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Summary. This paper introduces some notions concerning binary re-

lations according to [9]. It is also an attempt to complement the knowledge

contained in the Mizar Mathematical Library regarding binary relations. We

define here an image and inverse image of element of set A under binary relation

of two sets A, B as image and inverse image of singleton of the element under

this relation, respectively. Next, we define “The First Order Cutting Relation of

two sets A, B under a subset of the set A” as the union of images of elements

of this subset under the relation. We also define “The Second Order Cutting

Subset of the Cartesian Product of two sets A, B under a subset of the set A”

as an intersection of images of elements of this subset under the subset of the

Cartesian Product. The paper also defines first and second projection of binary

relations. The main goal of the article is to prove properties and collocations of

definitions introduced in this paper.

MML identifier: RELSET 2, version: 7.5.01 4.39.921

The articles [10], [6], [11], [7], [12], [13], [5], [3], [4], [2], [8], and [1] provide the
notation and terminology for this paper.

1. Preliminaries

We adopt the following rules: x, y, X, Y , A, B, C, M are sets and P , Q,
R, R1, R2 are binary relations.

Let X be a set. We introduce {{∗} : ∗ ∈ X} as a synonym of SmallestPar-
tition (X).

The following propositions are true:
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(1) y ∈ {{∗} : ∗ ∈ X} iff there exists x such that y = {x} and x ∈ X.

(2) X = ∅ iff {{∗} : ∗ ∈ X} = ∅.
(3) {{∗} : ∗ ∈ X ∪ Y } = {{∗} : ∗ ∈ X} ∪ {{∗} : ∗ ∈ Y }.
(4) {{∗} : ∗ ∈ X ∩ Y } = {{∗} : ∗ ∈ X} ∩ {{∗} : ∗ ∈ Y }.
(5) {{∗} : ∗ ∈ X \ Y } = {{∗} : ∗ ∈ X} \ {{∗} : ∗ ∈ Y }.
(6) X ⊆ Y iff {{∗} : ∗ ∈ X} ⊆ {{∗} : ∗ ∈ Y }.
Let M be a set and let X, Y be families of subsets of M . Then X ∩ Y is a

family of subsets of M .
We now state two propositions:

(7) For all families B1, B2 of subsets of M holds Intersect(B1) ∩
Intersect(B2) ⊆ Intersect(B1 ∩B2).

(8) (P ∩Q) ·R ⊆ (P ·R) ∩ (Q ·R).

2. The First Order Cutting of Binary Relation of Two Sets A, B

under Subset of the Set A

Let X, Y be sets, let R be a relation between X and Y , and let x be an
element of X. The functor R◦x yielding a subset of Y is defined as follows:

(Def. 1) R◦x = R◦{x}.
The following propositions are true:

(9) y ∈ R◦{x} iff 〈〈x, y〉〉 ∈ R.

(10) (R1 ∪R2)◦{x} = R1
◦{x} ∪R2

◦{x}.
(11) (R1 ∩R2)◦{x} = R1

◦{x} ∩R2
◦{x}.

(12) (R1 \R2)◦{x} = R1
◦{x} \R2

◦{x}.
(13) (R1 ∩R2)◦{{∗} : ∗ ∈ X} ⊆ R1

◦{{∗} : ∗ ∈ X} ∩R2
◦{{∗} : ∗ ∈ X}.

Let X, Y be sets, let R be a relation between X and Y , and let x be an
element of X. The functor R−1(x) yields a subset of X and is defined by:

(Def. 2) R−1(x) = R−1({x}).
One can prove the following propositions:

(14) Let A be a set, F be a family of subsets of A, and R be a binary relation.
Then R◦ ⋃

F =
⋃
{R◦X;X ranges over subsets of A: X ∈ F}.

(15) For every non empty set A and for every subset X of A holds X =⋃
{{x};x ranges over elements of A: x ∈ X}.

(16) For every non empty set A and for every subset X of A holds {{x};x
ranges over elements of A: x ∈ X} is a family of subsets of A.

(17) Let A be a non empty set, B be a set, X be a subset of A, and R be a
relation between A and B. Then R◦X =

⋃
{R◦x;x ranges over elements

of A: x ∈ X}.
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(18) Let A be a non empty set, B be a set, X be a subset of A, and R be
a relation between A and B. Then {R◦x;x ranges over elements of A:
x ∈ X} is a family of subsets of B.

