x_{1}+x_{2}}=\overline{x_{1}}+\overline{x_{2}}$.
(20) $\quad\left(R_{1}-R_{2}\right)(j)=R_{1}(j)-R_{2}(j)$.
(21) For all finite sequences x_{1}, x_{2} of elements of \mathbb{C} such that len $x_{1}=\operatorname{len} x_{2}$ holds $\overline{x_{1}-x_{2}}=\overline{x_{1}}-\overline{x_{2}}$.
(22) For every finite sequence z of elements of \mathbb{C} holds $\overline{\bar{z}}=z$.
(23) For every finite sequence z of elements of \mathbb{C} holds $\overline{-z}=-\bar{z}$.
(24) For every complex number z holds $z+\bar{z}=2 \cdot \Re(z)$.
(25) For all finite sequences x, y of elements of \mathbb{C} such that len $x=\operatorname{len} y$ holds $(x-y)(i)=x(i)-y(i)$.
(26) For all finite sequences x, y of elements of \mathbb{C} such that len $x=\operatorname{len} y$ holds $(x+y)(i)=x(i)+y(i)$.
Let z be a finite sequence of elements of \mathbb{C}. The functor $\Re(z)$ yields a finite sequence of elements of \mathbb{R} and is defined as follows:
(Def. 2) $\Re(z)=\frac{1}{2} \cdot(z+\bar{z})$.
One can prove the following proposition
(27) For every complex number z holds $z-\bar{z}=2 \cdot \Im(z) \cdot i$.

Let z be a finite sequence of elements of \mathbb{C}. The functor $\Im(z)$ yielding a finite sequence of elements of \mathbb{R} is defined as follows:
(Def. 3) $\Im(z)=\left(-\frac{1}{2} \cdot i\right) \cdot(z-\bar{z})$.
Let x, y be finite sequences of elements of \mathbb{C}. The functor $|(x, y)|$ yields an element of \mathbb{C} and is defined by:
(Def. 4) $|(x, y)|=(|(\Re(x), \Re(y))|-i \cdot|(\Re(x), \Im(y))|)+i \cdot|(\Im(x), \Re(y))|+$ $|(\Im(x), \Im(y))|$.
We now state four propositions:
(28) For all finite sequences x, y, z of elements of \mathbb{C} such that len $x=\operatorname{len} y$ and len $y=\operatorname{len} z$ holds $x+(y+z)=(x+y)+z$.
(29) For all finite sequences x, y of elements of \mathbb{C} such that len $x=\operatorname{len} y$ holds $x+y=y+x$.
(30) Let c be a complex number and x, y be finite sequences of elements of \mathbb{C}. If len $x=$ len y, then $c \cdot(x+y)=c \cdot x+c \cdot y$.
(31) For all finite sequences x, y of elements of \mathbb{C} such that len $x=\operatorname{len} y$ holds $x-y=x+-y$.
Let us consider i, c. Then $i \mapsto c$ is an element of \mathbb{C}^{i}.
Next we state a number of propositions:
(32) For all finite sequences x, y of elements of \mathbb{C} such that len $x=\operatorname{len} y$ and $x+y=0_{\mathbb{C}}^{\operatorname{len} x}$ holds $x=-y$ and $y=-x$.
(33) For every finite sequence x of elements of \mathbb{C} holds $x+0_{\mathbb{C}}^{\operatorname{len} x}=x$.
(34) For every finite sequence x of elements of \mathbb{C} holds $x+-x=0_{\mathbb{C}}^{\operatorname{len} x}$.
(35) For all finite sequences x, y of elements of \mathbb{C} such that len $x=\operatorname{len} y$ holds $-(x+y)=-x+-y$.
(36) For all finite sequences x, y, z of elements of \mathbb{C} such that len $x=\operatorname{len} y$ and len $y=\operatorname{len} z$ holds $x-y-z=x-(y+z)$.
(37) For all finite sequences x, y, z of elements of \mathbb{C} such that len $x=\operatorname{len} y$ and len $y=\operatorname{len} z$ holds $x+(y-z)=(x+y)-z$.
(38) For every finite sequence x of elements of \mathbb{C} holds $--x=x$.
(39) For all finite sequences x, y of elements of \mathbb{C} such that len $x=\operatorname{len} y$ holds $-(x-y)=-x+y$.
(40) For all finite sequences x, y, z of elements of \mathbb{C} such that len $x=\operatorname{len} y$ and len $y=\operatorname{len} z$ holds $x-(y-z)=(x-y)+z$.
(41) For every complex number c holds $c \cdot 0_{\mathbb{C}}^{\text {len } x}=0_{\mathbb{C}}^{\text {len } x}$.
(42) For every complex number c holds $-c \cdot x=c \cdot-x$.
(43) Let c be a complex number and x, y be finite sequences of elements of \mathbb{C}. If len $x=\operatorname{len} y$, then $c \cdot(x-y)=c \cdot x-c \cdot y$.
(44) For all elements x_{1}, y_{1} of \mathbb{C} and for all real numbers x_{2}, y_{2} such that $x_{1}=x_{2}$ and $y_{1}=y_{2}$ holds $+_{\mathbb{C}}\left(x_{1}, y_{1}\right)=+_{\mathbb{R}}\left(x_{2}, y_{2}\right)$.
In the sequel C is a function from $: \mathbb{C}, \mathbb{C}:$ into \mathbb{C} and G is a function from $[: \mathbb{R}, \mathbb{R}:$ into \mathbb{R}.

One can prove the following proposition
(45) Let x_{1}, y_{1} be finite sequences of elements of \mathbb{C} and x_{2}, y_{2} be finite sequences of elements of \mathbb{R}. Suppose $x_{1}=x_{2}$ and $y_{1}=y_{2}$ and len $x_{1}=$ len y_{2} and for every i such that $i \in \operatorname{dom} x_{1}$ holds $C\left(x_{1}(i), y_{1}(i)\right)=G\left(x_{2}(i)\right.$, $\left.y_{2}(i)\right)$. Then $C^{\circ}\left(x_{1}, y_{1}\right)=G^{\circ}\left(x_{2}, y_{2}\right)$.
Let z be a finite sequence of elements of \mathbb{R} and let i be a set. Then $z(i)$ is an element of \mathbb{R}.

We now state several propositions:
(46) Let x_{1}, y_{1} be finite sequences of elements of \mathbb{C} and x_{2}, y_{2} be finite sequences of elements of \mathbb{R}. If $x_{1}=x_{2}$ and $y_{1}=y_{2}$ and len $x_{1}=\operatorname{len} y_{2}$, then $\left(+_{\mathbb{C}}\right)^{\circ}\left(x_{1}, y_{1}\right)=\left(+_{\mathbb{R}}\right)^{\circ}\left(x_{2}, y_{2}\right)$.
(47) Let x_{1}, y_{1} be finite sequences of elements of \mathbb{C} and x_{2}, y_{2} be finite sequences of elements of \mathbb{R}. If $x_{1}=x_{2}$ and $y_{1}=y_{2}$ and len $x_{1}=\operatorname{len} y_{2}$, then $x_{1}+y_{1}=x_{2}+y_{2}$.
(48) For every finite sequence x of elements of \mathbb{C} holds len $\Re(x)=\operatorname{len} x$ and len $\Im(x)=\operatorname{len} x$.
(49) For all finite sequences x, y of elements of \mathbb{C} such that len $x=\operatorname{len} y$ holds $\Re(x+y)=\Re(x)+\Re(y)$ and $\Im(x+y)=\Im(x)+\Im(y)$.
(50) Let x_{1}, y_{1} be finite sequences of elements of \mathbb{C} and x_{2}, y_{2} be finite sequences of elements of \mathbb{R}. If $x_{1}=x_{2}$ and $y_{1}=y_{2}$ and len $x_{1}=\operatorname{len} y_{2}$, then $(-\mathbb{C})^{\circ}\left(x_{1}, y_{1}\right)=(-\mathbb{R})^{\circ}\left(x_{2}, y_{2}\right)$.
(51) Let x_{1}, y_{1} be finite sequences of elements of \mathbb{C} and x_{2}, y_{2} be finite sequences of elements of \mathbb{R}. If $x_{1}=x_{2}$ and $y_{1}=y_{2}$ and len $x_{1}=\operatorname{len} y_{2}$, then $x_{1}-y_{1}=x_{2}-y_{2}$.
(52) For all finite sequences x, y of elements of \mathbb{C} such that len $x=\operatorname{len} y$ holds $\Re(x-y)=\Re(x)-\Re(y)$ and $\Im(x-y)=\Im(x)-\Im(y)$.
(53) For all complex numbers a, b holds $a \cdot(b \cdot z)=(a \cdot b) \cdot z$.
(54) For every complex number c holds ($-c$) $\cdot x=-c \cdot x$.

In the sequel h is a function from \mathbb{C} into \mathbb{C} and g is a function from \mathbb{R} into \mathbb{R}.

One can prove the following propositions:
(55) Let y_{1} be a finite sequence of elements of \mathbb{C} and y_{2} be a finite sequence of elements of \mathbb{R}. If len $y_{1}=\operatorname{len} y_{2}$ and for every i such that $i \in \operatorname{dom} y_{1}$ holds $h\left(y_{1}(i)\right)=g\left(y_{2}(i)\right)$, then $h \cdot y_{1}=g \cdot y_{2}$.
(56) Let y_{1} be a finite sequence of elements of \mathbb{C} and y_{2} be a finite sequence of elements of \mathbb{R}. If $y_{1}=y_{2}$ and len $y_{1}=\operatorname{len} y_{2}$, then $-\mathbb{C} \cdot y_{1}=-\mathbb{R} \cdot y_{2}$.
(57) Let y_{1} be a finite sequence of elements of \mathbb{C} and y_{2} be a finite sequence of elements of \mathbb{R}. If $y_{1}=y_{2}$ and len $y_{1}=\operatorname{len} y_{2}$, then $-y_{1}=-y_{2}$.
(58) For every finite sequence x of elements of \mathbb{C} holds $\Re(i \cdot x)=-\Im(x)$ and $\Im(i \cdot x)=\Re(x)$.
(59) For all finite sequences x, y of elements of \mathbb{C} such that len $x=\operatorname{len} y$ holds $|(i \cdot x, y)|=i \cdot|(x, y)|$.
(60) For all finite sequences x, y of elements of \mathbb{C} such that len $x=\operatorname{len} y$ holds $|(x, i \cdot y)|=-i \cdot|(x, y)|$.
(61) Let a_{1} be an element of \mathbb{C}, y_{1} be a finite sequence of elements of \mathbb{C}, a_{2} be an element of \mathbb{R}, and y_{2} be a finite sequence of elements of \mathbb{R}. If $a_{1}=a_{2}$ and $y_{1}=y_{2}$ and len $y_{1}=\operatorname{len} y_{2}$, then $\cdot{ }_{\mathbb{C}}^{\left(a_{1}\right)} \cdot y_{1}=\cdot_{\mathbb{R}}^{a_{2}} \cdot y_{2}$.
(62) Let a_{1} be a complex number, y_{1} be a finite sequence of elements of \mathbb{C}, a_{2} be an element of \mathbb{R}, and y_{2} be a finite sequence of elements of \mathbb{R}. If $a_{1}=a_{2}$ and $y_{1}=y_{2}$ and len $y_{1}=\operatorname{len} y_{2}$, then $a_{1} \cdot y_{1}=a_{2} \cdot y_{2}$.
(63) For all complex numbers a, b holds $(a+b) \cdot z=a \cdot z+b \cdot z$.
(64) For all complex numbers a, b holds $(a-b) \cdot z=a \cdot z-b \cdot z$.
(65) Let a be an element of \mathbb{C} and x be a finite sequence of elements of \mathbb{C}. Then $\Re(a \cdot x)=\Re(a) \cdot \Re(x)-\Im(a) \cdot \Im(x)$ and $\Im(a \cdot x)=\Im(a) \cdot \Re(x)+$ $\Re(a) \cdot \Im(x)$.

2. The Inner Product and Conjugate of Finite Sequences

The following propositions are true:
(66) For all finite sequences x_{1}, x_{2}, y of elements of \mathbb{C} such that len $x_{1}=\operatorname{len} x_{2}$ and len $x_{2}=\operatorname{len} y$ holds $\left|\left(x_{1}+x_{2}, y\right)\right|=\left|\left(x_{1}, y\right)\right|+\left|\left(x_{2}, y\right)\right|$.
(67) For all finite sequences x_{1}, x_{2} of elements of \mathbb{C} such that len $x_{1}=\operatorname{len} x_{2}$ holds $\left|\left(-x_{1}, x_{2}\right)\right|=-\left|\left(x_{1}, x_{2}\right)\right|$.
(68) For all finite sequences x_{1}, x_{2} of elements of \mathbb{C} such that len $x_{1}=\operatorname{len} x_{2}$ holds $\left|\left(x_{1},-x_{2}\right)\right|=-\left|\left(x_{1}, x_{2}\right)\right|$.
(69) For all finite sequences x_{1}, x_{2} of elements of \mathbb{C} such that len $x_{1}=\operatorname{len} x_{2}$ holds $\left|\left(-x_{1},-x_{2}\right)\right|=\left|\left(x_{1}, x_{2}\right)\right|$.
(70) For all finite sequences x_{1}, x_{2}, x_{3} of elements of \mathbb{C} such that len $x_{1}=$ len x_{2} and len $x_{2}=\operatorname{len} x_{3}$ holds $\left|\left(x_{1}-x_{2}, x_{3}\right)\right|=\left|\left(x_{1}, x_{3}\right)\right|-\left|\left(x_{2}, x_{3}\right)\right|$.
(71) For all finite sequences x, y_{1}, y_{2} of elements of \mathbb{C} such that len $x=\operatorname{len} y_{1}$ and len $y_{1}=\operatorname{len} y_{2}$ holds $\left|\left(x, y_{1}+y_{2}\right)\right|=\left|\left(x, y_{1}\right)\right|+\left|\left(x, y_{2}\right)\right|$.
(72) For all finite sequences x, y_{1}, y_{2} of elements of \mathbb{C} such that len $x=\operatorname{len} y_{1}$ and len $y_{1}=\operatorname{len} y_{2}$ holds $\left|\left(x, y_{1}-y_{2}\right)\right|=\left|\left(x, y_{1}\right)\right|-\left|\left(x, y_{2}\right)\right|$.
(73) Let $x_{1}, x_{2}, y_{1}, y_{2}$ be finite sequences of elements of \mathbb{C}. If len $x_{1}=\operatorname{len} x_{2}$ and len $x_{2}=\operatorname{len} y_{1}$ and len $y_{1}=\operatorname{len} y_{2}$, then $\left|\left(x_{1}+x_{2}, y_{1}+y_{2}\right)\right|=\left|\left(x_{1}, y_{1}\right)\right|+$ $\left|\left(x_{1}, y_{2}\right)\right|+\left|\left(x_{2}, y_{1}\right)\right|+\left|\left(x_{2}, y_{2}\right)\right|$.
(74) Let $x_{1}, x_{2}, y_{1}, y_{2}$ be finite sequences of elements of \mathbb{C}. If len $x_{1}=$ len x_{2} and len $x_{2}=\operatorname{len} y_{1}$ and len $y_{1}=\operatorname{len} y_{2}$, then $\left|\left(x_{1}-x_{2}, y_{1}-y_{2}\right)\right|=$ $\left(\left|\left(x_{1}, y_{1}\right)\right|-\left|\left(x_{1}, y_{2}\right)\right|-\left|\left(x_{2}, y_{1}\right)\right|\right)+\left|\left(x_{2}, y_{2}\right)\right|$.
(75) For all finite sequences x, y of elements of \mathbb{C} such that len $x=\operatorname{len} y$ holds $|(x, y)|=\overline{|(y, x)|}$.
(76) For all finite sequences x, y of elements of \mathbb{C} such that len $x=\operatorname{len} y$ holds $|(x+y, x+y)|=|(x, x)|+2 \cdot \Re(|(x, y)|)+|(y, y)|$.
(77) For all finite sequences x, y of elements of \mathbb{C} such that len $x=\operatorname{len} y$ holds $|(x-y, x-y)|=(|(x, x)|-2 \cdot \Re(|(x, y)|))+|(y, y)|$.
(78) For every element a of \mathbb{C} and for all finite sequences x, y of elements of \mathbb{C} such that len $x=\operatorname{len} y$ holds $|(a \cdot x, y)|=a \cdot|(x, y)|$.
(79) For every element a of \mathbb{C} and for all finite sequences x, y of elements of \mathbb{C} such that len $x=\operatorname{len} y$ holds $|(x, a \cdot y)|=\bar{a} \cdot|(x, y)|$.
(80) Let a, b be elements of \mathbb{C} and x, y, z be finite sequences of elements of \mathbb{C}. If len $x=\operatorname{len} y$ and len $y=\operatorname{len} z$, then $|(a \cdot x+b \cdot y, z)|=a \cdot|(x, z)|+b \cdot|(y, z)|$.
(81) Let a, b be elements of \mathbb{C} and x, y, z be finite sequences of elements of \mathbb{C}. If len $x=\operatorname{len} y$ and len $y=\operatorname{len} z$, then $|(x, a \cdot y+b \cdot z)|=\bar{a} \cdot|(x, y)|+\bar{b} \cdot|(x, z)|$.

References

[1] Kanchun and Yatsuka Nakamura. The inner product of finite sequences and of points of n-dimensional topological space. Formalized Mathematics, 11(2):179-183, 2003.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[5] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[6] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[7] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[10] Czesiaw Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[11] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[12] Czesław Byliński and Andrzej Trybulec. Complex spaces. Formalized Mathematics, 2(1):151-158, 1991.
[13] Wenpai Chang, Hiroshi Yamazaki, and Yatsuka Nakamura. A theory of matrices of complex elements. Formalized Mathematics, 13(1):157-162, 2005.
[14] Library Committee of the Association of Mizar Users. Binary operations on numbers. To appear in Formalized Mathematics.
[15] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[16] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, $1(\mathbf{1}): 73-83,1990$.

Received April 25, 2005

Inferior Limit and Superior Limit of Sequences of Real Numbers

Bo Zhang
Shinshu University
Nagano, Japan

Hiroshi Yamazaki
Shinshu University
Nagano, Japan

Yatsuka Nakamura
Shinshu University
Nagano, Japan

Abstract

Summary. The concept of inferior limit and superior limit of sequences of real numbers is defined here. This article contains the following items: definition of the superior sequence and the inferior sequence of real numbers, definition of the superior limit and the inferior limit of real number, and definition of the relation between the limit value and the superior limit, the inferior limit of sequences of real numbers.

MML identifier: RINFSUP1, version: 7.5.01 4.39.921

The articles [2], [12], [6], [1], [3], [13], [10], [8], [15], [9], [16], [4], [14], [5], [11], and $[7]$ provide the terminology and notation for this paper.

We adopt the following rules: n, m, k denote natural numbers, r, s, t denote real numbers, and s_{1}, s_{2}, s_{3} denote sequences of real numbers.

One can prove the following proposition
(1) $s-r<t$ and $s+r>t$ iff $|t-s|<r$.

Let s_{1} be a sequence of real numbers. The functor $\sup s_{1}$ yielding a real number is defined by:
(Def. 1) $\sup s_{1}=\sup \operatorname{rng} s_{1}$.
Let s_{1} be a sequence of real numbers. The functor $\inf s_{1}$ yielding a real number is defined as follows:
(Def. 2) $\quad \inf s_{1}=\inf \operatorname{rng} s_{1}$.
The following propositions are true:
(2) $\left(s_{2}+s_{3}\right)-s_{3}=s_{2}$.
(3) $r \in \operatorname{rng} s_{1}$ iff $-r \in \operatorname{rng}\left(-s_{1}\right)$.
(4) $\operatorname{rng}\left(-s_{1}\right)=-\operatorname{rng} s_{1}$.
(5) s_{1} is upper bounded iff $\mathrm{rng} s_{1}$ is upper bounded.
(6) s_{1} is lower bounded iff $\mathrm{rng} s_{1}$ is lower bounded.
(7) Suppose s_{1} is upper bounded. Then $r=\sup s_{1}$ if and only if the following conditions are satisfied:
(i) for every n holds $s_{1}(n) \leq r$, and
(ii) for every s such that $0<s$ there exists k such that $r-s<s_{1}(k)$.
(8) Suppose s_{1} is lower bounded. Then $r=\inf s_{1}$ if and only if the following conditions are satisfied:
(i) for every n holds $r \leq s_{1}(n)$, and
(ii) for every s such that $0<s$ there exists k such that $s_{1}(k)<r+s$.
(9) For every n holds $s_{1}(n) \leq r$ iff s_{1} is upper bounded and $\sup s_{1} \leq r$.
(10) For every n holds $r \leq s_{1}(n)$ iff s_{1} is lower bounded and $r \leq \inf s_{1}$.
(11) s_{1} is upper bounded iff $-s_{1}$ is lower bounded.
(12) s_{1} is lower bounded iff $-s_{1}$ is upper bounded.
(13) If s_{1} is upper bounded, then $\sup s_{1}=-\inf \left(-s_{1}\right)$.
(14) If s_{1} is lower bounded, then $\inf s_{1}=-\sup \left(-s_{1}\right)$.
(15) If s_{2} is lower bounded and s_{3} is lower bounded, then $\inf \left(s_{2}+s_{3}\right) \geq$ $\inf s_{2}+\inf s_{3}$.
(16) If s_{2} is upper bounded and s_{3} is upper bounded, then $\sup \left(s_{2}+s_{3}\right) \leq$ $\sup s_{2}+\sup s_{3}$.
Let f be a sequence of real numbers. We introduce f is non-negative as a synonym of f is non-negative yielding.

Let f be a sequence of real numbers. Let us observe that f is non-negative if and only if:
(Def. 3) For every n holds $f(n) \geq 0$.
The following propositions are true:
(17) If s_{1} is non-negative, then $s_{1} \uparrow k$ is non-negative.
(18) If s_{1} is lower bounded and non-negative, then $\inf s_{1} \geq 0$.
(19) If s_{1} is upper bounded and non-negative, then $\sup s_{1} \geq 0$.
(20) Suppose s_{2} is lower bounded and non-negative and s_{3} is lower bounded and non-negative. Then $s_{2} s_{3}$ is lower bounded and $\inf \left(s_{2} s_{3}\right) \geq \inf s_{2}$. $\inf s_{3}$.
(21) Suppose s_{2} is upper bounded and non-negative and s_{3} is upper bounded and non-negative. Then $s_{2} s_{3}$ is upper bounded and $\sup \left(s_{2} s_{3}\right) \leq \sup s_{2}$. $\sup s_{3}$.
(22) If s_{1} is non-decreasing and upper bounded, then s_{1} is bounded.
(23) If s_{1} is non-increasing and lower bounded, then s_{1} is bounded.
(24) If s_{1} is non-decreasing and upper bounded, then $\lim s_{1}=\sup s_{1}$.
(25) If s_{1} is non-increasing and lower bounded, then $\lim s_{1}=\inf s_{1}$.
(26) If s_{1} is upper bounded, then $s_{1} \uparrow k$ is upper bounded.
(27) If s_{1} is lower bounded, then $s_{1} \uparrow k$ is lower bounded.
(28) If s_{1} is bounded, then $s_{1} \uparrow k$ is bounded.
(29) For all s_{1}, n holds $\left\{s_{1}(k): n \leq k\right\}$ is a subset of \mathbb{R}.
(30) $\operatorname{rng}\left(s_{1} \uparrow k\right)=\left\{s_{1}(n): k \leq n\right\}$.
(31) If s_{1} is upper bounded, then for every n and for every subset R of \mathbb{R} such that $R=\left\{s_{1}(k): n \leq k\right\}$ holds R is upper bounded.
(32) If s_{1} is lower bounded, then for every n and for every subset R of \mathbb{R} such that $R=\left\{s_{1}(k): n \leq k\right\}$ holds R is lower bounded.
(33) If s_{1} is bounded, then for every n and for every subset R of \mathbb{R} such that $R=\left\{s_{1}(k): n \leq k\right\}$ holds R is bounded.
(34) If s_{1} is non-decreasing, then for every n and for every subset R of \mathbb{R} such that $R=\left\{s_{1}(k): n \leq k\right\}$ holds $\inf R=s_{1}(n)$.
(35) If s_{1} is non-increasing, then for every n and for every subset R of \mathbb{R} such that $R=\left\{s_{1}(k): n \leq k\right\}$ holds $\sup R=s_{1}(n)$.
(36) Let given s_{1}. Then there exists a function f from \mathbb{N} into \mathbb{R} such that for every n and for every subset Y of \mathbb{R} if $Y=\left\{s_{1}(k): n \leq k\right\}$, then $f(n)=\sup Y$.
(37) Let given s_{1}. Then there exists a function f from \mathbb{N} into \mathbb{R} such that for every n and for every subset Y of \mathbb{R} if $Y=\left\{s_{1}(k): n \leq k\right\}$, then $f(n)=\inf Y$.
Let s_{1} be a sequence of real numbers. The inferior realsequence s_{1} yields a sequence of real numbers and is defined as follows:
(Def. 4) For every n and for every subset Y of \mathbb{R} such that $Y=\left\{s_{1}(k): n \leq k\right\}$ holds (the inferior realsequence $\left.s_{1}\right)(n)=\inf Y$.
Let s_{1} be a sequence of real numbers. The superior realsequence s_{1} yields a sequence of real numbers and is defined by:
(Def. 5) For every n and for every subset Y of \mathbb{R} such that $Y=\left\{s_{1}(k): n \leq k\right\}$ holds $\left(\right.$ the superior realsequence $\left.s_{1}\right)(n)=\sup Y$.
Next we state a number of propositions:
(38) (The inferior realsequence $\left.s_{1}\right)(n)=\inf \left(s_{1} \uparrow n\right)$.
(39) (The superior realsequence $\left.s_{1}\right)(n)=\sup \left(s_{1} \uparrow n\right)$.
(40) If s_{1} is lower bounded, then (the inferior realsequence $\left.s_{1}\right)(0)=\inf s_{1}$.
(41) If s_{1} is upper bounded, then (the superior realsequence $\left.s_{1}\right)(0)=\sup s_{1}$.
(42) Suppose s_{1} is lower bounded. Then $r=\left(\right.$ the inferior realsequence $\left.s_{1}\right)(n)$ if and only if for every k holds $r \leq s_{1}(n+k)$ and for every s such that $0<s$ there exists k such that $s_{1}(n+k)<r+s$.
(43) Suppose s_{1} is upper bounded. Then $r=$ (the superior realsequence $\left.s_{1}\right)(n)$ if and only if for every k holds $s_{1}(n+k) \leq r$ and for every s such that $0<s$ there exists k such that $r-s<s_{1}(n+k)$.
(44) If s_{1} is lower bounded, then for every k holds $r \leq s_{1}(n+k)$ iff $r \leq$ (the inferior realsequence $\left.s_{1}\right)(n)$.
(45) Suppose s_{1} is lower bounded. Then for every m such that $n \leq m$ holds $r \leq s_{1}(m)$ if and only if $r \leq$ (the inferior realsequence $\left.s_{1}\right)(n)$.
(46) If s_{1} is upper bounded, then for every k holds $s_{1}(n+k) \leq r$ iff (the superior realsequence $\left.s_{1}\right)(n) \leq r$.
(47) Suppose s_{1} is upper bounded. Then for every m such that $n \leq m$ holds $s_{1}(m) \leq r$ if and only if (the superior realsequence $\left.s_{1}\right)(n) \leq r$.
(48) If s_{1} is lower bounded, then (the inferior realsequence $\left.s_{1}\right)(n)=\min (($ the inferior realsequence $\left.\left.s_{1}\right)(n+1), s_{1}(n)\right)$.
(49) If s_{1} is upper bounded, then (the superior realsequence $\left.s_{1}\right)(n)=$ $\max \left(\left(\right.\right.$ the superior realsequence $\left.\left.s_{1}\right)(n+1), s_{1}(n)\right)$.
(50) If s_{1} is lower bounded, then (the inferior realsequence $\left.s_{1}\right)(n) \leq$ (the inferior realsequence $\left.s_{1}\right)(n+1)$.
(51) If s_{1} is upper bounded, then (the superior realsequence $\left.s_{1}\right)(n+1) \leq$ (the superior realsequence $\left.s_{1}\right)(n)$.
(52) If s_{1} is lower bounded, then the inferior realsequence s_{1} is non-decreasing.
(53) If s_{1} is upper bounded, then the superior realsequence s_{1} is nonincreasing.
(54) If s_{1} is bounded, then (the inferior realsequence $\left.s_{1}\right)(n) \leq$ (the superior realsequence $\left.s_{1}\right)(n)$.
(55) If s_{1} is bounded, then (the inferior realsequence $\left.s_{1}\right)(n) \leq \inf$ (the superior realsequence s_{1}).
(56) If s_{1} is bounded, then $\sup \left(\right.$ the inferior realsequence $\left.s_{1}\right) \leq($ the superior realsequence $\left.s_{1}\right)(n)$.
(57) If s_{1} is bounded, then \sup (the inferior realsequence s_{1}) $\leq \inf$ (the superior realsequence s_{1}).
(58) If s_{1} is bounded, then the superior realsequence s_{1} is bounded and the inferior realsequence s_{1} is bounded.
(59) Suppose s_{1} is bounded. Then
(i) the inferior realsequence s_{1} is convergent, and
(ii) $\lim \left(\right.$ the inferior realsequence $\left.s_{1}\right)=\sup \left(\right.$ the inferior realsequence $\left.s_{1}\right)$.
(60) Suppose s_{1} is bounded. Then
(i) the superior realsequence s_{1} is convergent, and
(ii) $\lim \left(\right.$ the superior realsequence $\left.s_{1}\right)=\inf \left(\right.$ the superior realsequence $\left.s_{1}\right)$.
(61) If s_{1} is lower bounded, then (the inferior realsequence $\left.s_{1}\right)(n)=$ $-\left(\right.$ the superior realsequence $\left.-s_{1}\right)(n)$.
(62) If s_{1} is upper bounded, then (the superior realsequence $\left.s_{1}\right)(n)=$ $-\left(\right.$ the inferior realsequence $\left.-s_{1}\right)(n)$.
(63) If s_{1} is lower bounded, then the inferior realsequence $s_{1}=$ -the superior realsequence $-s_{1}$.
(64) If s_{1} is upper bounded, then the superior realsequence $s_{1}=$ -the inferior realsequence $-s_{1}$.
(65) If s_{1} is non-decreasing, then $s_{1}(n) \leq$ (the inferior realsequence $\left.s_{1}\right)(n+1)$.
(66) If s_{1} is non-decreasing, then the inferior realsequence $s_{1}=s_{1}$.
(67) If s_{1} is non-decreasing and upper bounded, then $s_{1}(n) \leq$ (the superior realsequence $\left.s_{1}\right)(n+1)$.
(68) Suppose s_{1} is non-decreasing and upper bounded. Then (the superior realsequence $\left.s_{1}\right)(n)=\left(\right.$ the superior realsequence $\left.s_{1}\right)(n+1)$.
(69) Suppose s_{1} is non-decreasing and upper bounded. Then (the superior realsequence $\left.s_{1}\right)(n)=\sup s_{1}$ and the superior realsequence s_{1} is constant.
(70) If s_{1} is non-decreasing and upper bounded, then \inf (the superior realsequence $\left.s_{1}\right)=\sup s_{1}$.
(71) If s_{1} is non-increasing, then (the superior realsequence $\left.s_{1}\right)(n+1) \leq s_{1}(n)$.
(72) If s_{1} is non-increasing, then the superior realsequence $s_{1}=s_{1}$.
(73) If s_{1} is non-increasing and lower bounded, then (the inferior realsequence $\left.s_{1}\right)(n+1) \leq s_{1}(n)$.
(74) Suppose s_{1} is non-increasing and lower bounded. Then (the inferior realsequence $\left.s_{1}\right)(n)=\left(\right.$ the inferior realsequence $\left.s_{1}\right)(n+1)$.
(75) Suppose s_{1} is non-increasing and lower bounded. Then (the inferior realsequence $\left.s_{1}\right)(n)=\inf s_{1}$ and the inferior realsequence s_{1} is constant.
(76) If s_{1} is non-increasing and lower bounded, then \sup (the inferior realsequence $\left.s_{1}\right)=\inf s_{1}$.
(77) Suppose s_{2} is bounded and s_{3} is bounded and for every n holds $s_{2}(n) \leq$ $s_{3}(n)$. Then
(i) for every n holds (the superior realsequence $\left.s_{2}\right)(n) \leq$ (the superior realsequence $\left.s_{3}\right)(n)$, and
(ii) for every n holds (the inferior realsequence $\left.s_{2}\right)(n) \leq($ the inferior realsequence $\left.s_{3}\right)(n)$.
(78) Suppose s_{2} is lower bounded and s_{3} is lower bounded. Then (the inferior realsequence $\left.s_{2}+s_{3}\right)(n) \geq$ (the inferior realsequence $\left.s_{2}\right)(n)+($ the inferior realsequence $\left.s_{3}\right)(n)$.
(79) Suppose s_{2} is upper bounded and s_{3} is upper bounded. Then (the superior realsequence $\left.s_{2}+s_{3}\right)(n) \leq\left(\right.$ the superior realsequence $\left.s_{2}\right)(n)+($ the
superior realsequence $\left.s_{3}\right)(n)$.
(80) Suppose s_{2} is lower bounded and non-negative and s_{3} is lower bounded and non-negative. Then (the inferior realsequence $\left.s_{2} s_{3}\right)(n) \geq$ (the inferior realsequence $\left.s_{2}\right)(n) \cdot\left(\right.$ the inferior realsequence $\left.s_{3}\right)(n)$.
(81) Suppose s_{2} is lower bounded and non-negative and s_{3} is lower bounded and non-negative. Then (the inferior realsequence $\left.s_{2} s_{3}\right)(n) \geq$ (the inferior realsequence $\left.s_{2}\right)(n) \cdot\left(\right.$ the inferior realsequence $\left.s_{3}\right)(n)$.
(82) Suppose s_{2} is upper bounded and non-negative and s_{3} is upper bounded and non-negative. Then (the superior realsequence $\left.s_{2} s_{3}\right)(n) \leq($ the superior realsequence $\left.s_{2}\right)(n) \cdot\left(\right.$ the superior realsequence $\left.s_{3}\right)(n)$.
Let s_{1} be a sequence of real numbers. The functor $\lim \sup s_{1}$ yielding an element of \mathbb{R} is defined as follows:
(Def. 6) $\lim \sup s_{1}=\inf \left(\right.$ the superior realsequence $\left.s_{1}\right)$.
Let s_{1} be a sequence of real numbers. The functor $\lim \inf s_{1}$ yielding an element of \mathbb{R} is defined by:
(Def. 7) $\liminf s_{1}=\sup \left(\right.$ the inferior realsequence $\left.s_{1}\right)$.
Next we state a number of propositions:
(83) If s_{1} is bounded, then liminf $s_{1} \leq r$ iff for every s such that $0<s$ and for every n there exists k such that $s_{1}(n+k)<r+s$.
(84) If s_{1} is bounded, then $r \leq \liminf s_{1}$ iff for every s such that $0<s$ there exists n such that for every k holds $r-s<s_{1}(n+k)$.
(85) Suppose s_{1} is bounded. Then $r=\liminf s_{1}$ if and only if for every s such that $0<s$ holds for every n there exists k such that $s_{1}(n+k)<r+s$ and there exists n such that for every k holds $r-s<s_{1}(n+k)$.
(86) If s_{1} is bounded, then $r \leq \lim \sup s_{1}$ iff for every s such that $0<s$ and for every n there exists k such that $s_{1}(n+k)>r-s$.
(87) If s_{1} is bounded, then $\lim \sup s_{1} \leq r$ iff for every s such that $0<s$ there exists n such that for every k holds $s_{1}(n+k)<r+s$.
(88) Suppose s_{1} is bounded. Then $r=\limsup s_{1}$ if and only if for every s such that $0<s$ holds for every n there exists k such that $s_{1}(n+k)>r-s$ and there exists n such that for every k holds $s_{1}(n+k)<r+s$.
(89) If s_{1} is bounded, then $\lim \inf s_{1} \leq \limsup s_{1}$.
(90) s_{1} is bounded and $\limsup s_{1}=\lim \inf s_{1} \operatorname{iff} s_{1}$ is convergent.
(91) If s_{1} is convergent, then $\lim s_{1}=\limsup s_{1}$ and $\lim s_{1}=\lim \inf s_{1}$.
(92) If s_{1} is bounded, then $\limsup \left(-s_{1}\right)=-\liminf s_{1}$ and $\liminf \left(-s_{1}\right)=$ $-\lim \sup s_{1}$.
(93) If s_{2} is bounded and s_{3} is bounded and for every n holds $s_{2}(n) \leq s_{3}(n)$, then $\limsup s_{2} \leq \lim \sup s_{3}$ and $\lim \inf s_{2} \leq \liminf s_{3}$.
(94) Suppose s_{2} is bounded and s_{3} is bounded. Then $\lim \inf s_{2}+\liminf s_{3} \leq$ $\lim \inf \left(s_{2}+s_{3}\right)$ and $\lim \inf \left(s_{2}+s_{3}\right) \leq \lim \inf s_{2}+\lim \sup s_{3}$ and $\lim \inf \left(s_{2}+\right.$ $\left.s_{3}\right) \leq \lim \sup s_{2}+\lim \inf s_{3}$ and $\lim \inf s_{2}+\lim \sup s_{3} \leq \lim \sup \left(s_{2}+s_{3}\right)$ and $\lim \sup s_{2}+\lim \inf s_{3} \leq \lim \sup \left(s_{2}+s_{3}\right)$ and $\lim \sup \left(s_{2}+s_{3}\right) \leq \lim \sup s_{2}+$ $\lim \sup s_{3}$ and if s_{2} is convergent or s_{3} is convergent, then $\lim \inf \left(s_{2}+s_{3}\right)=$ $\liminf s_{2}+\liminf s_{3}$ and $\limsup \left(s_{2}+s_{3}\right)=\limsup s_{2}+\limsup s_{3}$.
(95) If s_{2} is bounded and non-negative and s_{3} is bounded and non-negative, then $\liminf s_{2} \cdot \liminf s_{3} \leq \liminf \left(s_{2} s_{3}\right)$ and $\lim \sup \left(s_{2} s_{3}\right) \leq \lim \sup s_{2}$. $\lim \sup s_{3}$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[7] Artur Korniłowicz. On the real valued functions. Formalized Mathematics, 13(1):181-187, 2005.
[8] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[9] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[10] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[11] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[12] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[14] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received April 29, 2005

Formulas and Identities of Inverse Hyperbolic Functions

Fuguo Ge
Qingdao University of Science and Technology
China

Xiquan Liang
Qingdao University of Science
and Technology
China

Yuzhong Ding
Qingdao University of Science
and Technology
China

Summary. This article describes definitions of inverse hyperbolic functions and their main properties, as well as some addition formulas with hyperbolic functions.

MML identifier: SIN_COS7, version: 7.5.01 4.39.921

The papers [1], [8], [4], [2], [9], [3], [6], [5], and [7] provide the terminology and notation for this paper.

1. Preliminaries

In this paper x, y, t denote real numbers.
Next we state a number of propositions:
(1) If $x>0$, then $\frac{1}{x}=x^{-1}$.
(2) If $x>1$, then $\left(\frac{\sqrt{x^{2}-1}}{x}\right)^{2}<1$.
(3) $\left(\frac{x}{\sqrt{x^{2}+1}}\right)^{2}<1$.
(4) $\sqrt{x^{2}+1}>0$.
(5) $\sqrt{x^{2}+1}+x>0$.
(6) If $y \geq 0$ and $x \geq 1$, then $\frac{x+1}{y} \geq 0$.
(7) If $y \geq 0$ and $x \geq 1$, then $\frac{x-1}{y} \geq 0$.
(8) If $x \geq 1$, then $\sqrt{\frac{x+1}{2}} \geq 1$.
(9) If $y \geq 0$ and $x \geq 1$, then $\frac{x^{2}-1}{y} \geq 0$.
(10) If $x \geq 1$, then $\sqrt{\frac{x+1}{2}}+\sqrt{\frac{x-1}{2}}>0$.
(11) If $x^{2}<1$, then $x+1>0$ and $1-x>0$.
(12) If $x \neq 1$, then $(1-x)^{2}>0$.
(13) If $x^{2}<1$, then $\frac{x^{2}+1}{1-x^{2}} \geq 0$.
(14) If $x^{2}<1$, then $\left(\frac{2 \cdot x}{1+x^{2}}\right)^{2}<1$.
(15) If $0<x$ and $x<1$, then $\frac{1+x}{1-x}>0$.
(16) If $0<x$ and $x<1$, then $x^{2}<1$.
(17) If $0<x$ and $x<1$, then $\frac{1}{\sqrt{1-x^{2}}}>1$.
(18) If $0<x$ and $x<1$, then $\frac{2 \cdot x}{1-x^{2}}>0$.
(19) If $0<x$ and $x<1$, then $0<\left(1-x^{2}\right)^{2}$.
(20) If $0<x$ and $x<1$, then $\frac{1+x^{2}}{1-x^{2}}>1$.
(21) If $1<x^{2}$, then $\left(\frac{1}{x}\right)^{2}<1$.
(22) If $0<x$ and $x \leq 1$, then $1-x^{2} \geq 0$.
(23) If $1 \leq x$, then $0<x+\sqrt{x^{2}-1}$.
(24) If $1 \leq x$ and $1 \leq y$, then $0 \leq x \cdot \sqrt{y^{2}-1}+y \cdot \sqrt{x^{2}-1}$.
(25) If $1 \leq x$ and $1 \leq y$ and $|y| \leq|x|$, then $0<y-\sqrt{y^{2}-1}$.
(26) If $1 \leq x$ and $1 \leq y$ and $|y| \leq|x|$, then $0 \leq y \cdot \sqrt{x^{2}-1}-x \cdot \sqrt{y^{2}-1}$.
(27) If $x^{2}<1$ and $y^{2}<1$, then $x \cdot y \neq-1$.
(28) If $x^{2}<1$ and $y^{2}<1$, then $x \cdot y \neq 1$.
(29) If $x \neq 0$, then $\exp x \neq 1$.
(30) If $0 \neq x$, then $(\exp x)^{2}-1 \neq 0$.
(31) If $0<t$, then $\frac{t^{2}-1}{t^{2}+1}<1$.
(32) If $-1<t$ and $t<1$, then $0<\frac{t+1}{1-t}$.

2. Formulas and Identities of Inverse Hyperbolic Functions

Let x be a real number. The functor $\sinh ^{\prime} x$ yields a real number and is defined by:
(Def. 1) $\sinh ^{\prime} x=\log _{e}\left(x+\sqrt{x^{2}+1}\right)$.
Let x be a real number. The functor $\cosh _{1}^{\prime} x$ yielding a real number is defined by:
(Def. 2) $\cosh _{1}^{\prime} x=\log _{e}\left(x+\sqrt{x^{2}-1}\right)$.
Let x be a real number. The functor $\cosh _{2}^{\prime} x$ yields a real number and is defined by:
(Def. 3) $\cosh _{2}^{\prime} x=-\log _{e}\left(x+\sqrt{x^{2}-1}\right)$.
Let x be a real number. The functor $\tanh ^{\prime} x$ yields a real number and is defined by:
(Def. 4) $\tanh ^{\prime} x=\frac{1}{2} \cdot \log _{e}\left(\frac{1+x}{1-x}\right)$.
Let x be a real number. The functor $\operatorname{coth}^{\prime} x$ yielding a real number is defined as follows:
(Def. 5) $\operatorname{coth}^{\prime} x=\frac{1}{2} \cdot \log _{e}\left(\frac{x+1}{x-1}\right)$.
Let x be a real number. The functor $\operatorname{sech}_{1}^{\prime} x$ yields a real number and is defined by:
(Def. 6) $\operatorname{sech}_{1}^{\prime} x=\log _{e}\left(\frac{1+\sqrt{1-x^{2}}}{x}\right)$.
Let x be a real number. The functor sech ${ }_{2}^{\prime} x$ yielding a real number is defined as follows:
(Def. 7) $\operatorname{sech}_{2}^{\prime} x=-\log _{e}\left(\frac{1+\sqrt{1-x^{2}}}{x}\right)$.
Let x be a real number. The functor $\operatorname{csch}^{\prime} x$ yielding a real number is defined by:
(Def. 8)(i) $\operatorname{csch}^{\prime} x=\log _{e}\left(\frac{1+\sqrt{1+x^{2}}}{x}\right)$ if $0<x$,
(ii) $\operatorname{csch}^{\prime} x=\log _{e}\left(\frac{1-\sqrt{1+x^{2}}}{x}\right)$ if $x<0$,
(iii) $x<0$, otherwise.