Let A, B be sets, let R be a subset of [:A, 2B :], and let X be a set. Then
R◦X is a family of subsets of B.

Let A be a set and let R be a binary relation. The functor RA yields a
function and is defined as follows:

(Def. 3) dom(RA) = 2A and for every set X such that X ⊆ A holds RA(X) =
R◦X.

Let B, A be sets and let R be a subset of [:A, B :]. We introduce ◦R as a
synonym of RA.

One can prove the following propositions:
(19) For all sets A, B and for every subset R of [:A, B :] such that X ∈ dom ◦R

holds (◦R)(X) = R◦X.

(20) For all sets A, B and for every subset R of [:A, B :] holds rng ◦R ⊆ 2rng R.

(21) For all sets A, B and for every subset R of [:A, B :] holds ◦R is a function
from 2A into 2rng R.

Let B, A be sets and let R be a subset of [:A, B :]. Then ◦R is a function
from 2A into 2B.

Next we state the proposition
(22) For all sets A, B and for every subset R of [: A, B :] holds

⋃
((◦R)◦A) ⊆

R◦ ⋃
A.

3. The Second Order Cutting of Binary Relation of Two Sets A,

B under Subset of the Set A

For simplicity, we adopt the following rules: X, X1, X2 are subsets of A, Y

is a subset of B, R, R1, R2 are subsets of [: A, B :], F is a family of subsets of
A, and F1 is a family of subsets of [:A, B :].

Let A, B be sets, let X be a subset of A, and let R be a subset of [:A, B :].
The functor R[X] is defined as follows:

(Def. 4) R[X] = Intersect((◦R)◦{{∗} : ∗ ∈ X}).
Let A, B be sets, let X be a subset of A, and let R be a subset of [:A, B :].

Then R[X] is a subset of B.
We now state a number of propositions:

(23) (◦R)◦{{∗} : ∗ ∈ X} = ∅ iff X = ∅.
(24) If y ∈ R[X], then for every set x such that x ∈ X holds y ∈ R◦{x}.
(25) Let B be a non empty set, A be a set, X be a subset of A, y be an

element of B, and R be a subset of [:A, B :]. Then y ∈ R[X] if and only if
for every set x such that x ∈ X holds y ∈ R◦{x}.
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(26) If (◦R)◦{{∗} : ∗ ∈ X1} = ∅, then R[X1 ∪X2] = R[X2].
(27) R[X1 ∪X2] = R[X1] ∩R[X2].
(28) Let A be a non empty set, B be a set, F be a family of subsets of A, and

R be a relation between A and B. Then {R[X];X ranges over subsets of
A: X ∈ F} is a family of subsets of B.

(29) If X = ∅, then R[X] = B.

(30)
⋃

F = ∅ iff for every set X such that X ∈ F holds X = ∅.
(31) Let A be a set, B be a non empty set, R be a relation between A and B,

F be a family of subsets of A, and G be a family of subsets of B. If G =
{R[Y ];Y ranges over subsets of A: Y ∈ F}, then R[

⋃
F ] = Intersect(G).

(32) If X1 ⊆ X2, then R[X2] ⊆ R[X1].
(33) R[X1] ∪R[X2] ⊆ R[X1 ∩X2].
(34) (R1 ∩R2)[X] = R1[X] ∩R2[X].
(35) (

⋃
F1)◦X =

⋃
{R◦X;R ranges over subsets of [: A, B :]: R ∈ F1}.

(36) Let F1 be a family of subsets of [:A, B :], A, B be sets, and X be a subset
of A. Then {R[X];R ranges over subsets of [:A, B :]: R ∈ F1} is a family
of subsets of B.

(37) If R = ∅ and X 6= ∅, then R[X] = ∅.
(38) If R = [:A, B :], then R[X] = B.

(39) For every family G of subsets of B such that G = {R[X];R ranges over
subsets of [: A, B :]: R ∈ F1} holds (Intersect(F1))[X] = Intersect(G).

(40) If R1 ⊆ R2, then R1[X] ⊆ R2[X].
(41) R1[X] ∪R2[X] ⊆ (R1 ∪R2)[X].
(42) y ∈ (Rc)◦{x} iff 〈〈x, y〉〉 /∈ R and x ∈ A and y ∈ B.

(43) If X 6= ∅, then R[X] ⊆ R◦X.