The following propositions are true:
(33) If $0 \leq x$, then $\sinh ^{\prime} x=\cosh _{1}^{\prime} \sqrt{x^{2}+1}$.
(34) If $x<0$, then $\sinh ^{\prime} x=\cosh _{2}^{\prime} \sqrt{x^{2}+1}$.
(35) $\sinh ^{\prime} x=\tanh ^{\prime}\left(\frac{x}{\sqrt{x^{2}+1}}\right)$.
(36) If $x \geq 1$, then $\cosh _{1}^{\prime} x=\sinh ^{\prime} \sqrt{x^{2}-1}$.
(37) If $x>1$, then $\cosh _{1}^{\prime} x=\tanh ^{\prime}\left(\frac{\sqrt{x^{2}-1}}{x}\right)$.
(38) If $x \geq 1$, then $\cosh _{1}^{\prime} x=2 \cdot \cosh _{1}^{\prime} \sqrt{\frac{x+1}{2}}$.
(39) If $x \geq 1$, then $\cosh _{2}^{\prime} x=2 \cdot \cosh _{2}^{\prime} \sqrt{\frac{x+1}{2}}$.
(40) If $x \geq 1$, then $\cosh _{1}^{\prime} x=2 \cdot \sinh ^{\prime} \sqrt{\frac{x-1}{2}}$.
(41) If $x^{2}<1$, then $\tanh ^{\prime} x=\sinh ^{\prime}\left(\frac{x}{\sqrt{1-x^{2}}}\right)$.
(42) If $0<x$ and $x<1$, then $\tanh ^{\prime} x=\cosh _{1}^{\prime}\left(\frac{1}{\sqrt{1-x^{2}}}\right)$.
(43) If $x^{2}<1$, then $\tanh ^{\prime} x=\frac{1}{2} \cdot \sinh ^{\prime}\left(\frac{2 \cdot x}{1-x^{2}}\right)$.
(44) If $x>0$ and $x<1$, then $\tanh ^{\prime} x=\frac{1}{2} \cdot \cosh _{1}^{\prime}\left(\frac{1+x^{2}}{1-x^{2}}\right)$.
(45) If $x^{2}<1$, then $\tanh ^{\prime} x=\frac{1}{2} \cdot \tanh ^{\prime}\left(\frac{2 \cdot x}{1+x^{2}}\right)$.
(46) If $x^{2}>1$, then $\operatorname{coth}^{\prime} x=\tanh ^{\prime}\left(\frac{1}{x}\right)$.
(47) If $x>0$ and $x \leq 1$, then $\operatorname{sech}_{1}^{\prime} x=\cosh _{1}^{\prime}\left(\frac{1}{x}\right)$.
(48) If $x>0$ and $x \leq 1$, then $\operatorname{sech}_{2}^{\prime} x=\cosh _{2}^{\prime}\left(\frac{1}{x}\right)$.
(49) If $x>0$, then $\operatorname{csch}^{\prime} x=\sinh ^{\prime}\left(\frac{1}{x}\right)$.
(50) If $x \cdot y+\sqrt{x^{2}+1} \cdot \sqrt{y^{2}+1} \geq 0$, then $\sinh ^{\prime} x+\sinh ^{\prime} y=\sinh ^{\prime}\left(x \cdot \sqrt{1+y^{2}}+\right.$ $\left.y \cdot \sqrt{1+x^{2}}\right)$.
(51) $\sinh ^{\prime} x-\sinh ^{\prime} y=\sinh ^{\prime}\left(x \cdot \sqrt{1+y^{2}}-y \cdot \sqrt{1+x^{2}}\right)$.
(52) If $1 \leq x$ and $1 \leq y$, then $\cosh _{1}^{\prime} x+\cosh _{1}^{\prime} y=\cosh _{1}^{\prime}(x \cdot y+$
$\left.\sqrt{\left(x^{2}-1\right) \cdot\left(y^{2}-1\right)}\right)$.
(53) If $1 \leq x$ and $1 \leq y$, then $\cosh _{2}^{\prime} x+\cosh _{2}^{\prime} y=\cosh _{2}^{\prime}(x \cdot y+$
$\left.\sqrt{\left(x^{2}-1\right) \cdot\left(y^{2}-1\right)}\right)$.
(54) If $1 \leq x$ and $1 \leq y$ and $|y| \leq|x|$, then $\cosh _{1}^{\prime} x-\cosh _{1}^{\prime} y=\cosh _{1}^{\prime}(x \cdot y-$ $\left.\sqrt{\left(x^{2}-1\right) \cdot\left(y^{2}-1\right)}\right)$.
(55) If $1 \leq x$ and $1 \leq y$ and $|y| \leq|x|$, then $\cosh _{2}^{\prime} x-\cosh _{2}^{\prime} y=\cosh _{2}^{\prime}(x \cdot y-$ $\left.\sqrt{\left(x^{2}-1\right) \cdot\left(y^{2}-1\right)}\right)$.
(56) If $x^{2}<1$ and $y^{2}<1$, then $\tanh ^{\prime} x+\tanh ^{\prime} y=\tanh ^{\prime}\left(\frac{x+y}{1+x \cdot y}\right)$.
(57) If $x^{2}<1$ and $y^{2}<1$, then $\tanh ^{\prime} x-\tanh ^{\prime} y=\tanh ^{\prime}\left(\frac{x-y}{1-x \cdot y}\right)$.
(58) If $0<x$ and $\left(\frac{x-1}{x+1}\right)^{2}<1$, then $\log _{e} x=2 \cdot \tanh ^{\prime}\left(\frac{x-1}{x+1}\right)$.
(59) If $0<x$ and $\left(\frac{x^{2}-1}{x^{2}+1}\right)^{2}<1$, then $\log _{e} x=\tanh ^{\prime}\left(\frac{x^{2}-1}{x^{2}+1}\right)$.
(60) If $1<x$ and $1 \leq \frac{x^{2}+1}{2 \cdot x}$, then $\log _{e} x=\cosh _{1}^{\prime}\left(\frac{x^{2}+1}{2 \cdot x}\right)$.
(61) If $0<x$ and $x<1$ and $1 \leq \frac{x^{2}+1}{2 \cdot x}$, then $\log _{e} x=\cosh _{2}^{\prime}\left(\frac{x^{2}+1}{2 \cdot x}\right)$.
(62) If $0<x$, then $\log _{e} x=\sinh ^{\prime}\left(\frac{x^{2}-1}{2 \cdot x}\right)$.
(63) If $y=\frac{1}{2} \cdot(\exp x-\exp (-x))$, then $x=\log _{e}\left(y+\sqrt{y^{2}+1}\right)$.
(64) If $y=\frac{1}{2} \cdot(\exp x+\exp (-x))$ and $1 \leq y$, then $x=\log _{e}\left(y+\sqrt{y^{2}-1}\right)$ or $x=-\log _{e}\left(y+\sqrt{y^{2}-1}\right)$.
(65) If $y=\frac{\exp x-\exp (-x)}{\exp x+\exp (-x)}$, then $x=\frac{1}{2} \cdot \log _{e}\left(\frac{1+y}{1-y}\right)$.
(66) If $y=\frac{\exp x+\exp (-x)}{\exp x-\exp (-x)}$ and $x \neq 0$, then $x=\frac{1}{2} \cdot \log _{e}\left(\frac{y+1}{y-1}\right)$.
(67) If $y=\frac{1}{\frac{\exp x+\exp (-x)}{2}}$, then $x=\log _{e}\left(\frac{1+\sqrt{1-y^{2}}}{y}\right)$ or $x=-\log _{e}\left(\frac{1+\sqrt{1-y^{2}}}{y}\right)$.
(68) If $y=\frac{1}{\frac{\exp x-\exp (-x)}{2}}$ and $x \neq 0$, then $x=\log _{e}\left(\frac{1+\sqrt{1+y^{2}}}{y}\right)$ or $x=$ $\log _{e}\left(\frac{1-\sqrt{1+y^{2}}}{y}\right)$.
(69) (The function $\cosh)(2 \cdot x)=1+2 \cdot($ the function $\sinh)(x)^{2}$.
(70) (The function cosh) $(x)^{2}=1+($ the function $\sinh)(x)^{2}$.
(71) (The function $\sinh)(x)^{2}=($ the function $\cosh)(x)^{2}-1$.
(72) $\quad \sinh (5 \cdot x)=5 \cdot \sinh x+20 \cdot(\sinh x)^{3}+16 \cdot(\sinh x)^{5}$.
(73) $\cosh (5 \cdot x)=\left(5 \cdot \cosh x-20 \cdot(\cosh x)^{3}\right)+16 \cdot(\cosh x)^{5}$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[3] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[4] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[5] Takashi Mitsuishi and Yuguang Yang. Properties of the trigonometric function. Formalized Mathematics, 8(1):103-106, 1999.
[6] Library Committee of the Association of Mizar Users. Binary operations on numbers. To appear in Formalized Mathematics.
[7] Konrad Raczkowski and Andrzej Nȩdzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
[8] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[9] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.

Received May 24, 2005

Lines on Planes in n-Dimensional Euclidean Spaces

Akihiro Kubo
Shinshu University, Nagano, Japan

Abstract

Summary. In the paper we introduce basic properties of lines in the plane on this space. Lines and planes are expressed by the vector equation and are the image of \mathbb{R} and \mathbb{R}^{2}. By this, we can say that the properties of the classic Euclid geometry are satisfied also in \mathcal{R}^{n} as we know them intuitively. Next, we define the metric between the point and the line of this space.

MML identifier: EUCLIDLP, version: 7.5.01 4.39.921

The notation and terminology used here are introduced in the following papers: [1], [5], [12], [4], [9], [14], [13], [8], [15], [6], [2], [3], [7], [11], and [10].

We follow the rules: $a, a_{1}, a_{2}, a_{3}, b, b_{1}, b_{2}, b_{3}, r, s, t, u$ are real numbers, n is a natural number, and $x_{0}, x, x_{1}, x_{2}, x_{3}, y_{0}, y, y_{1}, y_{2}, y_{3}$ are elements of \mathcal{R}^{n}.

One can prove the following propositions:
(1) $\frac{s}{t} \cdot(u \cdot x)=\frac{s \cdot u}{t} \cdot x$ and $\frac{1}{t} \cdot(u \cdot x)=\frac{u}{t} \cdot x$.
(2) $x_{1}+\left(x_{2}+x_{3}\right)=\left(x_{1}+x_{2}\right)+x_{3}$.
(3) $x-\langle\underbrace{0, \ldots, 0}_{n}\rangle=x$.
(4)
$\langle\underbrace{0, \ldots, 0}_{n}\rangle-x=-x$.
(5) $x_{1}-\left(x_{2}+x_{3}\right)=x_{1}-x_{2}-x_{3}$.
(6) $x_{1}-x_{2}=x_{1}+-x_{2}$.
(7) $x-x=\langle\underbrace{0, \ldots, 0}_{n}\rangle$ and $x+-x=\langle\underbrace{0, \ldots, 0}_{n}\rangle$.
(8) $\quad-a \cdot x=(-a) \cdot x$ and $-a \cdot x=a \cdot-x$.
(9) $x_{1}-\left(x_{2}-x_{3}\right)=\left(x_{1}-x_{2}\right)+x_{3}$.
(10) $x_{1}+\left(x_{2}-x_{3}\right)=\left(x_{1}+x_{2}\right)-x_{3}$.
(11) $x_{1}=x_{2}+x_{3}$ iff $x_{2}=x_{1}-x_{3}$.
(12) $\quad x=x_{1}+x_{2}+x_{3}$ iff $x-x_{1}=x_{2}+x_{3}$.
(13) $-\left(x_{1}+x_{2}+x_{3}\right)=-x_{1}+-x_{2}+-x_{3}$.
(14) $x_{1}=x_{2}$ iff $x_{1}-x_{2}=\langle\underbrace{0, \ldots, 0}_{n}\rangle$.
(15) If $x_{1}-x_{0}=t \cdot x$ and $x_{1} \neq x_{0}$, then $t \neq 0$.
(16) $(a-b) \cdot x=a \cdot x+(-b) \cdot x$ and $(a-b) \cdot x=a \cdot x+-b \cdot x$ and $(a-b) \cdot x=$ $a \cdot x-b \cdot x$.
(17) $a \cdot(x-y)=a \cdot x+-a \cdot y$ and $a \cdot(x-y)=a \cdot x+(-a) \cdot y$ and $a \cdot(x-y)=$ $a \cdot x-a \cdot y$.
(18) $(s-t-u) \cdot x=s \cdot x-t \cdot x-u \cdot x$.
(19) $x-\left(a_{1} \cdot x_{1}+a_{2} \cdot x_{2}+a_{3} \cdot x_{3}\right)=x+\left(\left(-a_{1}\right) \cdot x_{1}+\left(-a_{2}\right) \cdot x_{2}+\left(-a_{3}\right) \cdot x_{3}\right)$.
(20) $x-(s+t+u) \cdot y=x+(-s) \cdot y+(-t) \cdot y+(-u) \cdot y$.
(21) $\left(x_{1}+x_{2}\right)+\left(y_{1}+y_{2}\right)=x_{1}+y_{1}+\left(x_{2}+y_{2}\right)$.
(22) $\left(x_{1}+x_{2}+x_{3}\right)+\left(y_{1}+y_{2}+y_{3}\right)=x_{1}+y_{1}+\left(x_{2}+y_{2}\right)+\left(x_{3}+y_{3}\right)$.
(23) $\left(x_{1}+x_{2}\right)-\left(y_{1}+y_{2}\right)=\left(x_{1}-y_{1}\right)+\left(x_{2}-y_{2}\right)$.
(24) $\left(x_{1}+x_{2}+x_{3}\right)-\left(y_{1}+y_{2}+y_{3}\right)=\left(x_{1}-y_{1}\right)+\left(x_{2}-y_{2}\right)+\left(x_{3}-y_{3}\right)$.
(25) $a \cdot\left(x_{1}+x_{2}+x_{3}\right)=a \cdot x_{1}+a \cdot x_{2}+a \cdot x_{3}$.
(26) $a \cdot\left(b_{1} \cdot x_{1}+b_{2} \cdot x_{2}\right)=a \cdot b_{1} \cdot x_{1}+a \cdot b_{2} \cdot x_{2}$.
(27) $a \cdot\left(b_{1} \cdot x_{1}+b_{2} \cdot x_{2}+b_{3} \cdot x_{3}\right)=a \cdot b_{1} \cdot x_{1}+a \cdot b_{2} \cdot x_{2}+a \cdot b_{3} \cdot x_{3}$.
(28) $a_{1} \cdot x_{1}+a_{2} \cdot x_{2}+\left(b_{1} \cdot x_{1}+b_{2} \cdot x_{2}\right)=\left(a_{1}+b_{1}\right) \cdot x_{1}+\left(a_{2}+b_{2}\right) \cdot x_{2}$.
(29) $a_{1} \cdot x_{1}+a_{2} \cdot x_{2}+a_{3} \cdot x_{3}+\left(b_{1} \cdot x_{1}+b_{2} \cdot x_{2}+b_{3} \cdot x_{3}\right)=\left(\left(a_{1}+b_{1}\right) \cdot x_{1}+\right.$ $\left.\left(a_{2}+b_{2}\right) \cdot x_{2}\right)+\left(a_{3}+b_{3}\right) \cdot x_{3}$.
(30) $\left(a_{1} \cdot x_{1}+a_{2} \cdot x_{2}\right)-\left(b_{1} \cdot x_{1}+b_{2} \cdot x_{2}\right)=\left(a_{1}-b_{1}\right) \cdot x_{1}+\left(a_{2}-b_{2}\right) \cdot x_{2}$.
(31) $\left(a_{1} \cdot x_{1}+a_{2} \cdot x_{2}+a_{3} \cdot x_{3}\right)-\left(b_{1} \cdot x_{1}+b_{2} \cdot x_{2}+b_{3} \cdot x_{3}\right)=\left(a_{1}-b_{1}\right) \cdot x_{1}+$ $\left(a_{2}-b_{2}\right) \cdot x_{2}+\left(a_{3}-b_{3}\right) \cdot x_{3}$.
(32) If $a_{1}+a_{2}+a_{3}=1$, then $a_{1} \cdot x_{1}+a_{2} \cdot x_{2}+a_{3} \cdot x_{3}=x_{1}+a_{2} \cdot\left(x_{2}-x_{1}\right)+$ $a_{3} \cdot\left(x_{3}-x_{1}\right)$.
(33) If $x=x_{1}+a_{2} \cdot\left(x_{2}-x_{1}\right)+a_{3} \cdot\left(x_{3}-x_{1}\right)$, then there exists a real number a_{1} such that $x=a_{1} \cdot x_{1}+a_{2} \cdot x_{2}+a_{3} \cdot x_{3}$ and $a_{1}+a_{2}+a_{3}=1$.
(34) For every natural number n such that $n \geq 1$ holds $1 * n \neq\langle\underbrace{0, \ldots, 0}_{n}\rangle$.
(35) For every subset A of \mathcal{R}^{n} and for all x_{1}, x_{2} such that A is a line and $x_{1} \in A$ and $x_{2} \in A$ and $x_{1} \neq x_{2}$ holds $A=\operatorname{Line}\left(x_{1}, x_{2}\right)$.
(36) For all elements x_{1}, x_{2} of \mathcal{R}^{n} such that $y_{1} \in \operatorname{Line}\left(x_{1}, x_{2}\right)$ and $y_{2} \in$ $\operatorname{Line}\left(x_{1}, x_{2}\right)$ there exists a such that $y_{2}-y_{1}=a \cdot\left(x_{2}-x_{1}\right)$.
Let us consider n and let x_{1}, x_{2} be elements of \mathcal{R}^{n}. The predicate $x_{1} \| x_{2}$ is defined as follows:
(Def. 1) $\quad x_{1} \neq\langle\underbrace{0, \ldots, 0}_{n}\rangle$ and $x_{2} \neq\langle\underbrace{0, \ldots, 0}_{n}\rangle$ and there exists r such that $x_{1}=r \cdot x_{2}$.
One can prove the following proposition
(37) For all elements x_{1}, x_{2} of \mathcal{R}^{n} such that $x_{1} \| x_{2}$ there exists a such that $a \neq 0$ and $x_{1}=a \cdot x_{2}$.
Let us consider n and let x_{1}, x_{2} be elements of \mathcal{R}^{n}. Let us note that the predicate $x_{1} \| x_{2}$ is symmetric.

The following proposition is true
(38) If $x_{1} \| x_{2}$ and $x_{2} \| x_{3}$, then $x_{1} \| x_{3}$.

Let n be a natural number and let x_{1}, x_{2} be elements of \mathcal{R}^{n}. We say that x_{1} and x_{2} are linearly independent if and only if:
(Def. 2) For all real numbers a_{1}, a_{2} such that $a_{1} \cdot x_{1}+a_{2} \cdot x_{2}=\langle\underbrace{0, \ldots, 0}_{n}\rangle$ holds $a_{1}=0$ and $a_{2}=0$.
Let us note that the predicate x_{1} and x_{2} are linearly independent is symmetric.
Let us consider n and let x_{1}, x_{2} be elements of \mathcal{R}^{n}. We introduce x_{1} and x_{2} are linearly dependent as an antonym of x_{1} and x_{2} are linearly independent.

Next we state a number of propositions:
(39) If x_{1} and x_{2} are linearly independent, then $x_{1} \neq\langle\underbrace{0, \ldots, 0}_{n}\rangle$ and $x_{2} \neq$ $\langle\underbrace{0, \ldots, 0}_{n}\rangle$.
(40) For all x_{1}, x_{2} such that x_{1} and x_{2} are linearly independent holds if $a_{1} \cdot x_{1}+a_{2} \cdot x_{2}=b_{1} \cdot x_{1}+b_{2} \cdot x_{2}$, then $a_{1}=b_{1}$ and $a_{2}=b_{2}$.
(41) Let given $x_{1}, x_{2}, y_{1}, y_{1}$. Suppose y_{1} and y_{2} are linearly independent. Suppose $y_{1}=a_{1} \cdot x_{1}+a_{2} \cdot x_{2}$ and $y_{2}=b_{1} \cdot x_{1}+b_{2} \cdot x_{2}$. Then there exist real numbers $c_{1}, c_{2}, d_{1}, d_{2}$ such that $x_{1}=c_{1} \cdot y_{1}+c_{2} \cdot y_{2}$ and $x_{2}=d_{1} \cdot y_{1}+d_{2} \cdot y_{2}$.
(42) If x_{1} and x_{2} are linearly independent, then $x_{1} \neq x_{2}$.
(43) If $x_{2}-x_{1}$ and $x_{3}-x_{1}$ are linearly independent, then $x_{2} \neq x_{3}$.
(44) If x_{1} and x_{2} are linearly independent, then $x_{1}+t \cdot x_{2}$ and x_{2} are linearly independent.
(45) Suppose $x_{1}-x_{0}$ and $x_{3}-x_{2}$ are linearly independent and $y_{0} \in$ $\operatorname{Line}\left(x_{0}, x_{1}\right)$ and $y_{1} \in \operatorname{Line}\left(x_{0}, x_{1}\right)$ and $y_{0} \neq y_{1}$ and $y_{2} \in \operatorname{Line}\left(x_{2}, x_{3}\right)$ and $y_{3} \in \operatorname{Line}\left(x_{2}, x_{3}\right)$ and $y_{2} \neq y_{3}$. Then $y_{1}-y_{0}$ and $y_{3}-y_{2}$ are linearly independent.
(46) If $x_{1} \| x_{2}$, then x_{1} and x_{2} are linearly dependent and $x_{1} \neq \underbrace{0, \ldots, 0}_{n}\rangle$ and $x_{2} \neq\langle\underbrace{0, \ldots, 0}_{n}\rangle$.
(47) If x_{1} and x_{2} are linearly dependent, then $x_{1}=\langle\underbrace{0, \ldots, 0}_{n}\rangle$ or $x_{2}=$ $\langle\underbrace{0, \ldots, 0}_{n}\rangle$ or $x_{1} \| x_{2}$.
(48) For all elements x_{1}, x_{2}, y_{1} of \mathcal{R}^{n} there exists an element y_{2} of \mathcal{R}^{n} such that $y_{2} \in \operatorname{Line}\left(x_{1}, x_{2}\right)$ and $x_{1}-x_{2}, y_{1}-y_{2}$ are orthogonal.
Let us consider n and let x_{1}, x_{2} be elements of \mathcal{R}^{n}. The predicate $x_{1} \perp x_{2}$ is defined by:
(Def. 3) $x_{1} \neq\langle\underbrace{0, \ldots, 0}_{n}\rangle$ and $x_{2} \neq\langle\underbrace{0, \ldots, 0}_{n}\rangle$ and x_{1}, x_{2} are orthogonal.
Let us note that the predicate $x_{1} \perp x_{2}$ is symmetric.
The following propositions are true:
(49) If $x \perp y_{0}$ and $y_{0} \| y_{1}$, then $x \perp y_{1}$.
(50) If $x \perp y$, then x and y are linearly independent.
(51) If $x_{1} \| x_{2}$, then $x_{1} \not \perp x_{2}$.
(52) If $x_{1} \perp x_{2}$, then $x_{1} \nVdash x_{2}$.

Let us consider n. The functor $\operatorname{Lines}\left(\mathcal{R}^{n}\right)$ yields a family of subsets of \mathcal{R}^{n} and is defined by:
(Def. 4) $\operatorname{Lines}\left(\mathcal{R}^{n}\right)=\left\{\operatorname{Line}\left(x_{1}, x_{2}\right)\right\}$.
Let us consider n. Note that $\operatorname{Lines}\left(\mathcal{R}^{n}\right)$ is non empty.
The following proposition is true
(53) $\operatorname{Line}\left(x_{1}, x_{2}\right) \in \operatorname{Lines}\left(\mathcal{R}^{n}\right)$.

In the sequel L, L_{0}, L_{1}, L_{2} are elements of $\operatorname{Lines}\left(\mathcal{R}^{n}\right)$.
The following propositions are true:
(54) If $x_{1} \in L$ and $x_{2} \in L$, then Line $\left(x_{1}, x_{2}\right) \subseteq L$.
(55) $\quad L_{1}$ meets L_{2} iff there exists x such that $x \in L_{1}$ and $x \in L_{2}$.
(56) If L_{0} misses L_{1} and $x \in L_{0}$, then $x \notin L_{1}$.
(57) There exist x_{1}, x_{2} such that $L=\operatorname{Line}\left(x_{1}, x_{2}\right)$.
(58) There exists x such that $x \in L$.
(59) If $x_{0} \in L$ and L is a line, then there exists x_{1} such that $x_{1} \neq x_{0}$ and $x_{1} \in L$.
(60) If $x \notin L$ and L is a line, then there exist x_{1}, x_{2} such that $L=\operatorname{Line}\left(x_{1}, x_{2}\right)$ and $x-x_{1} \perp x_{2}-x_{1}$.
(61) If $x \notin L$ and L is a line, then there exist x_{1}, x_{2} such that $L=\operatorname{Line}\left(x_{1}, x_{2}\right)$ and $x-x_{1}$ and $x_{2}-x_{1}$ are linearly independent.
Let n be a natural number, let x be an element of \mathcal{R}^{n}, and let L be an element of $\operatorname{Lines}\left(\mathcal{R}^{n}\right)$. The functor $\rho(x, L)$ yields a real number and is defined by:
(Def. 5) There exists a subset S of \mathbb{R} such that $S=\left\{\left|x-x_{0}\right| ; x_{0}\right.$ ranges over elements of $\left.\mathcal{R}^{n}: x_{0} \in L\right\}$ and $\rho(x, L)=\inf S$.
Next we state three propositions:
(62) There exists x_{0} such that $x_{0} \in L$ and $\left|x-x_{0}\right|=\rho(x, L)$.
(63) $\rho(x, L) \geq 0$.
(64) $x \in L$ iff $\rho(x, L)=0$.

Let us consider n and let us consider L_{1}, L_{2}. The predicate $L_{1} \| L_{2}$ is defined as follows:
(Def. 6) There exist elements $x_{1}, x_{2}, y_{1}, y_{2}$ of \mathcal{R}^{n} such that $L_{1}=\operatorname{Line}\left(x_{1}, x_{2}\right)$ and $L_{2}=\operatorname{Line}\left(y_{1}, y_{2}\right)$ and $x_{2}-x_{1} \| y_{2}-y_{1}$.
Let us note that the predicate $L_{1} \| L_{2}$ is symmetric.
The following proposition is true
(65) If $L_{0} \| L_{1}$ and $L_{1} \| L_{2}$, then $L_{0} \| L_{2}$.