(44) For all sets X, Y holds X meets (R`)◦Y iff there exist sets x, y such
that x ∈ X and y ∈ Y and x ∈ (R`)◦{y}.

(45) For all sets X, Y holds there exist sets x, y such that x ∈ X and y ∈ Y

and x ∈ (R`)◦{y} iff Y meets R◦X.

(46) X misses (R`)◦Y iff Y misses R◦X.

(47) For every set X holds R◦X = R◦(X ∩ π1(R)).
(48) For every set Y holds (R`)◦Y = (R`)◦(Y ∩ π2(R)).
(49) (R[X])c = (Rc)◦X.

In the sequel R denotes a relation between A and B and S denotes a relation
between B and C.

Let A, B, C be sets, let R be a subset of [: A, B :], and let S be a subset of
[: B, C :]. Then R · S is a relation between A and C.

One can prove the following propositions:
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(50) (R◦X)c = Rc[X].
(51) π1(R) = (R`)◦B and π2(R) = R◦A.

(52) π1(R · S) = (R`)◦π1(S) and π1(R · S) ⊆ π1(R).
(53) π2(R · S) = S◦π2(R) and π2(R · S) ⊆ π2(S).
(54) X ⊆ π1(R) iff X ⊆ (R ·R`)◦X.

(55) Y ⊆ π2(R) iff Y ⊆ (R` ·R)◦Y.

(56) π1(R) = (R`)◦B and (R`)◦R◦A = (R`)◦π2(R).
(57) (R`)◦B = (R ·R`)◦A.

(58) R◦A = (R` ·R)◦B.

(59) S[R◦X] = (R · Sc)c[X].
(60) (Rc)` = (R`)c.
(61) X ⊆ R`[Y ] iff Y ⊆ R[X].
(62) R◦Xc ⊆ Y c iff (R`)◦Y ⊆ X.

(63) X ⊆ R`[R[X]] and Y ⊆ R[R`[Y ]].
(64) R[X] = R[R`[R[X]]] and R`[Y ] = R`[R[R`[Y ]]].
(65) idA ·R = R · idB.
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Summary. The concept of “the inner product and conjugate of finite

sequences of complex numbers” is defined here. Addition, subtraction, scalar

multiplication and inner product are introduced using correspondent definitions

of “conjugate of finite sequences of field”. Many equations for such operations

consist like a case of “conjugate of finite sequences of field”. Some operations

on the set of n-tuples of complex numbers are introduced as well. Additionally,

difference of such n-tuples, complement of a n-tuple and multiplication of these

are defined in terms of complex numbers.

MML identifier: COMPLSP2, version: 7.5.01 4.39.921

The terminology and notation used here are introduced in the following articles:
[17], [18], [15], [19], [8], [9], [10], [4], [16], [3], [5], [12], [6], [11], [7], [14], [1], [2],
and [13].

1. Preliminaries

For simplicity, we adopt the following convention: i, j are natural numbers,
x, y, z are finite sequences of elements of C, c is an element of C, and R, R1,
R2 are elements of Ci.

Let z be a finite sequence of elements of C. The functor z yielding a finite
sequence of elements of C is defined by:

(Def. 1) len z = len z and for every natural number i such that 1 ≤ i and i ≤ len z

holds z (i) = z(i) .
The following propositions are true:
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(1) If i ∈ dom(x + y), then (x + y)(i) = x(i) + y(i).

(2) If i ∈ dom(x− y), then (x− y)(i) = x(i)− y(i).

Let us consider i, R1, R2. Then R1 −R2 is an element of Ci.
Let us consider i, R1, R2. Then R1 + R2 is an element of Ci.
Let us consider i, let r be a complex number, and let us consider R. Then

r ·R is an element of Ci.
We now state a number of propositions:

(3) For every complex number a and for every finite sequence x of elements
of C holds len(a · x) = len x.

(4) For every finite sequence x of elements of C holds dom x = dom(−x).

(5) For every finite sequence x of elements of C holds len(−x) = len x.

(6) For all finite sequences x1, x2 of elements of C such that lenx1 = lenx2

holds len(x1 + x2) = len x1.

(7) For all finite sequences x1, x2 of elements of C such that lenx1 = lenx2

holds len(x1 − x2) = len x1.

(8) Every finite sequence f of elements of C is an element of Clen f .

(9) R1 −R2 = R1 +−R2.

(10) For all finite sequences x, y of elements of C such that len x = len y holds
x− y = x +−y.

(11) (−1) ·R = −R.

(12) For every finite sequence x of elements of C holds (−1) · x = −x.

(13) For every finite sequence x of elements of C holds (−x)(i) = −x(i).

Let us consider i, R. Then −R is an element of Ci.
The following propositions are true:

(14) If c = R(j), then (−R)(j) = −c.

(15) For every complex number a holds dom(a · x) = dom x.

(16) For every complex number a holds (a · x)(i) = a · x(i).

(17) For every complex number a holds a · x = a · x.

(18) (R1 + R2)(j) = R1(j) + R2(j).

(19) For all finite sequences x1, x2 of elements of C such that lenx1 = lenx2

holds x1 + x2 = x1 + x2 .

(20) (R1 −R2)(j) = R1(j)−R2(j).

(21) For all finite sequences x1, x2 of elements of C such that len x1 = lenx2

holds x1 − x2 = x1 − x2 .

(22) For every finite sequence z of elements of C holds z = z.

(23) For every finite sequence z of elements of C holds −z = −z .

(24) For every complex number z holds z + z = 2 · <(z).
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(25) For all finite sequences x, y of elements of C such that len x = len y holds
(x− y)(i) = x(i)− y(i).

(26) For all finite sequences x, y of elements of C such that len x = len y holds
(x + y)(i) = x(i) + y(i).

Let z be a finite sequence of elements of C. The functor <(z) yields a finite
sequence of elements of R and is defined as follows:

(Def. 2) <(z) = 1
2 · (z + z ).

One can prove the following proposition
(27) For every complex number z holds z − z = 2 · =(z) · i.

Let z be a finite sequence of elements of C. The functor =(z) yielding a
finite sequence of elements of R is defined as follows:

(Def. 3) =(z) = (−1
2 · i) · (z − z ).

Let x, y be finite sequences of elements of C. The functor |(x, y)| yields an
element of C and is defined by:

(Def. 4) |(x, y)| = (|(<(x),<(y))| − i · |(<(x),=(y))|) + i · |(=(x),<(y))| +
|(=(x),=(y))|.

We now state four propositions:
(28) For all finite sequences x, y, z of elements of C such that lenx = len y

and len y = len z holds x + (y + z) = (x + y) + z.

(29) For all finite sequences x, y of elements of C such that len x = len y holds
x + y = y + x.

(30) Let c be a complex number and x, y be finite sequences of elements of
C. If len x = len y, then c · (x + y) = c · x + c · y.

(31) For all finite sequences x, y of elements of C such that len x = len y holds
x− y = x +−y.

Let us consider i, c. Then i 7→ c is an element of Ci.
Next we state a number of propositions:

(32) For all finite sequences x, y of elements of C such that len x = len y and
x + y = 0len x

C holds x = −y and y = −x.

(33) For every finite sequence x of elements of C holds x + 0len x
C = x.

(34) For every finite sequence x of elements of C holds x +−x = 0len x
C .

(35) For all finite sequences x, y of elements of C such that len x = len y holds
−(x + y) = −x +−y.

(36) For all finite sequences x, y, z of elements of C such that lenx = len y

and len y = len z holds x− y − z = x− (y + z).
(37) For all finite sequences x, y, z of elements of C such that lenx = len y

and len y = len z holds x + (y − z) = (x + y)− z.

(38) For every finite sequence x of elements of C holds −−x = x.
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(39) For all finite sequences x, y of elements of C such that len x = len y holds
−(x− y) = −x + y.

(40) For all finite sequences x, y, z of elements of C such that lenx = len y

and len y = len z holds x− (y − z) = (x− y) + z.

(41) For every complex number c holds c · 0len x
C = 0len x

C .

(42) For every complex number c holds −c · x = c · −x.

(43) Let c be a complex number and x, y be finite sequences of elements of
C. If len x = len y, then c · (x− y) = c · x− c · y.

(44) For all elements x1, y1 of C and for all real numbers x2, y2 such that
x1 = x2 and y1 = y2 holds +C(x1, y1) = +R(x2, y2).

In the sequel C is a function from [: C, C :] into C and G is a function from
[: R, R :] into R.