Let us consider n and let us consider L_{1}, L_{2}. The predicate $L_{1} \perp L_{2}$ is defined by:
(Def. 7) There exist elements $x_{1}, x_{2}, y_{1}, y_{2}$ of \mathcal{R}^{n} such that $L_{1}=\operatorname{Line}\left(x_{1}, x_{2}\right)$ and $L_{2}=\operatorname{Line}\left(y_{1}, y_{2}\right)$ and $x_{2}-x_{1} \perp y_{2}-y_{1}$.
Let us note that the predicate $L_{1} \perp L_{2}$ is symmetric.
We now state a number of propositions:
(66) If $L_{0} \perp L_{1}$ and $L_{1} \| L_{2}$, then $L_{0} \perp L_{2}$.
(67) If $x \notin L$ and L is a line, then there exists L_{0} such that $x \in L_{0}$ and $L_{0} \perp L$ and L_{0} meets L.
(68) If L_{1} misses L_{2}, then there exists x such that $x \in L_{1}$ and $x \notin L_{2}$.
(69) If $x_{1} \in L$ and $x_{2} \in L$ and $x_{1} \neq x_{2}$, then $\operatorname{Line}\left(x_{1}, x_{2}\right)=L$ and L is a line.
(70) If L_{1} is a line and L_{2} is a line and $L_{1}=L_{2}$, then $L_{1} \| L_{2}$.
(71) If $L_{1} \| L_{2}$, then L_{1} is a line and L_{2} is a line.
(72) If $L_{1} \perp L_{2}$, then L_{1} is a line and L_{2} is a line.
(73) If $x \in L$ and $a \neq 1$ and $a \cdot x \in L$, then $\langle\underbrace{0, \ldots, 0}_{n}\rangle \in L$.
(74) If $x_{1} \in L$ and $x_{2} \in L$, then there exists x_{3} such that $x_{3} \in L$ and $x_{3}-x_{1}=a \cdot\left(x_{2}-x_{1}\right)$.
(75) If $x_{1} \in L$ and $x_{2} \in L$ and $x_{3} \in L$ and $x_{1} \neq x_{2}$, then there exists a such that $x_{3}-x_{1}=a \cdot\left(x_{2}-x_{1}\right)$.
(76) If $L_{1} \| L_{2}$ and $L_{1} \neq L_{2}$, then L_{1} misses L_{2}.
(77) If $L_{1} \| L_{2}$, then $L_{1}=L_{2}$ or L_{1} misses L_{2}.
(78) If $L_{1} \| L_{2}$ and L_{1} meets L_{2}, then $L_{1}=L_{2}$.
(79) If L is a line, then there exists L_{0} such that $x \in L_{0}$ and $L_{0} \| L$.
(80) For all x, L such that $x \notin L$ and L is a line there exists L_{0} such that $x \in L_{0}$ and $L_{0} \| L$ and $L_{0} \neq L$.
(81) For all $x_{0}, x_{1}, y_{0}, y_{1}, L_{1}, L_{2}$ such that $x_{0} \in L_{1}$ and $x_{1} \in L_{1}$ and $x_{0} \neq x_{1}$ and $y_{0} \in L_{2}$ and $y_{1} \in L_{2}$ and $y_{0} \neq y_{1}$ and $L_{1} \perp L_{2}$ holds $x_{1}-x_{0} \perp y_{1}-y_{0}$.
(82) For all L_{1}, L_{2} such that $L_{1} \perp L_{2}$ holds $L_{1} \neq L_{2}$.
(83) For all x_{1}, x_{2}, L such that L is a line and $L=\operatorname{Line}\left(x_{1}, x_{2}\right)$ holds $x_{1} \neq x_{2}$.
(84) If $x_{0} \in L_{1}$ and $x_{1} \in L_{1}$ and $x_{0} \neq x_{1}$ and $y_{0} \in L_{2}$ and $y_{1} \in L_{2}$ and $y_{0} \neq y_{1}$ and $L_{1} \| L_{2}$, then $x_{1}-x_{0} \| y_{1}-y_{0}$.
(85) Suppose $x_{2}-x_{1}$ and $x_{3}-x_{1}$ are linearly independent and $y_{2} \in$ $\operatorname{Line}\left(x_{1}, x_{2}\right)$ and $y_{3} \in \operatorname{Line}\left(x_{1}, x_{3}\right)$ and $L_{1}=\operatorname{Line}\left(x_{2}, x_{3}\right)$ and $L_{2}=$ $\operatorname{Line}\left(y_{2}, y_{3}\right)$. Then $L_{1} \| L_{2}$ if and only if there exists a such that $a \neq 0$ and $y_{2}-x_{1}=a \cdot\left(x_{2}-x_{1}\right)$ and $y_{3}-x_{1}=a \cdot\left(x_{3}-x_{1}\right)$.
(86) For all L_{1}, L_{2} such that L_{1} is a line and L_{2} is a line and $L_{1} \neq L_{2}$ there exists x such that $x \in L_{1}$ and $x \notin L_{2}$.
(87) For all x, L_{1}, L_{2} such that $L_{1} \perp L_{2}$ and $x \in L_{2}$ there exists L_{0} such that $x \in L_{0}$ and $L_{0} \perp L_{2}$ and $L_{0} \| L_{1}$.
(88) For all x, L_{1}, L_{2} such that $x \in L_{1}$ and $x \in L_{2}$ and $L_{1} \perp L_{2}$ there exists x_{0} such that $x \neq x_{0}$ and $x_{0} \in L_{1}$ and $x_{0} \notin L_{2}$.

Let n be a natural number and let x_{1}, x_{2}, x_{3} be elements of \mathcal{R}^{n}. The functor Plane $\left(x_{1}, x_{2}, x_{3}\right)$ yielding a subset of \mathcal{R}^{n} is defined as follows:
(Def. 8) Plane $\left(x_{1}, x_{2}, x_{3}\right)=\left\{a_{1} \cdot x_{1}+a_{2} \cdot x_{2}+a_{3} \cdot x_{3}: a_{1}+a_{2}+a_{3}=1\right\}$.
Let n be a natural number and let x_{1}, x_{2}, x_{3} be elements of \mathcal{R}^{n}. One can check that $\operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$ is non empty.

Let us consider n and let A be a subset of \mathcal{R}^{n}. We say that A is plane if and only if:
(Def. 9) There exist x_{1}, x_{2}, x_{3} such that $x_{2}-x_{1}$ and $x_{3}-x_{1}$ are linearly independent and $A=\operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$.

One can prove the following propositions:
(89) $x_{1} \in \operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$ and $x_{2} \in \operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$ and $x_{3} \in$ Plane $\left(x_{1}, x_{2}, x_{3}\right)$
(90) If $x_{1} \in \operatorname{Plane}\left(y_{1}, y_{2}, y_{3}\right)$ and $x_{2} \in \operatorname{Plane}\left(y_{1}, y_{2}, y_{3}\right)$ and $x_{3} \in$ $\operatorname{Plane}\left(y_{1}, y_{2}, y_{3}\right)$, then $\operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right) \subseteq \operatorname{Plane}\left(y_{1}, y_{2}, y_{3}\right)$.
(91) Let A be a subset of \mathcal{R}^{n} and given x, x_{1}, x_{2}, x_{3}. Suppose $x \in$ Plane $\left(x_{1}, x_{2}, x_{3}\right)$ and there exist real numbers c_{1}, c_{2}, c_{3} such that $c_{1}+c_{2}+$ $c_{3}=0$ and $x=c_{1} \cdot x_{1}+c_{2} \cdot x_{2}+c_{3} \cdot x_{3}$. Then $\langle\underbrace{0, \ldots, 0}_{n}\rangle \in \operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$.
(92) If $y_{1} \in \operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$ and $y_{2} \in \operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$, then $\operatorname{Line}\left(y_{1}, y_{2}\right) \subseteq$ Plane $\left(x_{1}, x_{2}, x_{3}\right)$.
(93) For every subset A of \mathcal{R}^{n} and for every x such that A is plane and $x \in A$ and there exists a such that $a \neq 1$ and $a \cdot x \in A$ holds $\langle\underbrace{0, \ldots, 0}_{n}\rangle \in A$.
(94) If $x_{1}-x_{1}$ and $x_{3}-x_{1}$ are linearly independent and $x \in \operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$ and $x=a_{1} \cdot x_{1}+a_{2} \cdot x_{2}+a_{3} \cdot x_{3}$, then $a_{1}+a_{2}+a_{3}=1$ or $\langle\underbrace{0, \ldots, 0}_{n}\rangle \in$ Plane $\left(x_{1}, x_{2}, x_{3}\right)$.
(95) $\quad x \in \operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$ iff there exist a_{1}, a_{2}, a_{3} such that $a_{1}+a_{2}+a_{3}=1$ and $x=a_{1} \cdot x_{1}+a_{2} \cdot x_{2}+a_{3} \cdot x_{3}$.
(96) Suppose that
(i) $x_{2}-x_{1}$ and $x_{3}-x_{1}$ are linearly independent,
(ii) $\quad x \in \operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$,
(iii) $a_{1}+a_{2}+a_{3}=1$,
(iv) $x=a_{1} \cdot x_{1}+a_{2} \cdot x_{2}+a_{3} \cdot x_{3}$,
(v) $b_{1}+b_{2}+b_{3}=1$, and
(vi) $x=b_{1} \cdot x_{1}+b_{2} \cdot x_{2}+b_{3} \cdot x_{3}$.

Then $a_{1}=b_{1}$ and $a_{2}=b_{2}$ and $a_{3}=b_{3}$.
Let us consider n. The functor $\operatorname{Planes}\left(\mathcal{R}^{n}\right)$ yielding a family of subsets of \mathcal{R}^{n} is defined by:
(Def. 10) $\operatorname{Planes}\left(\mathcal{R}^{n}\right)=\left\{\operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)\right\}$.
Let us consider n. Note that $\operatorname{Planes}\left(\mathcal{R}^{n}\right)$ is non empty.
The following proposition is true
(97) $\operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right) \in \operatorname{Planes}\left(\mathcal{R}^{n}\right)$.

In the sequel P, P_{0}, P_{1}, P_{2} are elements of $\operatorname{Planes}\left(\mathcal{R}^{n}\right)$.
Next we state several propositions:
(98) If $x_{1} \in P$ and $x_{2} \in P$ and $x_{3} \in P$, then Plane $\left(x_{1}, x_{2}, x_{3}\right) \subseteq P$.
(99) If $x_{1} \in P$ and $x_{2} \in P$ and $x_{3} \in P$ and $x_{2}-x_{1}$ and $x_{3}-x_{1}$ are linearly independent, then $P=\operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$.
(100) If P_{1} is plane and $P_{1} \subseteq P_{2}$, then $P_{1}=P_{2}$.
(101) Line $\left(x_{1}, x_{2}\right) \subseteq \operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$ and Line $\left(x_{2}, x_{3}\right) \subseteq \operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$ and Line $\left(x_{3}, x_{1}\right) \subseteq \operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$.
(102) If $x_{1} \in P$ and $x_{2} \in P$, then $\operatorname{Line}\left(x_{1}, x_{2}\right) \subseteq P$.

Let n be a natural number and let L_{1}, L_{2} be elements of Lines $\left(\mathcal{R}^{n}\right)$. We say that L_{1} and L_{2} are coplanar if and only if:
(Def. 11) There exist elements x_{1}, x_{2}, x_{3} of \mathcal{R}^{n} such that $L_{1} \subseteq \operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$ and $L_{2} \subseteq \operatorname{Plane}\left(x_{1}, x_{2}, x_{3}\right)$.
We now state a number of propositions:
(103) $\quad L_{1}$ and L_{2} are coplanar iff there exists P such that $L_{1} \subseteq P$ and $L_{2} \subseteq P$.
(104) If $L_{1} \| L_{2}$, then L_{1} and L_{2} are coplanar.
(105) Suppose L_{1} is a line and L_{2} is a line and L_{1} and L_{2} are coplanar and L_{1} misses L_{2}. Then there exists P such that $L_{1} \subseteq P$ and $L_{2} \subseteq P$ and P is plane.
(106) There exists P such that $x \in P$ and $L \subseteq P$.
(107) If $x \notin L$ and L is a line, then there exists P such that $x \in P$ and $L \subseteq P$ and P is plane.
(108) If $x \in P$ and $L \subseteq P$ and $x \notin L$ and L is a line, then P is plane.
(109) If $x \notin L$ and L is a line and $x \in P_{0}$ and $L \subseteq P_{0}$ and $x \in P_{1}$ and $L \subseteq P_{1}$, then $P_{0}=P_{1}$.
(110) If L_{1} is a line and L_{2} is a line and L_{1} and L_{2} are coplanar and $L_{1} \neq L_{2}$, then there exists P such that $L_{1} \subseteq P$ and $L_{2} \subseteq P$ and P is plane.
(111) For all L_{1}, L_{2} such that L_{1} is a line and L_{2} is a line and $L_{1} \neq L_{2}$ and L_{1} meets L_{2} there exists P such that $L_{1} \subseteq P$ and $L_{2} \subseteq P$ and P is plane.
(112) If L_{1} is a line and L_{2} is a line and $L_{1} \neq L_{2}$ and L_{1} meets L_{2} and $L_{1} \subseteq P_{1}$ and $L_{2} \subseteq P_{1}$ and $L_{1} \subseteq P_{2}$ and $L_{2} \subseteq P_{2}$, then $P_{1}=P_{2}$.
(113) If $L_{1} \| L_{2}$ and $L_{1} \neq L_{2}$, then there exists P such that $L_{1} \subseteq P$ and $L_{2} \subseteq P$ and P is plane.
(114) If $L_{1} \perp L_{2}$ and L_{1} meets L_{2}, then there exists P such that P is plane and $L_{1} \subseteq P$ and $L_{2} \subseteq P$.
(115) If $L_{0} \subseteq P$ and $L_{1} \subseteq P$ and $L_{2} \subseteq P$ and $x \in L_{0}$ and $x \in L_{1}$ and $x \in L_{2}$ and $L_{0} \perp L_{2}$ and $L_{1} \perp L_{2}$, then $L_{0}=L_{1}$.
(116) If L_{1} and L_{2} are coplanar and $L_{1} \perp L_{2}$, then L_{1} meets L_{2}.
(117) If $L_{1} \subseteq P$ and $L_{2} \subseteq P$ and $L_{1} \perp L_{2}$ and $x \in P$ and $L_{0} \| L_{2}$ and $x \in L_{0}$, then $L_{0} \subseteq P$ and $L_{0} \perp L_{1}$.
(118) If $L \subseteq P$ and $L_{1} \subseteq P$ and $L_{2} \subseteq P$ and $L \perp L_{1}$ and $L \perp L_{2}$, then $L_{1} \| L_{2}$.
(119) Suppose $L_{0} \subseteq P$ and $L_{1} \subseteq P$ and $L_{2} \subseteq P$ and $L_{0} \| L_{1}$ and $L_{1} \| L_{2}$ and $L_{0} \neq L_{1}$ and $L_{1} \neq L_{2}$ and $L_{2} \neq L_{0}$ and L meets L_{0} and L meets L_{1}. Then L meets L_{2}.
(120) If L_{1} and L_{2} are coplanar and L_{1} is a line and L_{2} is a line and L_{1} misses L_{2}, then $L_{1} \| L_{2}$.
(121) If $x_{1} \in P$ and $x_{2} \in P$ and $y_{1} \in P$ and $y_{2} \in P$ and $x_{2}-x_{1}$ and $y_{2}-y_{1}$ are linearly independent, then $\operatorname{Line}\left(x_{1}, x_{2}\right)$ meets Line $\left(y_{1}, y_{2}\right)$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[6] Czesław Bylinski. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[7] Agata Darmochwat. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[9] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[10] Akihiro Kubo. Lines in n-dimensional Euclidean spaces. Formalized Mathematics, 11(4):371-376, 2003.
[11] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. Formalized Mathematics, 8(1):1-13, 1999.
[12] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[13] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[14] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

Received May 24, 2005

Cardinal Numbers and Finite Sets ${ }^{1}$

Karol Pa̧k
Institute of Mathematics
University of Białystok
Akademicka 2, 15-267 Białystok, Poland

Abstract

Summary. In this paper we define class of functions and operators needed for the proof of the principle of inclusions and the disconnections. We also given certain cardinal numbers concerning elementary class of functions (this function mapping finite set in finite set).

MML identifier: CARD_FIN, version: 7.5.01 4.39.921

The articles [21], [10], [24], [17], [26], [6], [27], [2], [9], [11], [1], [25], [7], [8], [22], [19], [5], [15], [12], [20], [16], [14], [18], [13], [3], [23], and [4] provide the terminology and notation for this paper.

For simplicity, we use the following convention: $x, x_{1}, x_{2}, y, z, X^{\prime}$ denote sets, X, Y denote finite sets, n, k, m denote natural numbers, and f denotes a function.

Next we state the proposition
(1) If $X \subseteq Y$ and $\operatorname{card} X=\operatorname{card} Y$, then $X=Y$.

In the sequel F is a function from $X \cup\{x\}$ into $Y \cup\{y\}$.
One can prove the following proposition
(2) For all X, Y, x, y such that if $Y=\emptyset$, then $X=\emptyset$ and $x \notin X$ holds $\operatorname{card}\left(Y^{X}\right)=\overline{\{F: \operatorname{rng}(F \upharpoonright X) \subseteq Y \wedge F(x)=y\}}$.
In the sequel F is a function from $X \cup\{x\}$ into Y.
One can prove the following two propositions:
(3) For all X, Y, x, y such that $x \notin X$ and $y \in Y$ holds $\operatorname{card}\left(Y^{X}\right)=$ $\overline{\overline{\{F: F(x)=y\}}}$.

[^0](4) If if $Y=\emptyset$, then $X=\emptyset$, then $\operatorname{card}\left(Y^{X}\right)=(\operatorname{card} Y)^{\operatorname{card} X}$.

In the sequel F_{1} denotes a function from X into Y and F_{2} denotes a function from $X \cup\{x\}$ into $Y \cup\{y\}$.

One can prove the following two propositions:
(5) Let given X, Y, x, y. Suppose if Y is empty, then X is $\overline{\text { empty and } x \notin X \text { and } y \notin Y} \overline{\left\{F_{2}: F_{2} \text { is one-to-one } \wedge F_{2}(x)=y\right\}}$. Then $\overline{\overline{\left\{F_{1}: F_{1} \text { is one-to-one }\right\}}}=$
(6) $\frac{n!}{\left(n-{ }^{\prime} k\right)!}$ is a natural number.

In the sequel F is a function from X into Y.
The following proposition is true
(7) If $\operatorname{card} X \leq \operatorname{card} Y$, then $\overline{\overline{\{F: F \text { is one-to-one }\}}}=\frac{(\operatorname{card} Y)!}{\left(\operatorname{card} Y-{ }^{\prime} \operatorname{card} X\right)!}$.

In the sequel F denotes a function from X into X.
The following proposition is true
(8) $\overline{\overline{\{F: F} \text { is a permutation of } X\}}=(\operatorname{card} X)$!.

Let us consider X, k, x_{1}, x_{2}. The functor Choose (X, k, x_{1}, x_{2}) yields a subset of $\left\{x_{1}, x_{2}\right\}^{X}$ and is defined as follows:
(Def. 1) $\quad x \in \operatorname{Choose}\left(X, k, x_{1}, x_{2}\right)$ iff there exists a function f from X into $\left\{x_{1}, x_{2}\right\}$ such that $f=x$ and $\overline{\overline{f^{-1}\left(\left\{x_{1}\right\}\right)}}=k$.
We now state several propositions:
(9) If card $X \neq k$, then Choose $\left(X, k, x_{1}, x_{1}\right)$ is empty.
(10) If card $X<k$, then $\operatorname{Choose}\left(X, k, x_{1}, x_{2}\right)$ is empty.
(11) If $x_{1} \neq x_{2}$, then card Choose $\left(X, 0, x_{1}, x_{2}\right)=1$.
(12) $\quad \operatorname{card} \operatorname{Choose}\left(X, \operatorname{card} X, x_{1}, x_{2}\right)=1$.
(13) If $f(y)=x$ and $y \in \operatorname{dom} f$, then $\{y\} \cup(f \upharpoonright(\operatorname{dom} f \backslash\{y\}))^{-1}(\{x\})=$ $f^{-1}(\{x\})$.
In the sequel g denotes a function from $X \cup\{z\}$ into $\{x, y\}$.
The following propositions are true:
(14)

If $z \notin X$, then card Choose $(X, k, x, y)=$ $\overline{\left.\overline{\left\{g: \overline{\overline{g^{-1}(\{x\})}}\right.}=k+1 \wedge g(z)=x\right\}}$.
(15) If $f(y) \neq x$, then $(f \upharpoonright(\operatorname{dom} f \backslash\{y\}))^{-1}(\{x\})=f^{-1}(\{x\})$.
(16) $\xlongequal\left[\left\{\begin{array}{l}\left.\text { If } z: \overline{\overline{g^{-1}(\{x\})}}=k \wedge g(z)=y\right\}\end{array} \text { and } x \neq\right]{ } \quad y \text {, then } \operatorname{card} \operatorname{Choose}(X, k, x, y) \quad=\right.$
(17) If $x \neq y$ and $z \notin X$, then card Choose $(X \cup\{z\}, k+1, x, y)=$ card Choose $(X, k+1, x, y)+\operatorname{card} \operatorname{Choose}(X, k, x, y)$.
(18) If $x \neq y$, then card $\operatorname{Choose}(X, k, x, y)=\binom{(\operatorname{card} X}{k}$.
(19) If $x \neq y$, then $(Y \longmapsto y)+\cdot(X \longmapsto x) \in \operatorname{Choose}(X \cup Y, \operatorname{card} X, x, y)$.
(20) If $x \neq y$ and X misses Y, then $(X \longmapsto x)+\cdot(Y \longmapsto y) \in \operatorname{Choose}(X \cup$ $Y, \operatorname{card} X, x, y)$.
Let F, C_{1} be functions and let y be a set. The functor $\operatorname{Intersection}\left(F, C_{1}, y\right)$ yielding a subset of $\bigcup \operatorname{rng} F$ is defined as follows:
(Def. 2) $z \in \operatorname{Intersection}\left(F, C_{1}, y\right)$ iff $z \in \bigcup \operatorname{rng} F$ and for every x such that $x \in \operatorname{dom} C_{1}$ and $C_{1}(x)=y$ holds $z \in F(x)$.
In the sequel F, C_{1} denote functions.
The following propositions are true:
(21) For all F, C_{1} such that $\operatorname{dom} F \cap C_{1}^{-1}(\{x\})$ is non empty holds $y \in$ Intersection $\left(F, C_{1}, x\right)$ iff for every z such that $z \in \operatorname{dom} C_{1}$ and $C_{1}(z)=x$ holds $y \in F(z)$.
(22) If Intersection $\left(F, C_{1}, y\right)$ is non empty, then $C_{1}^{-1}(\{y\}) \subseteq \operatorname{dom} F$.
(23) If $\operatorname{Intersection}\left(F, C_{1}, y\right)$ is non empty, then for all x_{1}, x_{2} such that $x_{1} \in$ $C_{1}^{-1}(\{y\})$ and $x_{2} \in C_{1}^{-1}(\{y\})$ holds $F\left(x_{1}\right)$ meets $F\left(x_{2}\right)$.
(24) If $z \in \operatorname{Intersection}\left(F, C_{1}, y\right)$ and $y \in \operatorname{rng} C_{1}$, then there exists x such that $x \in \operatorname{dom} C_{1}$ and $C_{1}(x)=y$ and $z \in F(x)$.
(25) If F is empty or $\bigcup \operatorname{rng} F$ is empty, then $\operatorname{Intersection}\left(F, C_{1}, y\right)=\bigcup \operatorname{rng} F$.
(26) If $F \upharpoonright C_{1}^{-1}(\{y\})=C_{1}^{-1}(\{y\}) \longmapsto \bigcup \operatorname{rng} F$, then $\operatorname{Intersection}\left(F, C_{1}, y\right)=$ $\bigcup \mathrm{rng} F$.
(27) If $\bigcup \operatorname{rng} F$ is non empty and $\operatorname{Intersection}\left(F, C_{1}, y\right)=\bigcup \operatorname{rng} F$, then $F \upharpoonright C_{1}^{-1}(\{y\})=C_{1}^{-1}(\{y\}) \longmapsto \bigcup \operatorname{rng} F$.
(28) $\operatorname{Intersection}(F, \emptyset, y)=\bigcup \operatorname{rng} F$.
(29) Intersection $\left(F, C_{1}, y\right) \subseteq \operatorname{Intersection}\left(F, C_{1} \mid X^{\prime}, y\right)$.
(30) If $C_{1}^{-1}(\{y\})=\left(C_{1} \upharpoonright X^{\prime}\right)^{-1}(\{y\})$, then $\operatorname{Intersection}\left(F, C_{1}, y\right)=$ Intersection $\left(F, C_{1} \upharpoonright X^{\prime}, y\right)$.
(31) Intersection $\left(F \upharpoonright X^{\prime}, C_{1}, y\right) \subseteq \operatorname{Intersection}\left(F, C_{1}, y\right)$.
(32) If $y \in \operatorname{rng} C_{1}$ and $C_{1}^{-1}(\{y\}) \subseteq X^{\prime}$, then $\operatorname{Intersection}\left(F \upharpoonright X^{\prime}, C_{1}, y\right)=$ Intersection $\left(F, C_{1}, y\right)$.
(33) If $x \in C_{1}^{-1}(\{y\})$, then Intersection $\left(F, C_{1}, y\right) \subseteq F(x)$.
(34) If $x \in C_{1}^{-1}(\{y\})$, then Intersection $\left(F, C_{1} \upharpoonright\left(\operatorname{dom} C_{1} \backslash\{x\}\right), y\right) \cap F(x)=$ Intersection $\left(F, C_{1}, y\right)$.
(35) For all functions C_{2}, C_{3} such that $C_{2}^{-1}\left(\left\{x_{1}\right\}\right)=C_{3}^{-1}\left(\left\{x_{2}\right\}\right)$ holds Intersection $\left(F, C_{2}, x_{1}\right)=\operatorname{Intersection}\left(F, C_{3}, x_{2}\right)$.
(36) If $C_{1}^{-1}(\{y\})=\emptyset$, then $\operatorname{Intersection}\left(F, C_{1}, y\right)=\bigcup \mathrm{rng} F$.
(37) If $\{x\}=C_{1}^{-1}(\{y\})$, then Intersection $\left(F, C_{1}, y\right)=F(x)$.
(38) If $\left\{x_{1}, x_{2}\right\}=C_{1}^{-1}(\{y\})$, then Intersection $\left(F, C_{1}, y\right)=F\left(x_{1}\right) \cap F\left(x_{2}\right)$.
(39) For every F such that F is non empty holds $y \in \operatorname{Intersection}(F, \operatorname{dom} F \longmapsto$ $x, x)$ iff for every z such that $z \in \operatorname{dom} F$ holds $y \in F(z)$.

Let F be a function. We say that F is finite-yielding if and only if:
(Def. 3) For every x holds $F(x)$ is finite.
Let us observe that there exists a function which is non empty and finiteyielding and there exists a function which is empty and finite-yielding.

Let F be a finite-yielding function and let x be a set. Observe that $F(x)$ is finite.

Let F be a finite-yielding function and let X be a set. One can check that $F \upharpoonright X$ is finite-yielding.

Let F be a finite-yielding function and let G be a function. Note that $F \cdot G$ is finite-yielding and $\operatorname{Intersect}(F, G)$ is finite-yielding.

In the sequel F_{3} is a finite-yielding function.
The following two propositions are true:
(40) If $y \in \operatorname{rng} C_{1}$, then $\operatorname{Intersection}\left(F_{3}, C_{1}, y\right)$ is finite.
(41) If $\operatorname{dom} F_{3}$ is finite, then $\bigcup \operatorname{rng} F_{3}$ is finite.

Let F be a finite 0 -sequence and let us consider n. Then $F \upharpoonright n$ is a finite 0 -sequence.

Let D be a set, let F be a finite 0 -sequence of D, and let us consider n. Then $F \upharpoonright n$ is a finite 0 -sequence of D.

In the sequel D is a non empty set and b is a binary operation on D.
Next we state several propositions:
(42) For every finite 0 -sequence F of D and for all b, n such that $n \in \operatorname{dom} F$ but b has a unity or $n \neq 0$ holds $b(b \odot F \upharpoonright n, F(n))=b \odot F \upharpoonright(n+1)$.
(43) For every finite 0 -sequence F of D and for every n such that len $F=n+1$ holds $F=(F \upharpoonright n)^{\wedge}\langle F(n)\rangle$.
(44) For every finite 0 -sequence F of \mathbb{N} and for every n such that $n \in \operatorname{dom} F$ holds $\sum(F \upharpoonright n)+F(n)=\sum(F \upharpoonright(n+1))$.
(45) For every finite 0 -sequence F of \mathbb{N} and for every n such that $\operatorname{rng} F \subseteq$ $\{0, n\}$ holds $\sum F=n \cdot \operatorname{card}\left(F^{-1}(\{n\})\right)$.
(46) $\quad x \in \operatorname{Choose}(n, k, 1,0)$ iff there exists a finite 0 -sequence F of \mathbb{N} such that $F=x$ and $\operatorname{dom} F=n$ and $\operatorname{rng} F \subseteq\{0,1\}$ and $\sum F=k$.
(47) For every finite 0 -sequence F of D and for every b such that b has a unity or len $F \geq 1$ holds $b \odot F=b \odot \operatorname{XFS} 2 \mathrm{FS}(F)$.
(48) Let F, G be finite 0 -sequences of D and P be a permutation of $\operatorname{dom} F$. Suppose b is commutative and associative but b has a unity or len $F \geq 1$ but $G=F \cdot P$. Then $b \odot F=b \odot G$.
Let us consider k and let F be a finite-yielding function. Let us assume that dom F is finite. The card intersection of F wrt k yielding a natural number is defined by the condition (Def. 4).
(Def. 4) Let x, y be sets, X be a finite set, and P be a function from card Choose (X, k, x, y) into Choose (X, k, x, y). Suppose dom $F=X$ and
P is one-to-one and $x \neq y$. Then there exists a finite 0 -sequence X_{1} of \mathbb{N} such that $\operatorname{dom} X_{1}=\operatorname{dom} P$ and for all z, f such that $z \in \operatorname{dom} X_{1}$ and $f=P(z)$ holds $X_{1}(z)=\overline{\overline{\operatorname{Intersection}(F, f, x)}}$ and the card intersection of F wrt $k=\sum X_{1}$.
One can prove the following propositions:
(49) Let x, y be sets, X be a finite set, and P be a function from card Choose (X, k, x, y) into Choose (X, k, x, y). Suppose dom $F_{3}=X$ and P is one-to-one and $x \neq y$. Let X_{1} be a finite 0 -sequence of \mathbb{N}. Suppose $\operatorname{dom} X_{1}=\operatorname{dom} P$ and for all z, f such that $z \in \operatorname{dom} X_{1}$ and $f=P(z)$ holds $X_{1}(z)=\overline{\overline{\operatorname{Intersection}\left(F_{3}, f, x\right)}}$. Then the card intersection of F_{3} wrt $k=\sum X_{1}$.
(50) If dom F_{3} is finite and $k=0$, then the card intersection of F_{3} wrt $k=$ $\overline{\overline{U \operatorname{rng} F_{3}}}$.
(51) If dom $F_{3}=X$ and $k>\operatorname{card} X$, then the card intersection of F_{3} wrt $k=0$.
(52) Let given F_{3}, X. Suppose dom $F_{3}=X$. Let P be a function from card X into X. Suppose P is one-to-one. Then there exists a finite 0 sequence X_{1} of \mathbb{N} such that $\operatorname{dom} X_{1}=\operatorname{card} X$ and for every z such that $z \in \operatorname{dom} X_{1}$ holds $X_{1}(z)=\operatorname{card}\left(F_{3} \cdot P\right)(z)$ and the card intersection of F_{3} wrt $1=\sum X_{1}$.
(53) If $\operatorname{dom} F_{3}=X$, then the card intersection of F_{3} wrt $\operatorname{card} X=$ $\overline{\text { Intersection }\left(F_{3}, X \longmapsto x, x\right)}$.
(54) If $F_{3}=\{x\} \longmapsto X$, then the card intersection of F_{3} wrt $1=\operatorname{card} X$.
(55) Suppose $x \neq y$ and $F_{3}=[x \longmapsto X, y \longmapsto Y]$. Then the card intersection of F_{3} wrt $1=\operatorname{card} X+\operatorname{card} Y$ and the card intersection of F_{3} wrt 2 $=\operatorname{card}(X \cap Y)$.
(56) Let given F_{3}, x. Suppose $\operatorname{dom} F_{3}$ is finite and $x \in \operatorname{dom} F_{3}$. Then the card intersection of F_{3} wrt $1=\left(\right.$ the card intersection of $F_{3} \upharpoonright\left(\operatorname{dom} F_{3} \backslash\{x\}\right)$ wrt 1) $+\operatorname{card} F_{3}(x)$.
(57) dom $\operatorname{Intersect}\left(F, \operatorname{dom} F \longmapsto X^{\prime}\right)=\operatorname{dom} F$ and for every x such that $x \in \operatorname{dom} F$ holds $\left(\operatorname{Intersect}\left(F, \operatorname{dom} F \longmapsto X^{\prime}\right)\right)(x)=F(x) \cap X^{\prime}$.
(58) $\bigcup \operatorname{rng} F \cap X^{\prime}=\bigcup \operatorname{rng} \operatorname{Intersect}\left(F, \operatorname{dom} F \longmapsto X^{\prime}\right)$.
(59) Intersection $\left(F, C_{1}, y\right) \cap X^{\prime}=\operatorname{Intersection}(\operatorname{Intersect}(F, \operatorname{dom} F \longmapsto$ $\left.\left.X^{\prime}\right), C_{1}, y\right)$.
(60) Let F, G be finite 0 -sequences. Suppose F is one-to-one and G is one-to-one and rng F misses rng G. Then $F^{\wedge} G$ is one-to-one.
(61) Let given F_{3}, X, x, n. Suppose $\operatorname{dom} F_{3}=X$ and $x \in \operatorname{dom} F_{3}$ and $k>0$. Then the card intersection of F_{3} wrt $k+1=$ (the card intersection of $F_{3} \upharpoonright\left(\right.$ dom $\left.F_{3} \backslash\{x\}\right)$ wrt $\left.k+1\right)+($ the card intersection of

Intersect $\left(F_{3} \upharpoonright\left(\operatorname{dom} F_{3} \backslash\{x\}\right)\right.$, dom $\left.F_{3} \backslash\{x\} \longmapsto F_{3}(x)\right)$ wrt $\left.k\right)$.
(62) Let F, G, b_{1} be finite 0 -sequences of D. Suppose that
(i) b is commutative and associative,
(ii) b has a unity or len $F \geq 1$,
(iii) $\operatorname{len} F=\operatorname{len} G$,
(iv) $\operatorname{len} F=\operatorname{len} b_{1}$, and
(v) for every n such that $n \in \operatorname{dom} b_{1}$ holds $b_{1}(n)=b(F(n), G(n))$.

Then $b \odot F^{\frown} G=b \odot b_{1}$.
Let F_{4} be a finite 0 -sequence of \mathbb{Z}. The functor $\sum F_{4}$ yielding an integer is defined as follows:
(Def. 5) $\quad \sum F_{4}=+_{\mathbb{Z}} \odot F_{4}$.
Let F_{4} be a finite 0 -sequence of \mathbb{Z} and let us consider x. Then $F_{4}(x)$ is an integer.

Next we state several propositions:
(63) For every finite 0 -sequence F_{5} of \mathbb{N} and for every finite 0 -sequence F_{4} of \mathbb{Z} such that $F_{4}=F_{5}$ holds $\sum F_{4}=\sum F_{5}$.
(64) Let F, F_{4} be finite 0 -sequences of \mathbb{Z} and i be an integer. If $\operatorname{dom} F=$ dom F_{4} and for every n such that $n \in \operatorname{dom} F$ holds $i \cdot F(n)=F_{4}(n)$, then $i \cdot \sum F=\sum F_{4}$.
(65) If $x \in \operatorname{dom} F$, then $\bigcup \operatorname{rng} F=\bigcup \operatorname{rng}(F \upharpoonright(\operatorname{dom} F \backslash\{x\})) \cup F(x)$.
(66) Let F_{3} be a finite-yielding function and given X. Then there exists a finite 0 -sequence X_{1} of \mathbb{Z} such that $\operatorname{dom} X_{1}=\operatorname{card} X$ and for every n such that $n \in \operatorname{dom} X_{1}$ holds $X_{1}(n)=(-1)^{n}$. the card intersection of F_{3} wrt $n+1$.
(67) Let F_{3} be a finite-yielding function and given X. Suppose dom $F_{3}=X$. Let X_{1} be a finite 0 -sequence of \mathbb{Z}. Suppose $\operatorname{dom} X_{1}=\operatorname{card} X$ and for every n such that $n \in \operatorname{dom} X_{1}$ holds $X_{1}(n)=(-1)^{n}$. the card intersection of F_{3} wrt $n+1$. Then $\overline{\overline{\bigcup \mathrm{rng} F_{3}}}=\sum X_{1}$.
(68) Let given F_{3}, X, n, k. Suppose $\operatorname{dom} F_{3}=X$. Given x, y such that $x \neq y$ and for every f such that $f \in \operatorname{Choose}(X, k, x, y)$ holds $\overline{\overline{\text { Intersection }\left(F_{3}, f, x\right)}}=n$. Then the card intersection of F_{3} wrt $k=$ $n \cdot\binom{\operatorname{card} X}{k}$.
(69) Let given F_{3}, X. Suppose dom $F_{3}=X$. Let X_{2} be a finite 0 -sequence of \mathbb{N}. Suppose dom $X_{2}=\operatorname{card} X$ and for every n such that $n \in \operatorname{dom} X_{2}$ there exist x, y such that $x \neq y$ and for every f such that $f \in \operatorname{Choose}(X, n+$ $1, x, y)$ holds $\overline{\overline{\operatorname{Intersection}\left(F_{3}, f, x\right)}}=X_{2}(n)$. Then there exists a finite 0sequence F of \mathbb{Z} such that $\operatorname{dom} F=\operatorname{card} X$ and $\overline{\overline{\bigcup \mathrm{rng} F_{3}}}=\sum F$ and for every n such that $n \in \operatorname{dom} F$ holds $F(n)=(-1)^{n} \cdot X_{2}(n) \cdot\binom{\operatorname{card} X}{n+1}$.
In the sequel g denotes a function from X into Y.

The following propositions are true:
(70) Let X, Y be finite sets. Suppose X is non empty and Y is non empty. Then there exists a finite 0 -sequence F of \mathbb{Z} such that $\operatorname{dom} F=\operatorname{card} Y+1$ and $\sum F=\overline{\overline{\{g: g \text { is onto }\}}}$ and for every n such that $n \in \operatorname{dom} F$ holds $F(n)=(-1)^{n} \cdot\binom{\operatorname{card} Y}{n} \cdot(\operatorname{card} Y-n)^{\operatorname{card} X}$.
(71) Let given n, k. Suppose $k \leq n$. Then there exists a finite 0 -sequence F of \mathbb{Z} such that n block $k=\frac{1}{k!} \cdot \sum F$ and $\operatorname{dom} F=k+1$ and for every m such that $m \in \operatorname{dom} F$ holds $F(m)=(-1)^{m} \cdot\binom{k}{m} \cdot(k-m)^{n}$.
In the sequel A, B are finite sets and f is a function from A into B.
One can prove the following proposition
(72) Let given A, B and X be a finite set. Suppose if B is empty, then A is empty and $X \subseteq A$. Let F be a function from A into B. Suppose F is one-to-one and $\operatorname{card} A=\operatorname{card} B$. Then $\left(\operatorname{card} A-^{\prime} \operatorname{card} X\right)!=$

$$
\frac{\underline{\left\{f: f \text { is one-to-one } \wedge \operatorname{rng}(f \upharpoonright(A \backslash X)) \subseteq F^{\circ}(A \backslash X) \wedge\right.}}{\overline{\left.\wedge_{x}(x \in X \Rightarrow f(x)=F(x))\right\}}}
$$

In the sequel F denotes a function and h denotes a function from X into $\operatorname{rng} F$.

The following proposition is true
(73) Let given F. Suppose $\operatorname{dom} F=X$ and F is one-to-one. Then there exists a finite 0 -sequence X_{2} of \mathbb{Z} such that
(i) $\sum X_{2}=\overline{\left.\overline{\{h: h} \text { is one-to-one } \wedge \bigwedge_{x}(x \in X \Rightarrow h(x) \neq F(x))\right\}}$,
(ii) $\operatorname{dom} X_{2}=\operatorname{card} X+1$, and
(iii) for every n such that $n \in \operatorname{dom} X_{2}$ holds $X_{2}(n)=\frac{(-1)^{n} \cdot(\operatorname{card} X) \text { ! }}{n!}$.

In the sequel h is a function from X into X.
The following proposition is true
(74) There exists a finite 0 -sequence X_{2} of \mathbb{Z} such that
(i) $\sum X_{2}=\overline{\left\{h: h \text { is one-to-one } \wedge \bigwedge_{x}(x \in X \Rightarrow h(x) \neq x)\right\}}$,
(ii) $\operatorname{dom} X_{2}=\operatorname{card} X+1$, and
(iii) for every n such that $n \in \operatorname{dom} X_{2}$ holds $X_{2}(n)=\frac{(-1)^{n} \cdot(\operatorname{card} X) \text { ! }}{n!}$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281290, 1990.
[3] Grzegorz Bancerek. Miscellaneous facts about functors. Formalized Mathematics, 9(4):745-754, 2001.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[10] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[12] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[13] Takaya Nishiyama, Hirofumi Fukura, and Yatsuka Nakamura. Logical correctness of vector calculation programs. Formalized Mathematics, 12(3):375-380, 2004.
[14] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[15] Library Committee of the Association of Mizar Users. Binary operations on numbers. To appear in Formalized Mathematics.
[16] Karol Pa̧k. Stirling numbers of the second kind. Formalized Mathematics, 13(2):337-345, 2005.
[17] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[18] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[19] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[20] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369-376, 1990.
[21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[22] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[23] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979-981, 1990.
[24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[25] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825-829, 2001.
[26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[27] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Some Equations Related to the Limit of Sequence of Subsets

Bo Zhang
Shinshu University
Nagano, Japan

Hiroshi Yamazaki
Shinshu University
Nagano, Japan

Yatsuka Nakamura
Shinshu University
Nagano, Japan

Summary. Set operations for sequences of subsets are introduced here. Some relations for these operations with the limit of sequences of subsets, also with the inferior sequence and the superior sequence of sets, and with the inferior limit and the superior limit of sets are shown.

MML identifier: SETLIM_2, version: 7.5.01 4.39.921

The articles [5], [2], [6], [1], [3], [4], and [7] provide the notation and terminology for this paper.

For simplicity, we use the following convention: n, k denote natural numbers, X denotes a set, A denotes a subset of X, and A_{1}, A_{2} denote sequences of subsets of X.

We now state two propositions:
(1) (The inferior setsequence $\left.A_{1}\right)(n)=\operatorname{Intersection}\left(A_{1} \uparrow n\right)$.
(2) (The superior setsequence $\left.A_{1}\right)(n)=\bigcup\left(A_{1} \uparrow n\right)$.

Let us consider X and let A_{1}, A_{2} be sequences of subsets of X. The functor $A_{1} \cap A_{2}$ yields a sequence of subsets of X and is defined as follows:
(Def. 1) For every n holds $\left(A_{1} \cap A_{2}\right)(n)=A_{1}(n) \cap A_{2}(n)$.
Let us note that the functor $A_{1} \cap A_{2}$ is commutative. The functor $A_{1} \cup A_{2}$ yielding a sequence of subsets of X is defined as follows:
(Def. 2) For every n holds $\left(A_{1} \cup A_{2}\right)(n)=A_{1}(n) \cup A_{2}(n)$.
Let us observe that the functor $A_{1} \cup A_{2}$ is commutative. The functor $A_{1} \backslash A_{2}$ yielding a sequence of subsets of X is defined by:
(Def. 3) For every n holds $\left(A_{1} \backslash A_{2}\right)(n)=A_{1}(n) \backslash A_{2}(n)$.
The functor $A_{1} \doteq A_{2}$ yields a sequence of subsets of X and is defined as follows:
(Def. 4) For every n holds $\left(A_{1} \doteq A_{2}\right)(n)=A_{1}(n) \dot{ } A_{2}(n)$.
Let us note that the functor $A_{1} \doteq A_{2}$ is commutative.
One can prove the following propositions:
(3) $A_{1} \doteq A_{2}=\left(A_{1} \backslash A_{2}\right) \cup\left(A_{2} \backslash A_{1}\right)$.
(4) $\left(A_{1} \cap A_{2}\right) \uparrow k=A_{1} \uparrow k \cap A_{2} \uparrow k$.
(5) $\quad\left(A_{1} \cup A_{2}\right) \uparrow k=A_{1} \uparrow k \cup A_{2} \uparrow k$.
(6) $\left(A_{1} \backslash A_{2}\right) \uparrow k=A_{1} \uparrow k \backslash A_{2} \uparrow k$.
(7) $\left(A_{1} \doteq A_{2}\right) \uparrow k=A_{1} \uparrow k \dot{ } \dot{-} A_{2} \uparrow k$.
(8) $\bigcup\left(A_{1} \cap A_{2}\right) \subseteq \bigcup A_{1} \cap \bigcup A_{2}$.
(9) $\bigcup\left(A_{1} \cup A_{2}\right)=\bigcup A_{1} \cup \bigcup A_{2}$.
(10) $\bigcup A_{1} \backslash \bigcup A_{2} \subseteq \bigcup\left(A_{1} \backslash A_{2}\right)$.
(11) $\bigcup A_{1} \doteq \bigcup A_{2} \subseteq \bigcup\left(A_{1} \doteq A_{2}\right)$.
(12) Intersection $\left(A_{1} \cap A_{2}\right)=$ Intersection $A_{1} \cap$ Intersection A_{2}.
(13) Intersection $A_{1} \cup$ Intersection $A_{2} \subseteq \operatorname{Intersection}\left(A_{1} \cup A_{2}\right)$.
(14) $\operatorname{Intersection}\left(A_{1} \backslash A_{2}\right) \subseteq$ Intersection $A_{1} \backslash$ Intersection A_{2}.