One can prove the following proposition
(45) Let x1, y1 be finite sequences of elements of C and x2, y2 be finite

sequences of elements of R. Suppose x1 = x2 and y1 = y2 and lenx1 =
len y2 and for every i such that i ∈ dom x1 holds C(x1(i), y1(i)) = G(x2(i),
y2(i)). Then C◦(x1, y1) = G◦(x2, y2).

Let z be a finite sequence of elements of R and let i be a set. Then z(i) is
an element of R.

We now state several propositions:
(46) Let x1, y1 be finite sequences of elements of C and x2, y2 be finite

sequences of elements of R. If x1 = x2 and y1 = y2 and len x1 = len y2,

then (+C)◦(x1, y1) = (+R)◦(x2, y2).
(47) Let x1, y1 be finite sequences of elements of C and x2, y2 be finite

sequences of elements of R. If x1 = x2 and y1 = y2 and len x1 = len y2,

then x1 + y1 = x2 + y2.

(48) For every finite sequence x of elements of C holds len<(x) = len x and
len=(x) = len x.

(49) For all finite sequences x, y of elements of C such that len x = len y holds
<(x + y) = <(x) + <(y) and =(x + y) = =(x) + =(y).

(50) Let x1, y1 be finite sequences of elements of C and x2, y2 be finite
sequences of elements of R. If x1 = x2 and y1 = y2 and len x1 = len y2,

then (−C)◦(x1, y1) = (−R)◦(x2, y2).
(51) Let x1, y1 be finite sequences of elements of C and x2, y2 be finite

sequences of elements of R. If x1 = x2 and y1 = y2 and len x1 = len y2,

then x1 − y1 = x2 − y2.

(52) For all finite sequences x, y of elements of C such that len x = len y holds
<(x− y) = <(x)−<(y) and =(x− y) = =(x)−=(y).

(53) For all complex numbers a, b holds a · (b · z) = (a · b) · z.
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(54) For every complex number c holds (−c) · x = −c · x.

In the sequel h is a function from C into C and g is a function from R into
R.

One can prove the following propositions:

(55) Let y1 be a finite sequence of elements of C and y2 be a finite sequence
of elements of R. If len y1 = len y2 and for every i such that i ∈ dom y1

holds h(y1(i)) = g(y2(i)), then h · y1 = g · y2.

(56) Let y1 be a finite sequence of elements of C and y2 be a finite sequence
of elements of R. If y1 = y2 and len y1 = len y2, then −C · y1 = −R · y2.

(57) Let y1 be a finite sequence of elements of C and y2 be a finite sequence
of elements of R. If y1 = y2 and len y1 = len y2, then −y1 = −y2.

(58) For every finite sequence x of elements of C holds <(i · x) = −=(x) and
=(i · x) = <(x).

(59) For all finite sequences x, y of elements of C such that len x = len y holds
|(i · x, y)| = i · |(x, y)|.

(60) For all finite sequences x, y of elements of C such that len x = len y holds
|(x, i · y)| = −i · |(x, y)|.

(61) Let a1 be an element of C, y1 be a finite sequence of elements of C, a2 be
an element of R, and y2 be a finite sequence of elements of R. If a1 = a2

and y1 = y2 and len y1 = len y2, then ·(a1)
C ·y1 = ·a2

R ·y2.

(62) Let a1 be a complex number, y1 be a finite sequence of elements of C,
a2 be an element of R, and y2 be a finite sequence of elements of R. If
a1 = a2 and y1 = y2 and len y1 = len y2, then a1 · y1 = a2 · y2.

(63) For all complex numbers a, b holds (a + b) · z = a · z + b · z.

(64) For all complex numbers a, b holds (a− b) · z = a · z − b · z.

(65) Let a be an element of C and x be a finite sequence of elements of C.
Then <(a · x) = <(a) · <(x) − =(a) · =(x) and =(a · x) = =(a) · <(x) +
<(a) · =(x).