Let us consider X, let A_{1} be a sequence of subsets of X, and let A be a subset of X. The functor $A \cap A_{1}$ yielding a sequence of subsets of X is defined by:
(Def. 5) For every n holds $\left(A \cap A_{1}\right)(n)=A \cap A_{1}(n)$.
The functor $A \cup A_{1}$ yielding a sequence of subsets of X is defined as follows:
(Def. 6) For every n holds $\left(A \cup A_{1}\right)(n)=A \cup A_{1}(n)$.
The functor $A \backslash A_{1}$ yields a sequence of subsets of X and is defined by:
(Def. 7) For every n holds $\left(A \backslash A_{1}\right)(n)=A \backslash A_{1}(n)$.
The functor $A_{1} \backslash A$ yields a sequence of subsets of X and is defined by:
(Def. 8) For every n holds $\left(A_{1} \backslash A\right)(n)=A_{1}(n) \backslash A$.
The functor $A \subset A_{1}$ yielding a sequence of subsets of X is defined as follows:
(Def. 9) For every n holds $\left(A \doteq A_{1}\right)(n)=A \doteq A_{1}(n)$.
One can prove the following propositions:
(15) $\quad A \doteq A_{1}=\left(A \backslash A_{1}\right) \cup\left(A_{1} \backslash A\right)$.
(16) $\quad\left(A \cap A_{1}\right) \uparrow k=A \cap A_{1} \uparrow k$.
(17) $\left(A \cup A_{1}\right) \uparrow k=A \cup A_{1} \uparrow k$.
(18) $\left(A \backslash A_{1}\right) \uparrow k=A \backslash A_{1} \uparrow k$.
(19) $\quad\left(A_{1} \backslash A\right) \uparrow k=A_{1} \uparrow k \backslash A$.
(20) $\quad\left(A \doteq A_{1}\right) \uparrow k=A \doteq A_{1} \uparrow k$.
(21) If A_{1} is non-increasing, then $A \cap A_{1}$ is non-increasing.
(22) If A_{1} is non-decreasing, then $A \cap A_{1}$ is non-decreasing.
(23) If A_{1} is monotone, then $A \cap A_{1}$ is monotone.
(24) If A_{1} is non-increasing, then $A \cup A_{1}$ is non-increasing.
(25) If A_{1} is non-decreasing, then $A \cup A_{1}$ is non-decreasing.
(26) If A_{1} is monotone, then $A \cup A_{1}$ is monotone.
(27) If A_{1} is non-increasing, then $A \backslash A_{1}$ is non-decreasing.
(28) If A_{1} is non-decreasing, then $A \backslash A_{1}$ is non-increasing.
(29) If A_{1} is monotone, then $A \backslash A_{1}$ is monotone.
(30) If A_{1} is non-increasing, then $A_{1} \backslash A$ is non-increasing.
(31) If A_{1} is non-decreasing, then $A_{1} \backslash A$ is non-decreasing.
(32) If A_{1} is monotone, then $A_{1} \backslash A$ is monotone.
(33) Intersection $\left(A \cap A_{1}\right)=A \cap \operatorname{Intersection} A_{1}$.
(34) $\operatorname{Intersection}\left(A \cup A_{1}\right)=A \cup \operatorname{Intersection} A_{1}$.
(35) $\operatorname{Intersection}\left(A \backslash A_{1}\right) \subseteq A \backslash$ Intersection A_{1}.
(36) $\operatorname{Intersection}\left(A_{1} \backslash A\right)=\operatorname{Intersection} A_{1} \backslash A$.
(37) $\operatorname{Intersection}\left(A \doteq A_{1}\right) \subseteq A \doteq$ Intersection A_{1}.
(38) $\bigcup\left(A \cap A_{1}\right)=A \cap \bigcup A_{1}$.
(39) $\bigcup\left(A \cup A_{1}\right)=A \cup \bigcup A_{1}$.
(40) $A \backslash \bigcup A_{1} \subseteq \bigcup\left(A \backslash A_{1}\right)$.
(41) $\bigcup\left(A_{1} \backslash A\right)=\bigcup A_{1} \backslash A$.
(42) $\quad A \doteq \bigcup A_{1} \subseteq \bigcup\left(A \dot{\perp} A_{1}\right)$.
(43) (The inferior setsequence $\left.A_{1} \cap A_{2}\right)(n)=$ (the inferior setsequence $\left.A_{1}\right)(n) \cap\left(\right.$ the inferior setsequence $\left.A_{2}\right)(n)$.
(44) (The inferior setsequence $\left.A_{1}\right)(n) \cup\left(\right.$ the inferior setsequence $\left.A_{2}\right)(n) \subseteq$ (the inferior setsequence $\left.A_{1} \cup A_{2}\right)(n)$.
(45) (The inferior setsequence $\left.A_{1} \backslash A_{2}\right)(n) \subseteq$ (the inferior setsequence $\left.A_{1}\right)(n) \backslash$ (the inferior setsequence $\left.A_{2}\right)(n)$.
(46) (The superior setsequence $\left.A_{1} \cap A_{2}\right)(n) \subseteq$ (the superior setsequence $\left.A_{1}\right)(n) \cap\left(\right.$ the superior setsequence $\left.A_{2}\right)(n)$.
(47) (The superior setsequence $\left.A_{1} \cup A_{2}\right)(n)=$ (the superior setsequence $\left.A_{1}\right)(n) \cup\left(\right.$ the superior setsequence $\left.A_{2}\right)(n)$.
(48) (The superior setsequence $\left.A_{1}\right)(n) \backslash$ (the superior setsequence $\left.A_{2}\right)(n) \subseteq$ (the superior setsequence $\left.A_{1} \backslash A_{2}\right)(n)$.
(49) (The superior setsequence $\left.A_{1}\right)(n) \doteq\left(\right.$ the superior setsequence $\left.A_{2}\right)(n) \subseteq$ (the superior setsequence $\left.A_{1} \doteq A_{2}\right)(n)$.
(50) (The inferior setsequence $\left.A \cap A_{1}\right)(n)=A \cap$ (the inferior setsequence $\left.A_{1}\right)(n)$.
(51) (The inferior setsequence $\left.A \cup A_{1}\right)(n)=A \cup$ (the inferior setsequence $\left.A_{1}\right)(n)$.
(52) (The inferior setsequence $\left.A \backslash A_{1}\right)(n) \subseteq A \backslash$ (the inferior setsequence $\left.A_{1}\right)(n)$.
(53) (The inferior setsequence $\left.A_{1} \backslash A\right)(n)=\left(\right.$ the inferior setsequence $\left.A_{1}\right)(n) \backslash$ A.
(54) (The inferior setsequence $\left.A \dot{\oplus} A_{1}\right)(n) \subseteq A \doteq$ (the inferior setsequence $\left.A_{1}\right)(n)$.
(55) (The superior setsequence $\left.A \cap A_{1}\right)(n)=A \cap$ (the superior setsequence $\left.A_{1}\right)(n)$.
(56) (The superior setsequence $\left.A \cup A_{1}\right)(n)=A \cup$ (the superior setsequence $\left.A_{1}\right)(n)$.
(57) $A \backslash\left(\right.$ the superior setsequence $\left.A_{1}\right)(n) \subseteq$ (the superior setsequence $A \backslash$ $\left.A_{1}\right)(n)$.
(58) (The superior setsequence $\left.A_{1} \backslash A\right)(n)=$ (the superior setsequence $\left.A_{1}\right)(n) \backslash A$.
(59) $A \dot{\circ}$ (the superior setsequence $\left.A_{1}\right)(n) \subseteq$ (the superior setsequence $\left.A \subset A_{1}\right)(n)$.
(60) $\quad \liminf \left(A_{1} \cap A_{2}\right)=\liminf A_{1} \cap \liminf A_{2}$.
(61) $\lim \inf A_{1} \cup \lim \inf A_{2} \subseteq \liminf \left(A_{1} \cup A_{2}\right)$.
(62) $\liminf \left(A_{1} \backslash A_{2}\right) \subseteq \liminf A_{1} \backslash \liminf A_{2}$.
(63) If A_{1} is convergent or A_{2} is convergent, then $\liminf \left(A_{1} \cup A_{2}\right)=$ $\lim \inf A_{1} \cup \lim \inf A_{2}$.
(64) If A_{2} is convergent, then $\liminf \left(A_{1} \backslash A_{2}\right)=\liminf A_{1} \backslash \liminf A_{2}$.
(65) If A_{1} is convergent or A_{2} is convergent, then $\liminf \left(A_{1} \perp A_{2}\right) \subseteq$ $\liminf A_{1} \doteq \liminf A_{2}$.
(66) If A_{1} is convergent and A_{2} is convergent, then $\liminf \left(A_{1} \dot{-} A_{2}\right)=$ $\liminf A_{1} \subset \liminf A_{2}$.
(67) $\limsup \left(A_{1} \cap A_{2}\right) \subseteq \limsup A_{1} \cap \limsup A_{2}$.
(68) $\lim \sup \left(A_{1} \cup A_{2}\right)=\lim \sup A_{1} \cup \limsup A_{2}$.
(69) $\lim \sup A_{1} \backslash \lim \sup A_{2} \subseteq \lim \sup \left(A_{1} \backslash A_{2}\right)$.
(70) $\lim \sup A_{1} \perp \limsup A_{2} \subseteq \lim \sup \left(A_{1} \perp A_{2}\right)$.
(71) If A_{1} is convergent or A_{2} is convergent, then $\limsup \left(A_{1} \cap A_{2}\right)=$ $\limsup A_{1} \cap \limsup A_{2}$.
(72) If A_{2} is convergent, then $\lim \sup \left(A_{1} \backslash A_{2}\right)=\limsup A_{1} \backslash \limsup A_{2}$.
(73) If A_{1} is convergent and A_{2} is convergent, then $\limsup \left(A_{1} \bullet A_{2}\right)=$ $\lim \sup A_{1} \doteq \limsup A_{2}$.
(74) $\liminf \left(A \cap A_{1}\right)=A \cap \liminf A_{1}$.
(75) $\liminf \left(A \cup A_{1}\right)=A \cup \liminf A_{1}$.
(76) $\quad \liminf \left(A \backslash A_{1}\right) \subseteq A \backslash \liminf A_{1}$.
(77) $\liminf \left(A_{1} \backslash A\right)=\liminf A_{1} \backslash A$.
(78) $\liminf \left(A \doteq A_{1}\right) \subseteq A \doteq \liminf A_{1}$.
(79) If A_{1} is convergent, then $\lim \inf \left(A \backslash A_{1}\right)=A \backslash \liminf A_{1}$.
(80) If A_{1} is convergent, then $\liminf \left(A \dot{-} A_{1}\right)=A \dot{\liminf } A_{1}$.
(81) $\lim \sup \left(A \cap A_{1}\right)=A \cap \limsup A_{1}$.
(82) $\lim \sup \left(A \cup A_{1}\right)=A \cup \limsup A_{1}$.
(83) $A \backslash \limsup A_{1} \subseteq \limsup \left(A \backslash A_{1}\right)$.
(84) $\limsup \left(A_{1} \backslash A\right)=\limsup A_{1} \backslash A$.
(85) $A \doteq \limsup A_{1} \subseteq \limsup \left(A \doteq A_{1}\right)$.
(86) If A_{1} is convergent, then $\limsup \left(A \backslash A_{1}\right)=A \backslash \limsup A_{1}$.
(87) If A_{1} is convergent, then $\lim \sup \left(A \doteq A_{1}\right)=A \doteq \limsup A_{1}$.
(88) If A_{1} is convergent and A_{2} is convergent, then $A_{1} \cap A_{2}$ is convergent and $\lim \left(A_{1} \cap A_{2}\right)=\lim A_{1} \cap \lim A_{2}$.
(89) If A_{1} is convergent and A_{2} is convergent, then $A_{1} \cup A_{2}$ is convergent and $\lim \left(A_{1} \cup A_{2}\right)=\lim A_{1} \cup \lim A_{2}$.
(90) If A_{1} is convergent and A_{2} is convergent, then $A_{1} \backslash A_{2}$ is convergent and $\lim \left(A_{1} \backslash A_{2}\right)=\lim A_{1} \backslash \lim A_{2}$.
(91) If A_{1} is convergent and A_{2} is convergent, then $A_{1} \doteq A_{2}$ is convergent and $\lim \left(A_{1} \doteq A_{2}\right)=\lim A_{1} \doteq \lim A_{2}$.
(92) If A_{1} is convergent, then $A \cap A_{1}$ is convergent and $\lim \left(A \cap A_{1}\right)=A \cap$ $\lim A_{1}$.
(93) If A_{1} is convergent, then $A \cup A_{1}$ is convergent and $\lim \left(A \cup A_{1}\right)=A \cup$ $\lim A_{1}$.
(94) If A_{1} is convergent, then $A \backslash A_{1}$ is convergent and $\lim \left(A \backslash A_{1}\right)=A \backslash \lim A_{1}$.
(95) If A_{1} is convergent, then $A_{1} \backslash A$ is convergent and $\lim \left(A_{1} \backslash A\right)=\lim A_{1} \backslash A$.
(96) If A_{1} is convergent, then $A \doteq A_{1}$ is convergent and $\lim \left(A \doteq A_{1}\right)=$ $A \doteq \lim A_{1}$.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[2] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[3] Adam Grabowski. On the Kuratowski limit operators. Formalized Mathematics, 11(4):399409, 2003.
[4] Andrzej Nȩdzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
[5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[6] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[7] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Limit of sequence of subsets. Formalized Mathematics, 13(2):347-352, 2005.

Received May 24, 2005

On the Partial Product of Series and Related Basic Inequalities

Fuguo Ge
Qingdao University of Science
and Technology
China

Xiquan Liang
Qingdao University of Science
and Technology
China

Abstract

Summary. This article describes definition of partial product of series, introduced similarly to its related partial sum, as well as several important inequalities true for chosen special series.

MML identifier: SERIES_3, version: 7.5.01 4.39.921

The notation and terminology used in this paper are introduced in the following articles: [1], [9], [10], [5], [2], [4], [6], [7], [8], and [3].

For simplicity, we adopt the following convention: a, b, c are positive real numbers, m, x, y, z are real numbers, n is a natural number, and s, s_{1}, s_{2}, s_{3}, s_{4}, s_{5} are sequences of real numbers.

Let us consider x. Note that $|x|$ is non negative.
We now state a number of propositions:
(1) If $y>x$ and $x \geq 0$ and $m \geq 0$, then $\frac{x}{y} \leq \frac{x+m}{y+m}$.
(2) $\frac{a+b}{2} \geq \sqrt{a \cdot b}$.
(3) $\frac{b}{a}+\frac{a}{b} \geq 2$.
(4) $\left(\frac{x+y}{2}\right)^{2} \geq x \cdot y$.
(5) $\frac{x^{2}+y^{2}}{2} \geq\left(\frac{x+y}{2}\right)^{2}$.
(6) $x^{2}+y^{2} \geq 2 \cdot x \cdot y$.
(7) $\frac{x^{2}+y^{2}}{2} \geq x \cdot y$.
(8) $x^{2}+y^{2} \geq 2 \cdot|x| \cdot|y|$.
(9) $(x+y)^{2} \geq 4 \cdot x \cdot y$.
(10) $x^{2}+y^{2}+z^{2} \geq x \cdot y+y \cdot z+x \cdot z$.
(11) $(x+y+z)^{2} \geq 3 \cdot(x \cdot y+y \cdot z+x \cdot z)$.
(12) $a^{3}+b^{3}+c^{3} \geq 3 \cdot a \cdot b \cdot c$.
(13) $\frac{a^{3}+b^{3}+c^{3}}{3} \geq a \cdot b \cdot c$.
(14) $\left(\frac{a}{b}\right)^{3}+\left(\frac{b}{c}\right)^{3}+\left(\frac{c}{a}\right)^{3} \geq \frac{b}{a}+\frac{c}{b}+\frac{a}{c}$.
(15) $a+b+c \geq 3 \cdot \sqrt[3]{a \cdot b \cdot c}$.
(16) $\frac{a+b+c}{3} \geq \sqrt[3]{a \cdot b \cdot c}$.
(17) If $x+y+z=1$, then $x \cdot y+y \cdot z+x \cdot z \leq \frac{1}{3}$.
(18) If $x+y=1$, then $x \cdot y \leq \frac{1}{4}$.
(19) If $x+y=1$, then $x^{2}+y^{2} \geq \frac{1}{2}$.
(20) If $a+b=1$, then $\left(1+\frac{1}{a}\right) \cdot\left(1+\frac{1}{b}\right) \geq 9$.
(21) If $x+y=1$, then $x^{3}+y^{3} \geq \frac{1}{4}$.
(22) If $a+b=1$, then $a^{3}+b^{3}<1$.
(23) If $a+b=1$, then $\left(a+\frac{1}{a}\right) \cdot\left(b+\frac{1}{b}\right) \geq \frac{25}{4}$.
(24) If $|x| \leq a$, then $x^{2} \leq a^{2}$.
(25) If $|x| \geq a$, then $x^{2} \geq a^{2}$.
(26) $||x|-|y|| \leq|x|+|y|$.
(27) If $a \cdot b \cdot c=1$, then $\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq \sqrt{a}+\sqrt{b}+\sqrt{c}$.
(28) If $x>0$ and $y>0$ and $z<0$ and $x+y+z=0$, then $\left(x^{2}+y^{2}+z^{2}\right)^{3} \geq$ $6 \cdot\left(x^{3}+y^{3}+z^{3}\right)^{2}$.
(29) If $a \geq 1$, then $a^{b}+a^{c} \geq 2 \cdot a^{\sqrt{b \cdot c}}$.
(30) If $a \geq b$ and $b \geq c$, then $a^{a} \cdot b^{b} \cdot c^{c} \geq(a \cdot b \cdot c)^{\frac{a+b+c}{3}}$.
(31) $(a+b)^{n+2} \geq a^{n+2}+(n+2) \cdot a^{n+1} \cdot b$.
(32) $\frac{a^{n}+b^{n}}{2} \geq\left(\frac{a+b}{2}\right)^{n}$.
(33) If for every n holds $s(n)>0$, then for every n holds $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n)>$ 0.
(34) If for every n holds $s(n) \geq 0$, then for every n holds $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n) \geq$ 0.
(35) If for every n holds $s(n)<0$, then $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n)<0$.
(36) If $s=s_{1} s_{1}$, then for every n holds $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n) \geq 0$.
(37) If for every n holds $s(n)>0$ and $s(n)>s(n-1)$, then $(n+1) \cdot s(n+1)>$ $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
(38) If $s=s_{1} s_{2}$ and for every n holds $s_{1}(n) \geq 0$ and $s_{2}(n) \geq 0$, then for every n holds $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n) \leq\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$. $\left(\sum_{\alpha=0}^{\kappa}\left(s_{2}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
(39) If $s=s_{1} s_{2}$ and for every n holds $s_{1}(n)<0$ and $s_{2}(n)<0$, then $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n) \leq\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n) \cdot\left(\sum_{\alpha=0}^{\kappa}\left(s_{2}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
(40) For every n holds $\left|\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n)\right| \leq\left(\sum_{\alpha=0}^{\kappa}|s|(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
(41) $\quad\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n) \leq\left(\sum_{\alpha=0}^{\kappa}|s|(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.

Let us consider s. The partial product of s yielding a sequence of real numbers is defined by the conditions (Def. 1).
(Def. 1)(i) $\quad($ The partial product of $s)(0)=s(0)$, and
(ii) for every n holds (the partial product of $s)(n+1)=($ the partial product of $s)(n) \cdot s(n+1)$.
We now state a number of propositions:
(42) If for every n holds $s(n)>0$, then (the partial product of $s)(n)>0$.
(43) If for every n holds $s(n) \geq 0$, then (the partial product of $s)(n) \geq 0$.
(44) Suppose that for every n holds $s(n)>0$ and $s(n)<1$. Let given n. Then (the partial product of $s)(n)>0$ and (the partial product of $s)(n)<1$.
(45) If for every n holds $s(n) \geq 1$, then for every n holds (the partial product of $s)(n) \geq 1$.
(46) Suppose that for every n holds $s_{1}(n) \geq 0$ and $s_{2}(n) \geq 0$. Let given n. Then (the partial product of $\left.s_{1}\right)(n)+\left(\right.$ the partial product of $\left.s_{2}\right)(n) \leq($ the partial product of $\left.s_{1}+s_{2}\right)(n)$.
(47) If for every n holds $s(n)=\frac{2 \cdot n+1}{2 \cdot n+2}$, then (the partial product of $\left.s\right)(n) \leq$ $\frac{1}{\sqrt{3 \cdot n+4}}$.
(48) If for every n holds $s_{1}(n)=1+s(n)$ and $s(n)>-1$ and $s(n)<0$, then for every n holds $1+\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n) \leq$ (the partial product of $\left.s_{1}\right)(n)$.
(49) If for every n holds $s_{1}(n)=1+s(n)$ and $s(n) \geq 0$, then for every n holds $1+\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n) \leq\left(\right.$ the partial product of $\left.s_{1}\right)(n)$.
(50) If $s_{3}=s_{1} s_{2}$ and $s_{4}=s_{1} s_{1}$ and $s_{5}=s_{2} s_{2}$, then for every n holds $\left(\sum_{\alpha=0}^{\kappa}\left(s_{3}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)^{2} \leq\left(\sum_{\alpha=0}^{\kappa}\left(s_{4}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n) \cdot\left(\sum_{\alpha=0}^{\kappa}\left(s_{5}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
(51) If $s_{4}=s_{1} s_{1}$ and $s_{5}=s_{2} s_{2}$ and for every n holds $s_{1}(n) \geq$ 0 and $s_{2}(n) \geq 0$ and $s_{3}(n)=\left(s_{1}(n)+s_{2}(n)\right)^{2}$, then for every n holds $\sqrt{\left(\sum_{\alpha=0}^{\kappa}\left(s_{3}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)} \leq \sqrt{\left(\sum_{\alpha=0}^{\kappa}\left(s_{4}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)}+$ $\sqrt{\left(\sum_{\alpha=0}^{\kappa}\left(s_{5}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)}$.
(52) If for every n holds $s(n)>0$ and $s(n)>s(n-1)$, then $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n) \geq(n+1) \cdot \sqrt[n+1]{(\text { the partial product of } s)(n)}$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[5] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[6] Library Committee of the Association of Mizar Users. Binary operations on numbers. To appear in Formalized Mathematics.
[7] Konrad Raczkowski and Andrzej Nȩdzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
[8] Konrad Raczkowski and Andrzej Nȩdzusiak. Series. Formalized Mathematics, 2(4):449452, 1991.
[9] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[10] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.

Received July 6, 2005

Homeomorphism between Finite Topological Spaces, Two-Dimensional Lattice Spaces and a Fixed Point Theorem

Masami Tanaka
Shinshu University
Nagano, Japan

Hiroshi Imura
Shinshu University
Nagano, Japan

Yatsuka Nakamura
Shinshu University
Nagano, Japan

Abstract

Summary. In this paper we first introduced the notion of homeomorphism between finite topological spaces. We also gave a fixed point theorem in finite topological space. Next, we showed two 2-dimensional concrete models of lattice spaces. One was 2-dimensional linear finite topological space. Another was 2dimensional small finite topological space.

MML identifier: FINTOPO5, version: 7.5.01 4.39.921

The articles [10], [6], [12], [1], [13], [4], [5], [2], [7], [9], [8], [3], and [11] provide the notation and terminology for this paper.

The following propositions are true:
(1) Let X be a set, Y be a non empty set, f be a function from X into Y, and A be a subset of X. If f is one-to-one, then $\left(f^{-1}\right)^{\circ} f^{\circ} A=A$.
(2) For every natural number n holds $n>0$ iff $\operatorname{Seg} n \neq \emptyset$.

Let F_{1}, F_{2} be finite topology spaces and let h be a map from F_{1} into F_{2}. We say that h is a homeomorphism if and only if the conditions (Def. 1) are satisfied.
(Def. 1)(i) h is one-to-one and onto, and
(ii) for every element x of F_{1} holds h° (the neighbour-map of $\left.F_{1}\right)(x)=$ (the neighbour-map of $\left.F_{2}\right)(h(x))$.
One can prove the following propositions:
(3) Let F_{1}, F_{2} be non empty finite topology spaces and h be a map from F_{1} into F_{2}. Suppose h is a homeomorphism. Then there exists a map g from F_{2} into F_{1} such that $g=h^{-1}$ and g is a homeomorphism.
(4) Let F_{1}, F_{2} be non empty finite topology spaces, h be a map from F_{1} into F_{2}, n be a natural number, x be an element of F_{1}, and y be an element of F_{2}. Suppose h is a homeomorphism and $y=h(x)$. Let z be an element of F_{1}. Then $z \in U(x, n)$ if and only if $h(z) \in U(y, n)$.
(5) Let F_{1}, F_{2} be non empty finite topology spaces, h be a map from F_{1} into F_{2}, n be a natural number, x be an element of F_{1}, and y be an element of F_{2}. Suppose h is a homeomorphism and $y=h(x)$. Let v be an element of F_{2}. Then $h^{-1}(v) \in U(x, n)$ if and only if $v \in U(y, n)$.
(6) Let n be a non zero natural number and f be a map from $\operatorname{FTSL1}(n)$ into $\operatorname{FTSL1}(n)$. If f is continuous 0 , then there exists an element p of $\operatorname{FTSL1}(n)$ such that $f(p) \in U(p, 0)$.
(7) Let T be a non empty finite topology space, p be an element of T, and k be a natural number. If T is filled, then $U(p, k) \subseteq U(p, k+1)$.
(8) Let T be a non empty finite topology space, p be an element of T, and k be a natural number. If T is filled, then $U(p, 0) \subseteq U(p, k)$.
(9) Let n be a non zero natural number, j_{1}, j, k be natural numbers, and p be an element of $\operatorname{FTSL} 1(n)$. If $p=j_{1}$, then $j \in U(p, k)$ iff $j \in \operatorname{Seg} n$ and $\left|j_{1}-j\right| \leq k+1$.
(10) Let k_{1}, k_{2} be natural numbers, n be a non zero natural number, and f be a map from $\operatorname{FTSL1}(n)$ into $\operatorname{FTSL} 1(n)$. Suppose f is continuous k_{1} and $k_{2}=\left\lceil\frac{k_{1}}{2}\right\rceil$. Then there exists an element p of $\operatorname{FTSL} 1(n)$ such that $f(p) \in U\left(p, k_{2}\right)$.
Let n, m be natural numbers. The functor $\operatorname{Nbdl2(n,m)}$ yields a function from : Seg $n, \operatorname{Seg} m$: into $2^{[\operatorname{Seg} n, \operatorname{Seg} m!}$ and is defined by:
(Def. 2) For every set x such that $x \in\{\operatorname{Seg} n, \operatorname{Seg} m$! and for all natural numbers i, j such that $x=\langle i, j\rangle$ holds $(\operatorname{Nbdl2}(n, m))(x)=:(\operatorname{Nbdl1}(n))(i)$, $(\operatorname{Nbdl1}(m))(j)$! .
Let n, m be natural numbers. The functor $\operatorname{FTSL} 2(n, m)$ yielding a strict finite topology space is defined as follows:
(Def. 3) FTSL2 $(n, m)=\langle ः \operatorname{Seg} n, \operatorname{Seg} m:$, Nbdl2 $(n, m)\rangle$.
Let n, m be non zero natural numbers. One can verify that $\operatorname{FTSL} 2(n, m)$ is non empty.

We now state three propositions:
(11) For all non zero natural numbers n, m holds $\operatorname{FTSL} 2(n, m)$ is filled.
(12) For all non zero natural numbers n, m holds $\operatorname{FTSL} 2(n, m)$ is symmetric.
(13) For every non zero natural number n holds there exists a map from $\operatorname{FTSL} 2(n, 1)$ into $\operatorname{FTSL} 1(n)$ which is a homeomorphism.
Let n, m be natural numbers. The functor $\operatorname{Nbds} 2(n, m)$ yielding a function from $\left\{\operatorname{Seg} n, \operatorname{Seg} m\right.$: into $2^{\{\operatorname{Seg} n, \operatorname{Seg} m}$ is defined by:
(Def. 4) For every set x such that $x \in[\operatorname{Seg} n, \operatorname{Seg} m$: and for all natural numbers i, j such that $x=\langle i, j\rangle$ holds $(\operatorname{Nbds} 2(n, m))(x)=\{\{i\},(\operatorname{Nbdl1}(m))(j):\} \cup$: $(\operatorname{Nbdl1}(n))(i),\{j\}:]$.
Let n, m be natural numbers. The functor $\operatorname{FTSS} 2(n, m)$ yielding a strict finite topology space is defined as follows:
(Def. 5) FTSS2 $(n, m)=\langle: \operatorname{Seg} n, \operatorname{Seg} m:, \operatorname{Nbds} 2(n, m)\rangle$.
Let n, m be non zero natural numbers. Note that $\operatorname{FTSS} 2(n, m)$ is non empty. One can prove the following propositions:
(14) For all non zero natural numbers n, m holds $\operatorname{FTSS} 2(n, m)$ is filled.
(15) For all non zero natural numbers n, m holds $\operatorname{FTSS} 2(n, m)$ is symmetric.
(16) For every non zero natural number n holds there exists a map from $\operatorname{FTSS} 2(n, 1)$ into $\operatorname{FTSL} 1(n)$ which is a homeomorphism.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[7] Hiroshi Imura and Masayoshi Eguchi. Finite topological spaces. Formalized Mathematics, 3(2):189-193, 1992.
[8] Hiroshi Imura, Masami Tanaka, and Yatsuka Nakamura. Continuous mappings between finite and one-dimensional finite topological spaces. Formalized Mathematics, 12(3):381384, 2004.
[9] Masami Tanaka and Yatsuka Nakamura. Some set series in finite topological spaces. Fundamental concepts for image processing. Formalized Mathematics, 12(2):125-129, 2004.
[10] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[11] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[13] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

The Maclaurin Expansions

Akira Nishino
Shinshu University
Nagano, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Abstract

Summary. A concept of the Maclaurin expansions is defined here. This article contains the definition of the Maclaurin expansion and expansions of exp, sin and cos functions.

MML identifier: TAYLOR_2, version: 7.5.01 4.39.921

The papers [15], [16], [4], [12], [2], [14], [5], [1], [3], [7], [6], [10], [11], [8], [9], [17], and [13] provide the notation and terminology for this paper.

The following proposition is true
(1) For every real number x and for every natural number n holds $\left|x^{n}\right|=$ $|x|^{n}$.
Let f be a partial function from \mathbb{R} to \mathbb{R}, let Z be a subset of \mathbb{R}, and let a be a real number. The functor $\operatorname{Maclaurin}(f, Z, a)$ yields a sequence of real numbers and is defined by:
(Def. 1) $\operatorname{Maclaurin}(f, Z, a)=\operatorname{Taylor}(f, Z, 0, a)$.
The following propositions are true:
(2) Let n be a natural number, f be a partial function from \mathbb{R} to \mathbb{R}, and r be a real number. Suppose $0<r$ and f is differentiable $n+1$ times on $]-r, r[$. Let x be a real number. Suppose $x \in]-r, r[$. Then there exists a real number s such that $0<s$ and $s<1$ and $f(x)=$ $\left(\sum_{\alpha=0}^{\kappa}(\operatorname{Maclaurin}(f,]-r, r[, x))(\alpha)\right)_{\kappa \in \mathbb{N}}(n)+\frac{\left.f^{\prime}(]-r, r\right)(n+1)(s \cdot x) \cdot x^{n+1}}{(n+1)!}$.
(3) Let n be a natural number, f be a partial function from \mathbb{R} to \mathbb{R}, and x_{0}, r be real numbers. Suppose $0<r$ and f is differentiable $n+1$ times on $] x_{0}-r, x_{0}+r[$. Let x be a real number. Suppose $x \in] x_{0}-r, x_{0}+r[$. Then there exists a real number s such that $0<s$ and $s<1$ and $\left|f(x)-\left(\sum_{\alpha=0}^{\kappa}\left(\operatorname{Taylor}(f,] x_{0}-r, x_{0}+r\left[, x_{0}, x\right)\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)\right|=$ $\left|\frac{f^{\prime}\left(x_{0}-r, x_{0}+r[)(n+1)\left(x_{0}+s \cdot\left(x-x_{0}\right)\right) \cdot\left(x-x_{0}\right)^{n+1}\right.}{(n+1)!}\right|$.
(4) Let n be a natural number, f be a partial function from \mathbb{R} to \mathbb{R}, and r be a real number. Suppose $0<r$ and f is differentiable $n+1$ times on $]-r, r$. Let x be a real number. Suppose $x \in]-r, r[$. Then there exists a real number s such that $0<s$ and $s<1$ and $\mid f(x)-$ $\left(\sum_{\alpha=0}^{\kappa}(\operatorname{Maclaurin}(f,]-r, r[, x))(\alpha)\right)_{\kappa \in \mathbb{N}}(n)\left|=\left|\frac{f^{\prime}(]-r, r[)(n+1)(s \cdot x) \cdot x^{n+1}}{(n+1)!}\right|\right.$.
(5) For every real number r holds $\left.\exp _{\uparrow]-r, r[}^{\prime}=\exp \upharpoonright\right]-r, r[$ and $\operatorname{dom}(\exp \upharpoonright]-r, r[)=]-r, r[$.
(6) For every natural number n and for every real number r holds $\left.\exp ^{\prime}(]-r, r[)(n)=\exp \upharpoonright\right]-r, r[$.
(7) For every natural number n and for all real numbers r, x such that $x \in]-r, r\left[\right.$ holds $\exp ^{\prime}(]-r, r[)(n)(x)=\exp (x)$.
(8) For every natural number n and for all real numbers r, x such that $0<r$ holds (Maclaurin $(\exp]-r,, r[, x))(n)=\frac{x^{n}}{n!}$.
(9) Let n be a natural number and r, x, s be real numbers. Suppose $x \in]-r, r\left[\right.$ and $0<s$ and $s<1$. Then $\left|\frac{\exp ^{\prime}(]-r, r[)(n+1)(s \cdot x) \cdot x^{n+1}}{(n+1)!}\right| \leq$ $\frac{|\exp (s \cdot x)| \cdot|x|^{n+1}}{(n+1)!}$.
(10) For every real number r and for every natural number n holds exp is differentiable n times on $]-r, r[$.
(11) Let r be a real number. Suppose $0<r$. Then there exist real numbers M, L such that
(i) $0 \leq M$,
(ii) $0 \leq L$, and
(iii) for every natural number n and for all real numbers x, s such that $x \in]-r, r\left[\right.$ and $0<s$ and $s<1$ holds $\left|\frac{\exp ^{\prime}(]-r, r[)(n)(s \cdot x) \cdot x^{n}}{n!}\right| \leq \frac{M \cdot L^{n}}{n!}$.
(12) Let M, L be real numbers. Suppose $M \geq 0$ and $L \geq 0$. Let e be a real number. Suppose $e>0$. Then there exists a natural number n such that for every natural number m if $n \leq m$, then $\frac{M \cdot L^{m}}{m!}<e$.
(13) Let r, e be real numbers. Suppose $0<r$ and $0<e$. Then there exists a natural number n such that for every natural number m if $n \leq m$, then for all real numbers x, s such that $x \in]-r, r[$ and $0<s$ and $s<1$ holds $\left|\frac{\exp ^{\prime}(]-r, r[)(m)(s \cdot x) \cdot x^{m}}{m!}\right|<e$.
(14) Let r, e be real numbers. Suppose $0<r$ and $0<e$. Then there exists a natural number n such that for every natural number m if $n \leq m$, then for every real number x such that $x \in]-r, r[$ holds $\left|\exp (x)-\left(\sum_{\alpha=0}^{\kappa}(\operatorname{Maclaurin}(\exp ,]-r, r[, x))(\alpha)\right)_{\kappa \in \mathbb{N}}(m)\right|<e$.
(15) For every real number x holds $x \operatorname{ExpSeq}$ is absolutely summable.
(16) For all real numbers r, x such that $0<r$ holds Maclaurin $(\exp]-r,, r[, x)=$ $x \operatorname{ExpSeq}$ and Maclaurin(exp, $]-r, r[, x)$ is absolutely summable and $\exp (x)=\sum \operatorname{Maclaurin}(\exp]-r,, r[, x)$.
(17) Let r be a real number. Then
(i) (the function $\sin)_{\Gamma]-r, r[}^{\prime}=($ the function $\left.\cos) \Gamma\right]-r, r[$,
(ii) (the function $\left.\cos)^{\prime}\right]-r, r[=(-$ the function $\sin) \Gamma]-r, r[$,
(iii) $\operatorname{dom}(($ the function $\sin) \upharpoonright]-r, r[)=]-r, r[$, and
(iv) $\quad \operatorname{dom}(($ the function $\cos) \upharpoonright]-r, r[)=]-r, r[$.
(18) Let f be a partial function from \mathbb{R} to \mathbb{R} and Z be a subset of \mathbb{R}. If f is differentiable on Z, then $(-f)^{\prime}{ }_{\gamma}=-f_{\mid Z}^{\prime}$.
(19) Let r be a real number and n be a natural number. Then
(i) (the function $\sin)^{\prime}(]-r, r[)(2 \cdot n)=(-1)^{n}(($ the function $\sin) \upharpoonright]-r, r[)$,
(ii) $\quad(\text { the function } \sin)^{\prime}(]-r, r[)(2 \cdot n+1)=(-1)^{n}(($ the function $\cos) \upharpoonright]-r, r[)$,
(iii) $\quad(\text { the function } \cos)^{\prime}(]-r, r[)(2 \cdot n)=(-1)^{n}(($ the function $\cos) \upharpoonright]-r, r[)$, and
(iv) (the function $\cos)^{\prime}(]-r, r[)(2 \cdot n+1)=(-1)^{n+1}$ ((the function $\sin) \upharpoonright]-r, r[)$.
(20) Let n be a natural number and r, x be real numbers. Suppose $r>0$. Then
(i) (Maclaurin(the function $\sin ,]-r, r[, x))(2 \cdot n)=0$,
(ii) (Maclaurin(the function sin, $]-r, r[, x))(2 \cdot n+1)=\frac{(-1)^{n} \cdot x^{2 \cdot n+1}}{(2 \cdot n+1)!}$,
(iii) (Maclaurin(the function $\cos ,]-r, r[, x))(2 \cdot n)=\frac{(-1)^{n} \cdot x^{2 \cdot n}}{(2 \cdot n)!}$, and
(iv) (Maclaurin(the function cos, $]-r, r[, x))(2 \cdot n+1)=0$.
(21) Let r be a real number and n be a natural number. Then the function sin is differentiable n times on $]-r, r$ [and the function cos is differentiable n times on $]-r, r$.
(22) Let r be a real number. Suppose $r>0$. Then there exist real numbers r_{1}, r_{2} such that
(i) $\quad r_{1} \geq 0$,
(ii) $\quad r_{2} \geq 0$, and
(iii) for every natural number n and for all real numbers x, s such that $x \in$ $]-r, r\left[\right.$ and $0<s$ and $s<1$ holds $\left|\frac{(\text { the function } \sin)^{\prime}(]-r, r[)(n)(s \cdot x) \cdot x^{n}}{n!}\right| \leq \frac{r_{1} \cdot r_{2}{ }^{n}}{n!}$ and $\left|\frac{(\text { the function } \cos)^{\prime}(]-r, r[)(n)(s \cdot x) \cdot x^{n}}{n!}\right| \leq \frac{r_{1} \cdot r_{2}{ }^{n}}{n!}$.
(23) Let r, e be real numbers. Suppose $0<r$ and $0<e$. Then there exists a natural number n such that for every natural number m if $n \leq m$, then for all real numbers x, s such that $x \in]-r, r[$ and $0<s$ and $s<1$ holds $\left|\frac{(\text { the function } \sin)^{\prime}(]-r, r[)(m)(s \cdot x) \cdot x^{m}}{m!}\right|<e$ and $\left|\frac{(\text { the function } \cos)^{\prime}(]-r, r[)(m)(s \cdot x) \cdot x^{m}}{m!}\right|<e$.
(24) Let r, e be real numbers. Suppose $0<r$ and $0<e$. Then there exists a natural number n such that for every natural number m if $n \leq m$, then for every real number x such that $x \in]-r, r[$ holds \mid (the function $\sin)(x)-\left(\sum_{\alpha=0}^{\kappa}(\right.$ Maclaurin (the func-
tion $\sin ,]-r, r[, x))(\alpha))_{\kappa \in \mathbb{N}}(m) \mid<e$ and $\mid($ the function $\cos)(x)-$ $\left(\sum_{\alpha=0}^{\kappa}(\right.$ Maclaurin(the function $\left.\left.\cos]-r,, r[, x)\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(m) \mid<e$.
(25) Let r, x be real numbers and m be a natural number. Suppose $0<r$. Then $\left(\sum_{\alpha=0}^{\kappa}(\right.$ Maclaurin(the function $\left.\left.\sin]-r,, r[, x)\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(2$. $m+1)=\left(\sum_{\alpha=0}^{\kappa} x P_{-} \sin (\alpha)\right)_{\kappa \in \mathbb{N}}(m)$ and $\left(\sum_{\alpha=0}^{\kappa}(\right.$ Maclaurin $($ the function $\cos ,]-r, r[, x))(\alpha))_{\kappa \in \mathbb{N}}(2 \cdot m+1)=\left(\sum_{\alpha=0}^{\kappa} x \mathrm{P}_{-} \cos (\alpha)\right)_{\kappa \in \mathbb{N}}(m)$.
(26) Let r, x be real numbers and m be a natural number. Suppose $0<r$ and $m>0$. Then $\left(\sum_{\alpha=0}^{\kappa}(\right.$ Maclaurin(the function $\left.\left.\sin]-r,, r[, x)\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(2$. $m)=\left(\sum_{\alpha=0}^{\kappa} x \mathrm{P}_{-} \sin (\alpha)\right)_{\kappa \in \mathbb{N}}(m-1)$ and $\left(\sum_{\alpha=0}^{\kappa}\right.$ (Maclaurin(the function $\cos ,]-r, r[, x))(\alpha))_{\kappa \in \mathbb{N}}(2 \cdot m)=\left(\sum_{\alpha=0}^{\kappa} x \mathrm{P}_{-} \cos (\alpha)\right)_{\kappa \in \mathbb{N}}(m)$.
(27) Let r, x be real numbers and m be a natural number. If $0<$ r, then $\left(\sum_{\alpha=0}^{\kappa}(\right.$ Maclaurin(the function $\left.\left.\cos]-r,, r[, x)\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(2 \cdot m)=$ $\left(\sum_{\alpha=0}^{\kappa} x \text { P_cos }^{\kappa}(\alpha)\right)_{\kappa \in \mathbb{N}}(m)$.
(28) Let r, x be real numbers. Suppose $r>0$. Then
(i) $\quad\left(\sum_{\alpha=0}^{\kappa}(\right.$ Maclaurin(the function $\left.\left.\sin]-r,, r[, x)\right)(\alpha)\right)_{\kappa \in \mathbb{N}}$ is convergent,
(ii) $\quad($ the function $\sin)(x)=\sum \operatorname{Maclaurin}($ the function $\sin]-r,, r[, x)$,
(iii) $\quad\left(\sum_{\alpha=0}^{\kappa}(\right.$ Maclaurin(the function $\left.\left.\cos]-r,, r[, x)\right)(\alpha)\right)_{\kappa \in \mathbb{N}}$ is convergent, and
(iv) (the function $\cos)(x)=\sum$ Maclaurin(the function $\left.\cos ,\right]-r, r[, x)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[4] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[6] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[7] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[8] Beata Perkowska. Functional sequence from a domain to a domain. Formalized Mathematics, 3(1):17-21, 1992.
[9] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125130, 1991.
[10] Konrad Raczkowski and Andrzej Nȩdzusiak. Series. Formalized Mathematics, 2(4):449452, 1991.
[11] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[12] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[13] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195-200, 2004.
[14] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[16] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[17] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.

Received July 6, 2005

Several Differentiable Formulas of Special Functions

Yan Zhang
Qingdao University of Science
and Technology
China

Xiquan Liang
Qingdao University of Science
and Technology
China

Abstract

Summary. In this article, we give several differentiable formulas of special functions. There are some specific composite functions consisting of rational functions, irrational functions, trigonometric functions, exponential functions or logarithmic functions.

The notation and terminology used in this paper have been introduced in the following articles: [13], [15], [16], [1], [4], [10], [12], [3], [6], [9], [7], [8], [11], [17], [5], [14], and [2].

For simplicity, we follow the rules: x, a, b, c denote real numbers, n denotes a natural number, Z denotes an open subset of \mathbb{R}, and f, f_{1}, f_{2} denote partial functions from \mathbb{R} to \mathbb{R}.

One can prove the following propositions:
(1) Suppose $Z \subseteq \operatorname{dom}\left(\log _{-}(e) \cdot f\right)$ and for every x such that $x \in Z$ holds $f(x)=a+x$ and $f(x)>0$. Then $\log _{-}(e) \cdot f$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\log _{-}(e) \cdot f\right)^{\prime} Z(x)=\frac{1}{a+x}$.
(2) Suppose $Z \subseteq \operatorname{dom}\left(\log _{-}(e) \cdot f\right)$ and for every x such that $x \in Z$ holds $f(x)=x-a$ and $f(x)>0$. Then $\log _{-}(e) \cdot f$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\log _{-}(e) \cdot f\right)_{\mid Z}^{\prime}(x)=\frac{1}{x-a}$.
(3) Suppose $Z \subseteq \operatorname{dom}\left(-\log _{-}(e) \cdot f\right)$ and for every x such that $x \in Z$ holds $f(x)=a-x$ and $f(x)>0$. Then $-\log _{-}(e) \cdot f$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(-\log _{-}(e) \cdot f\right)^{\prime}{ }_{Y}(x)=\frac{1}{a-x}$.
(4) Suppose $Z \subseteq \operatorname{dom}\left(\operatorname{id}_{Z}-a f\right)$ and $f=\log _{-}(e) \cdot f_{1}$ and for every x such that $x \in Z$ holds $f_{1}(x)=a+x$ and $f_{1}(x)>0$. Then id $Z-a f$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\operatorname{idd}_{Z}-a f\right)^{\prime}{ }_{\zeta}^{\prime}(x)=\frac{x}{a+x}$.
(5) Suppose $Z \subseteq \operatorname{dom}\left((2 \cdot a) f-\operatorname{id}_{Z}\right)$ and $f=\log _{-}(e) \cdot f_{1}$ and for every x such that $x \in Z$ holds $f_{1}(x)=a+x$ and $f_{1}(x)>0$. Then $(2 \cdot a) f-\mathrm{id}_{Z}$ is differentiable on Z and for every x such that $x \in Z$ holds $((2 \cdot a) f-$ $\left.\mathrm{id}_{Z}\right)_{Y Z}^{\prime}(x)=\frac{a-x}{a+x}$.
(6) Suppose $Z \subseteq \operatorname{dom}_{\left(\mathrm{id}_{Z}-(2 \cdot a) f\right) \text { and } f=\log _{-}(e) \cdot f_{1} \text { and for every } x}$ such that $x \in Z$ holds $f_{1}(x)=x+a$ and $f_{1}(x)>0$. Then $\operatorname{id}_{Z}-(2 \cdot a) f$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\operatorname{id}_{Z}-(2\right.$. a) $f)^{\prime}{ }_{Z}(x)=\frac{x-a}{x+a}$.
(7) Suppose $Z \subseteq \operatorname{dom}_{\left(\mathrm{id}_{Z}+(2 \cdot a) f\right) \text { and } f=\log _{-}(e) \cdot f_{1} \text { and for every } x}$ such that $x \in Z$ holds $f_{1}(x)=x-a$ and $f_{1}(x)>0$. Then $\operatorname{id}_{Z}+(2 \cdot a) f$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\mathrm{id}_{Z}+(2\right.$. a) $f)^{\prime}{ }_{Z}(x)=\frac{x+a}{x-a}$.
(8) Suppose $Z \subseteq \operatorname{dom}\left(\operatorname{id}_{Z}+(a-b) f\right)$ and $f=\log _{-}(e) \cdot f_{1}$ and for every x such that $x \in Z$ holds $f_{1}(x)=x+b$ and $f_{1}(x)>0$. Then $\operatorname{id}_{Z}+(a-b) f$ is differentiable on Z and for every x such that $x \in Z$ holds (id $Z+(a-$ b) $f)_{Y Z}^{\prime}(x)=\frac{x+a}{x+b}$.
(9) Suppose $Z \subseteq \operatorname{dom}\left(\operatorname{id}_{Z}+(a+b) f\right)$ and $f=\log _{-}(e) \cdot f_{1}$ and for every x such that $x \in Z$ holds $f_{1}(x)=x-b$ and $f_{1}(x)>0$. Then $\operatorname{id}_{Z}+(a+b) f$ is differentiable on Z and for every x such that $x \in Z$ holds (id $Z+(a+$ b) $f)^{\prime}{ }_{Z}(x)=\frac{x+a}{x-b}$.
(10) Suppose $Z \subseteq \operatorname{dom}\left(\operatorname{id}_{Z}-(a+b) f\right)$ and $f=\log _{-}(e) \cdot f_{1}$ and for every x such that $x \in Z$ holds $f_{1}(x)=x+b$ and $f_{1}(x)>0$. Then $\operatorname{id}_{Z}-(a+b) f$ is differentiable on Z and for every x such that $x \in Z$ holds (id $Z-(a+$ b) $f)^{\prime}{ }_{Z}(x)=\frac{x-a}{x+b}$.
(11) Suppose $Z \subseteq \operatorname{dom}_{\left(\mathrm{id}_{Z}+(b-a) f\right) \text { and } f=\log _{-}(e) \cdot f_{1} \text { and for every } x}$ such that $x \in Z$ holds $f_{1}(x)=x-b$ and $f_{1}(x)>0$. Then $\operatorname{id}_{Z}+(b-a) f$ is differentiable on Z and for every x such that $x \in Z$ holds ($\mathrm{id}_{Z}+(b-$ a) $f)^{\prime}{ }_{Z}(x)=\frac{x-a}{x-b}$.
(12) Suppose $Z \subseteq \operatorname{dom}\left(f_{1}+c f_{2}\right)$ and for every x such that $x \in Z$ holds $f_{1}(x)=a+b \cdot x$ and $f_{2}=\frac{2}{\mathbb{Z}}$. Then $f_{1}+c f_{2}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(f_{1}+c f_{2}\right)^{\prime}(x)=b+2 \cdot c \cdot x$.
(13) Suppose $Z \subseteq \operatorname{dom}\left(\log _{-}(e) \cdot\left(f_{1}+c f_{2}\right)\right)$ and $f_{2}={ }_{\mathbb{Z}}^{2}$ and for every x such that $x \in Z$ holds $f_{1}(x)=a+b \cdot x$ and $\left(f_{1}+c f_{2}\right)(x)>0$. Then $\log _{-}(e) \cdot\left(f_{1}+c f_{2}\right)$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\log _{-}(e) \cdot\left(f_{1}+c f_{2}\right)\right)_{Y}^{\prime}(x)=\frac{b+2 \cdot \cdot \cdot x}{a+b \cdot x+c \cdot x^{2}}$.
(14) Suppose $Z \subseteq \operatorname{dom} f$ and for every x such that $x \in Z$ holds $f(x)=a+x$ and $f(x) \neq 0$. Then $\frac{1}{f}$ is differentiable on Z and for every x such that
$x \in Z$ holds $\left(\frac{1}{f}\right)^{\prime}{ }_{Y}(x)=-\frac{1}{(a+x)^{2}}$.
(15) Suppose $Z \subseteq \operatorname{dom}\left((-1) \frac{1}{f}\right)$ and for every x such that $x \in Z$ holds $f(x)=$ $a+x$ and $f(x) \neq 0$. Then $(-1) \frac{1}{f}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left((-1) \frac{1}{f}\right)^{\prime}{ }_{Y}(x)=\frac{1}{(a+x)^{2}}$.
(16) Suppose $Z \subseteq \operatorname{dom} f$ and for every x such that $x \in Z$ holds $f(x)=a-x$ and $f(x) \neq 0$. Then $\frac{1}{f}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\frac{1}{f}\right)^{\prime}{ }_{Y}(x)=\frac{1}{(a-x)^{2}}$.
(17) Suppose $Z \subseteq \operatorname{dom}\left(f_{1}+f_{2}\right)$ and for every x such that $x \in Z$ holds $f_{1}(x)=a^{\mathbf{2}}$ and $f_{2}={ }_{\mathbb{Z}}^{2}$. Then $f_{1}+f_{2}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(f_{1}+f_{2}\right)^{\prime}{ }_{Y}(x)=2 \cdot x$.
(18) \quad Suppose $Z \subseteq \operatorname{dom}\left(\log _{-}(e) \cdot\left(f_{1}+f_{2}\right)\right)$ and $f_{2}={ }_{\mathbb{Z}}^{2}$ and for every x such that $x \in Z$ holds $f_{1}(x)=a^{2}$ and $\left(f_{1}+f_{2}\right)(x)>0$. Then $\log _{-}(e) \cdot\left(f_{1}+f_{2}\right)$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\log _{-}(e) \cdot\left(f_{1}+\right.\right.$ $\left.\left.f_{2}\right)\right)_{\mid Z}^{\prime}(x)=\frac{2 \cdot x}{a^{2}+x^{2}}$.
(19) Suppose $Z \subseteq \operatorname{dom}\left(-\log _{-}(e) \cdot\left(f_{1}-f_{2}\right)\right)$ and $f_{2}={ }_{\mathbb{Z}}^{2}$ and for every x such that $x \in Z$ holds $f_{1}(x)=a^{2}$ and $\left(f_{1}-f_{2}\right)(x)>0$. Then $-\log _{-}(e) \cdot\left(f_{1}-f_{2}\right)$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(-\log _{-}(e) \cdot\left(f_{1}-f_{2}\right)\right)^{\prime}{ }_{Z}(x)=\frac{2 \cdot x}{a^{2}-x^{2}}$.
(20) Suppose $Z \subseteq \operatorname{dom}\left(f_{1}+f_{2}\right)$ and for every x such that $x \in Z$ holds $f_{1}(x)=a$ and $f_{2}=\stackrel{3}{\mathbb{Z}}$. Then $f_{1}+f_{2}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(f_{1}+f_{2}\right)_{\mid Z}^{\prime}(x)=3 \cdot x^{2}$.
(21) Suppose $Z \subseteq \operatorname{dom}\left(\log _{-}(e) \cdot\left(f_{1}+f_{2}\right)\right)$ and $f_{2}={ }_{\mathbb{Z}}^{3}$ and for every x such that $x \in Z$ holds $f_{1}(x)=a$ and $\left(f_{1}+f_{2}\right)(x)>0$. Then $\log _{-}(e) \cdot\left(f_{1}+f_{2}\right)$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\log _{-}(e) \cdot\left(f_{1}+\right.\right.$ $\left.\left.f_{2}\right)\right)_{\mid Z}^{\prime}(x)=\frac{3 \cdot x^{2}}{a+x^{3}}$.
(22) Suppose $Z \subseteq \operatorname{dom}\left(\log _{-}(e) \cdot \frac{f_{1}}{f_{2}}\right)$ and for every x such that $x \in Z$ holds $f_{1}(x)=a+x$ and $f_{1}(x)>0$ and $f_{2}(x)=a-x$ and $f_{2}(x)>0$. Then $\log _{-}(e) \cdot \frac{f_{1}}{f_{2}}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\log _{-}(e) \cdot \frac{f_{1}}{f_{2}}\right)_{Y Z}^{\prime}(x)=\frac{2 \cdot a}{a^{2}-x^{2}}$.
(23) Suppose $Z \subseteq \operatorname{dom}\left(\log _{-}(e) \cdot \frac{f_{1}}{f_{2}}\right)$ and for every x such that $x \in Z$ holds $f_{1}(x)=x-a$ and $f_{1}(x)>0$ and $f_{2}(x)=x+a$ and $f_{2}(x)>0$. Then $\log _{-}(e) \cdot \frac{f_{1}}{f_{2}}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\log _{-}(e) \cdot \frac{f_{1}}{f_{2}}\right)^{\prime}(x)=\frac{2 \cdot a}{x^{2}-a^{2}}$.
(24) Suppose $Z \subseteq \operatorname{dom}\left(\log _{-}(e) \cdot \frac{f_{1}}{f_{2}}\right)$ and for every x such that $x \in Z$ holds $f_{1}(x)=x-a$ and $f_{1}(x)>0$ and $f_{2}(x)=x-b$ and $f_{2}(x)>0$. Then $\log _{-}(e) \cdot \frac{f_{1}}{f_{2}}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\log _{-}(e) \cdot \frac{f_{1}}{f_{2}}\right)_{\curlyvee Z}^{\prime}(x)=\frac{a-b}{(x-a) \cdot(x-b)}$.
(25) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{a-b} f\right)$ and $f=\log _{-}(e) \cdot \frac{f_{1}}{f_{2}}$ and for every x such that
$x \in Z$ holds $f_{1}(x)=x-a$ and $f_{1}(x)>0$ and $f_{2}(x)=x-b$ and $f_{2}(x)>0$ and $a-b \neq 0$. Then $\frac{1}{a-b} f$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\frac{1}{a-b} f\right)_{Y}^{\prime}(x)=\frac{1}{(x-a) \cdot(x-b)}$.
(26) Suppose $Z \subseteq \operatorname{dom}\left(\log _{-}(e) \cdot \frac{f_{1}}{f_{2}}\right)$ and $f_{2}=\frac{2}{\mathbb{Z}}$ and for every x such that $x \in Z$ holds $f_{1}(x)=x-a$ and $f_{1}(x)>0$ and $f_{2}(x)>0$ and $x \neq 0$. Then $\log _{-}(e) \cdot \frac{f_{1}}{f_{2}}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\log _{-}(e) \cdot \frac{f_{1}}{f_{2}}\right)_{Z}^{\prime}(x)=\frac{2 \cdot a-x}{x \cdot(x-a)}$.
 $a+x$ and $f(x)>0$. Then $\binom{\frac{3}{2}}{\mathbb{R}} \cdot f$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\left(_{\mathbb{R}}^{\frac{3}{\mathbb{R}}}\right) \cdot f\right)^{\prime}{ }_{Z}^{\prime}(x)=\frac{3}{2} \cdot(a+x)_{\mathbb{R}}^{\frac{1}{2}}$.
(28) Suppose $\left.Z \subseteq \operatorname{dom}\left(\frac{2}{3}\binom{\frac{3}{2}}{\mathbb{R}} \cdot f\right)\right)$ and for every x such that $x \in Z$ holds $f(x)=a+x$ and $f(x)>0$. Then $\frac{2}{3}\left(\binom{\frac{3}{2}}{\mathbb{R}} \cdot f\right)$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\frac{2}{3}\left(\left(_{\mathbb{R}}^{\frac{3}{2}}\right) \cdot f\right)\right)^{\prime} Z(x)=(a+x)_{\mathbb{R}}^{\frac{1}{2}}$.
(29) Suppose $\left.Z \subseteq \operatorname{dom}\left(\left(-\frac{2}{3}\right)\binom{\frac{3}{2}}{\mathbb{R}} \cdot f\right)\right)$ and for every x such that $x \in Z$ holds $f(x)=a-x$ and $f(x)>0$. Then $\left(-\frac{2}{3}\right)\left(\binom{\frac{3}{2}}{\mathbb{R}_{3}} \cdot f\right)$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\left(-\frac{2}{3}\right)\left(\binom{\frac{3}{2}}{\mathbb{R}} \cdot f\right)\right)_{\uparrow Z}^{\prime}(x)=(a-x)_{\mathbb{R}}^{\frac{1}{2}}$.
(30) Suppose $Z \subseteq \operatorname{dom}\left(2\left(\binom{\frac{1}{2}}{\mathbb{R}} \cdot f\right)\right)$ and for every x such that $x \in Z$ holds $f(x)=a+x$ and $f(x)>0$. Then $2\left(\begin{array}{c}\left.\binom{\frac{1}{2}}{\mathbb{R}} \cdot f\right) \text { is differentiable on } Z \text { and for }\end{array}\right.$ every x such that $x \in Z$ holds $\left(2\left(\left(_{\mathbb{R}}^{\frac{1}{2}}\right) \cdot f\right)\right)^{\prime}{ }_{Y}^{\prime}(x)=(a+x)_{\mathbb{R}}^{-\frac{1}{2}}$.
 $f(x)=a-x$ and $f(x)>0$. Then $(-2)\left(\binom{\frac{1}{2}}{\mathbb{R}} \cdot f\right)$ is differentiable on Z and for every x such that $x \in Z$ holds $\left((-2)\left(\left(_{\mathbb{R}}^{\frac{1}{2}}\right) \cdot f\right)\right)_{Y Z}^{\prime}(x)=(a-x)_{\mathbb{R}}^{-\frac{1}{2}}$.
(32) Suppose $Z \subseteq \operatorname{dom}\left(\frac{2}{3 \cdot b}\left(\left(_{\mathbb{R}}^{\frac{3}{2}}\right) \cdot f\right)\right)$ and for every x such that $x \in Z$ holds $f(x)=a+b \cdot x$ and $b \neq 0$ and $f(x)>0$. Then $\frac{2}{3 \cdot b}\left(\left(\begin{array}{c}\left.\binom{\frac{3}{2}}{\mathbb{R}} \cdot f\right) \text { is differentiable }\end{array}\right.\right.$

 $f(x)=a-b \cdot x$ and $b \neq 0$ and $f(x)>0$. Then $\left(-\frac{2}{3 \cdot b}\right)\left(\binom{\frac{3}{2}}{\mathbb{R}} \cdot f\right)$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\left(-\frac{2}{3 \cdot b}\right)\left(\binom{\frac{3}{2}}{\mathbb{R}} \cdot f\right)\right)_{\mid Z}^{\prime}(x)=$ $(a-b \cdot x)_{\mathbb{R}}^{\frac{1}{2}}$.
 that $x \in Z$ holds $f_{1}(x)=a^{2}$ and $f(x)>0$. Then $\binom{\frac{1}{2}}{\mathbb{R}} \cdot f$ is differentiable on
Z and for every x such that $x \in Z$ holds $\left(\left(_{\mathbb{R}}^{\frac{1}{2}}\right) \cdot f\right)_{\mid Z}^{\prime}(x)=x \cdot\left(a^{2}+x^{2}\right)_{\mathbb{R}}^{-\frac{1}{2}}$.
(35) Suppose $Z \subseteq \operatorname{dom}\left(-\left(\frac{1}{2} \frac{1}{2}\right) \cdot f\right)$ and $f=f_{1}-f_{2}$ and $f_{2}=\frac{2}{\mathbb{Z}}$ and for every x such that $x \in Z$ holds $f_{1}(x)=a^{2}$ and $f(x)>0$. Then $-\binom{\frac{1}{2}}{\mathbb{R}} \cdot f$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(-\binom{\frac{1}{2}}{\mathbb{R}} \cdot f\right)_{\mid Z}^{\prime}(x)=$ $x \cdot\left(a^{2}-x^{2}\right)_{\mathbb{R}}^{-\frac{1}{2}}$.
(36) Suppose $\left.Z \subseteq \operatorname{dom}\left(2\binom{\frac{1}{2}}{\mathbb{R}} \cdot f\right)\right)$ and $f=f_{1}+f_{2}$ and $f_{2}=\underset{\mathbb{Z}}{2}$ and for every x such that $x \in Z$ holds $f_{1}(x)=x$ and $f(x)>0$. Then $2\left(\begin{array}{c}\left.\binom{\frac{1}{2}}{\mathbb{R}} \cdot f\right) ~\end{array}\right.$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(2\left(\begin{array}{l}\binom{\frac{1}{2}}{\mathbb{R}} \text {. }\end{array}\right.\right.$ f) $)_{\mid Z}^{\prime}(x)=(2 \cdot x+1) \cdot\left(x^{2}+x\right)_{\mathbb{R}}^{-\frac{1}{2}}$.
(37) Suppose $Z \subseteq \operatorname{dom}(($ the function $\sin) \cdot f)$ and for every x such that $x \in Z$ holds $f(x)=a \cdot x+b$. Then
(i) (the function \sin) $\cdot f$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $((\text { the function } \sin) \cdot f)_{{ }_{\mid}^{\prime}}{ }_{Z}(x)=a \cdot($ the function $\cos)(a \cdot x+b)$.
(38) Suppose $Z \subseteq \operatorname{dom}(($ the function cos $) \cdot f)$ and for every x such that $x \in Z$ holds $f(x)=a \cdot x+b$. Then
(i) (the function cos) $\cdot f$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function $\cos) \cdot f)^{\prime}{ }_{\mid Z}(x)=$ $-a \cdot($ the function $\sin)(a \cdot x+b)$.
(39) Suppose that for every x such that $x \in Z$ holds (the function $\cos)(x) \neq 0$. Then
(i) $\frac{1}{\text { the function cos }}$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\frac{1}{\text { the function } \cos }\right)^{\prime}{ }_{Z}(x)=$ $\frac{\text { (the function } \sin)(x)}{(\text { the function } \cos)(x)^{2}}$.
(40) Suppose that for every x such that $x \in Z$ holds (the function $\sin)(x) \neq 0$. Then
(i) $\frac{1}{\text { the function sin }}$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\frac{1}{\text { the function sin }}\right)_{\mid Z}^{\prime}(x)=$ $-\frac{(\text { the function } \cos)(x)}{(\text { the }}$.
(41) Suppose $Z \subseteq \operatorname{dom}(($ the function $\sin)$ (the function $\cos))$. Then
(i) (the function sin) (the function \cos) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function sin) (the function $\cos))_{\mid Z}^{\prime}(x)=\cos (2 \cdot x)$.
(42) Suppose $Z \subseteq \operatorname{dom}\left(\log _{-}(e) \cdot(\right.$ the function cos $\left.)\right)$ and for every x such that $x \in Z$ holds (the function $\cos)(x)>0$. Then $\log _{-}(e) \cdot($ the function $\cos)$ is differentiable on Z and for every x such that $x \in Z$ holds ($\log _{-}(e) \cdot$ (the function $\cos))^{\prime}(x)=-\tan x$.
(43) Suppose $Z \subseteq \operatorname{dom}\left(\log _{-}(e) \cdot(\right.$ the function $\left.\sin)\right)$ and for every x such that $x \in Z$ holds (the function $\sin)(x)>0$. Then $\log _{-}(e) \cdot($ the function $\sin)$ is differentiable on Z and for every x such that $x \in Z$ holds ($\log _{-}(e) \cdot$ (the function $\sin))_{Z}^{\prime}(x)=\cot x$.
(44) Suppose $Z \subseteq \operatorname{dom}\left(\left(-\mathrm{id}_{Z}\right)\right.$ (the function cos)). Then
(i) $\left(-\mathrm{id}_{Z}\right)$ (the function $\left.\cos \right)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\left(-\mathrm{id}_{Z}\right)\right.$ (the function $\left.\left.\cos \right)\right)^{\prime}{ }_{Z}(x)=$ $-($ the function $\cos)(x)+x \cdot($ the function $\sin)(x)$.
(45) Suppose $Z \subseteq \operatorname{dom}\left(\mathrm{id}_{Z}\right.$ (the function $\left.\sin \right)$). Then
(i) id_{Z} (the function \sin) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds (id ${ }_{Z}($ the function $\left.\sin)\right)_{\mid Z}^{\prime}(x)=$ (the function $\sin)(x)+x \cdot($ the function $\cos)(x)$.
(46) Suppose $Z \subseteq \operatorname{dom}\left(\left(-\mathrm{id}_{Z}\right)\right.$ (the function $\left.\cos \right)+$ the function $\left.\sin \right)$. Then
(i) $\left(-\mathrm{id}_{Z}\right)($ the function $\cos)+$ the function sin is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\left(-\mathrm{id}_{Z}\right)\right.$ (the function $\left.\cos \right)+$ the function $\sin)^{\prime} Z(x)=x \cdot($ the function $\sin)(x)$.
(47) Suppose $Z \subseteq \operatorname{dom}\left(\mathrm{id}_{Z}\right.$ (the function sin)+the function $\left.\cos \right)$. Then
(i) id_{Z} (the function \sin) + the function cos is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds (id Z (the function \sin)+the function $\cos)_{\mid Z}^{\prime}(x)=x \cdot($ the function $\cos)(x)$.
 $x \in Z$ holds (the function $\sin)(x)>0$. Then
(i) $2\left(\begin{array}{c}\binom{\frac{1}{2}}{\mathbb{R}} \cdot(\text { the function sin)) is differentiable on } Z \text {, and }\end{array}\right.$
(ii) for every x such that $x \in Z$ holds $\left(2\left(\left(\frac{1}{2}\right) \cdot(\text { the function } \sin)\right)\right)^{\prime}{ }_{Z}(x)=$ (the function $\cos)(x) \cdot($ the function $\sin)(x)_{\mathbb{R}}^{-\frac{1}{2}}$.
(49) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{2}\left(\left({ }_{\mathbb{Z}}^{2}\right) \cdot(\right.\right.$ the function sin $\left.\left.)\right)\right)$. Then
(i) $\frac{1}{2}((\underset{\mathbb{Z}}{2}) \cdot($ the function sin)) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\frac{1}{2}\left(\left({ }_{\mathbb{Z}}^{2}\right) \cdot(\text { the function } \sin)\right)\right)^{\prime}{ }_{Z}(x)=$ (the function $\sin)(x) \cdot($ the function $\cos)(x)$.
(50) Suppose that
(i) $Z \subseteq \operatorname{dom}\left((\right.$ the function $\sin)+\frac{1}{2}\left(\left(\frac{2}{\mathbb{Z}}\right) \cdot(\right.$ the function $\left.\left.\sin)\right)\right)$, and
(ii) for every x such that $x \in Z$ holds (the function $\sin)(x)>0$ and (the function $\sin)(x)<1$.
Then
(iii) (the function $\sin)+\frac{1}{2}\left(\left(\frac{2}{\mathbb{Z}}\right) \cdot(\right.$ the function $\left.\sin)\right)$ is differentiable on Z, and
(iv) for every x such that $x \in Z$ holds ((the function $\sin)+\frac{1}{2}\left(\left({ }_{\mathbb{Z}}^{2}\right) \cdot\right.$ (the function $\sin)))^{\prime}{ }_{Z}(x)=\frac{(\text { the function } \cos)(x)^{3}}{1-(\text { the function } \sin)(x)}$.
(51) Suppose that
(i) $Z \subseteq \operatorname{dom}\left(\frac{1}{2}\left(\left(\frac{2}{\mathbb{Z}}\right) \cdot(\right.\right.$ the function $\left.\sin)\right)$-the function $\left.\cos \right)$, and
(ii) for every x such that $x \in Z$ holds (the function $\sin)(x)>0$ and (the function $\cos)(x)<1$.
Then
(iii) $\quad \frac{1}{2}\left(\left({ }_{\mathbb{Z}}^{2}\right) \cdot(\right.$ the function $\left.\sin)\right)$-the function cos is differentiable on Z, and
(iv) for every x such that $x \in Z$ holds $\left(\frac{1}{2}\left(\left(_{\mathbb{Z}}^{2}\right) \cdot(\right.\right.$ the function $\left.\sin)\right)-$ the function $\cos)^{\prime}{ }_{Z}(x)=\frac{(\text { the function } \sin)(x)^{3}}{1-(\text { the function } \cos)(x)}$.
(52) Suppose that
(i) $\quad Z \subseteq \operatorname{dom}\left((\right.$ the function $\sin)-\frac{1}{2}\left(\left(\mathbb{Z}_{\mathbb{Z}}^{2}\right) \cdot(\right.$ the function $\left.\left.\sin)\right)\right)$, and
(ii) for every x such that $x \in Z$ holds (the function $\sin)(x)>0$ and (the function $\sin)(x)>-1$.
Then
(iii) (the function $\sin)-\frac{1}{2}\left(\left({ }_{\mathbb{Z}}^{2}\right) \cdot(\right.$ the function $\left.\sin)\right)$ is differentiable on Z, and
(iv) for every x such that $x \in Z$ holds ((the function $\sin)-\frac{1}{2}\left(\left(\mathbb{Z}_{\mathbb{Z}}^{2}\right) \cdot(\right.$ the function $\sin)))^{\prime}{ }_{Z}(x)=\frac{(\text { the function } \cos)(x)^{3}}{1+(\text { the function } \sin)(x)}$.
(53) Suppose that
(i) $Z \subseteq \operatorname{dom}\left(-\right.$ the function $\cos -\frac{1}{2}\left(\left(\mathbb{Z}_{\mathbb{Z}}^{2}\right) \cdot(\right.$ the function $\left.\left.\sin)\right)\right)$, and
(ii) for every x such that $x \in Z$ holds (the function $\sin)(x)>0$ and (the function $\cos)(x)>-1$.
Then
(iii) - the function $\cos -\frac{1}{2}\left(\left({ }_{\mathbb{Z}}^{2}\right) \cdot(\right.$ the function $\left.\sin)\right)$ is differentiable on Z, and
(iv) for every x such that $x \in Z$ holds (-the function $\cos -\frac{1}{2}\left(\left({ }_{\mathbb{Z}}^{2}\right) \cdot(\right.$ the function $\sin)))^{\prime}{ }_{Z}(x)=\frac{(\text { the function } \sin)(x)^{3}}{1+(\text { the function } \cos)(x)}$.
(54) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{n}\left(\binom{n}{\mathbb{Z}} \cdot(\right.\right.$ the function $\left.\left.\sin)\right)\right)$ and $n>0$. Then
(i) $\frac{1}{n}\left(\binom{n}{\mathbb{Z}} \cdot(\right.$ the function $\left.\sin)\right)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\frac{1}{n}\left(\left(_{\mathbb{Z}}^{n}\right) \cdot(\text { the function } \sin)\right)\right)^{\prime}{ }_{Y}(x)=$ $\left((\right.$ the function $\left.\sin)(x)_{\mathbb{Z}}^{n-1}\right) \cdot($ the function $\cos)(x)$.
(55) Suppose $Z \subseteq \operatorname{dom}(\exp f)$ and for every x such that $x \in Z$ holds $f(x)=$ $x-1$. Then $\exp f$ is differentiable on Z and for every x such that $x \in Z$ holds $(\exp f)_{\mid Z}^{\prime}(x)=x \cdot \exp (x)$.
(56) \quad Suppose $Z \subseteq \operatorname{dom}\left(\log _{-}(e) \cdot \frac{\exp }{\exp +f}\right)$ and for every x such that $x \in Z$ holds $f(x)=1$. Then $\log _{-}(e) \cdot \frac{\exp }{\exp +f}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\log _{-}(e) \cdot \frac{\exp }{\exp +f}\right)^{\prime}{ }_{Z}(x)=\frac{1}{\exp (x)+1}$.
(57) Suppose $Z \subseteq \operatorname{dom}\left(\log _{-}(e) \cdot \frac{\exp -f}{\exp }\right)$ and for every x such that $x \in Z$ holds $f(x)=1$ and $(\exp -f)(x)>0$. Then $\log _{-}(e) \cdot \frac{\exp -f}{\exp }$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\log _{-}(e) \cdot \frac{\exp -f}{\exp }\right)^{\prime}{ }_{Y}(x)=\frac{1}{\exp (x)-1}$.

References

[1] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[2] Pacharapokin Chanapat, Kanchun, and Hiroshi Yamazaki. Formulas and identities of trigonometric functions. Formalized Mathematics, 12(2):139-141, 2004.
[3] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, $1(\mathbf{1}): 35-40,1990$.
[4] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[5] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[6] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[7] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125130, 1991.
[8] Konrad Raczkowski and Andrzej Nȩdzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
[9] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[10] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[11] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195-200, 2004.
[12] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[14] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[16] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[17] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.

Received July 6, 2005

Contents

Properties of First and Second Order Cutting of Binary Relations By Krzysztof Retel 361
The Inner Product and Conjugate of Finite Sequences of Complex Numbers
By Wenpai Chang et al. 367
Inferior Limit and Superior Limit of Sequences of Real Numbers
By Bo Zhang et al. 375
Formulas and Identities of Inverse Hyperbolic Functions
By Fuguo Ge and Xiquan Liang and Yuzhong Ding 383
Lines on Planes in n-Dimensional Euclidean Spaces By Akihiro Kubo 389
Cardinal Numbers and Finite Sets
By Karol Pa̧k 399
Some Equations Related to the Limit of Sequence of Subsets By Bo Zhang et al. 407
On the Partial Product of Series and Related Basic Inequalities By Fuguo Ge and Xiquan Liang 413
Homeomorphism between Finite Topological Spaces, Two-Dimensional
Lattice Spaces and a Fixed Point Theorem By Masami Tanaka et al. 417
The Maclaurin Expansions
By Akira Nishino and Yasunari Shidama 421
Several Differentiable Formulas of Special Functions
By Yan Zhang and Xiquan Liang 427

[^0]: ${ }^{1}$ This work has been partially supported by the KBN grant 4 T11C 03924 and the FP6 IST grant TYPES No. 510096.