2. The Inner Product and Conjugate of Finite Sequences

The following propositions are true:

(66) For all finite sequences x1, x2, y of elements of C such that len x1 = lenx2

and lenx2 = len y holds |(x1 + x2, y)| = |(x1, y)|+ |(x2, y)|.
(67) For all finite sequences x1, x2 of elements of C such that lenx1 = lenx2

holds |(−x1, x2)| = −|(x1, x2)|.
(68) For all finite sequences x1, x2 of elements of C such that lenx1 = lenx2

holds |(x1,−x2)| = −|(x1, x2)|.
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(69) For all finite sequences x1, x2 of elements of C such that lenx1 = lenx2

holds |(−x1,−x2)| = |(x1, x2)|.
(70) For all finite sequences x1, x2, x3 of elements of C such that lenx1 =

lenx2 and lenx2 = lenx3 holds |(x1 − x2, x3)| = |(x1, x3)| − |(x2, x3)|.
(71) For all finite sequences x, y1, y2 of elements of C such that lenx = len y1

and len y1 = len y2 holds |(x, y1 + y2)| = |(x, y1)|+ |(x, y2)|.
(72) For all finite sequences x, y1, y2 of elements of C such that lenx = len y1

and len y1 = len y2 holds |(x, y1 − y2)| = |(x, y1)| − |(x, y2)|.
(73) Let x1, x2, y1, y2 be finite sequences of elements of C. If len x1 = lenx2

and lenx2 = len y1 and len y1 = len y2, then |(x1+x2, y1+y2)| = |(x1, y1)|+
|(x1, y2)|+ |(x2, y1)|+ |(x2, y2)|.

(74) Let x1, x2, y1, y2 be finite sequences of elements of C. If lenx1 =
lenx2 and lenx2 = len y1 and len y1 = len y2, then |(x1 − x2, y1 − y2)| =
(|(x1, y1)| − |(x1, y2)| − |(x2, y1)|) + |(x2, y2)|.

(75) For all finite sequences x, y of elements of C such that len x = len y holds
|(x, y)| = |(y, x)| .

(76) For all finite sequences x, y of elements of C such that len x = len y holds
|(x + y, x + y)| = |(x, x)|+ 2 · <(|(x, y)|) + |(y, y)|.

(77) For all finite sequences x, y of elements of C such that len x = len y holds
|(x− y, x− y)| = (|(x, x)| − 2 · <(|(x, y)|)) + |(y, y)|.

(78) For every element a of C and for all finite sequences x, y of elements of
C such that len x = len y holds |(a · x, y)| = a · |(x, y)|.

(79) For every element a of C and for all finite sequences x, y of elements of
C such that len x = len y holds |(x, a · y)| = a · |(x, y)|.

(80) Let a, b be elements of C and x, y, z be finite sequences of elements of C.
If lenx = len y and len y = len z, then |(a·x+b·y, z)| = a·|(x, z)|+b·|(y, z)|.

(81) Let a, b be elements of C and x, y, z be finite sequences of elements of C.
If len x = len y and len y = len z, then |(x, a·y+b·z)| = a ·|(x, y)|+b ·|(x, z)|.
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and [7] provide the terminology and notation for this paper.

We adopt the following rules: n, m, k denote natural numbers, r, s, t denote
real numbers, and s1, s2, s3 denote sequences of real numbers.

One can prove the following proposition
(1) s− r < t and s + r > t iff |t− s| < r.

Let s1 be a sequence of real numbers. The functor sup s1 yielding a real
number is defined by:

(Def. 1) sup s1 = sup rng s1.

Let s1 be a sequence of real numbers. The functor inf s1 yielding a real
number is defined as follows:

(Def. 2) inf s1 = inf rng s1.

The following propositions are true:
(2) (s2 + s3)− s3 = s2.

(3) r ∈ rng s1 iff −r ∈ rng(−s1).
(4) rng(−s1) = −rng s1.
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(5) s1 is upper bounded iff rng s1 is upper bounded.
(6) s1 is lower bounded iff rng s1 is lower bounded.
(7) Suppose s1 is upper bounded. Then r = sup s1 if and only if the following

conditions are satisfied:
(i) for every n holds s1(n) ≤ r, and
(ii) for every s such that 0 < s there exists k such that r − s < s1(k).
(8) Suppose s1 is lower bounded. Then r = inf s1 if and only if the following

conditions are satisfied:
(i) for every n holds r ≤ s1(n), and
(ii) for every s such that 0 < s there exists k such that s1(k) < r + s.

(9) For every n holds s1(n) ≤ r iff s1 is upper bounded and sup s1 ≤ r.

(10) For every n holds r ≤ s1(n) iff s1 is lower bounded and r ≤ inf s1.

(11) s1 is upper bounded iff −s1 is lower bounded.
(12) s1 is lower bounded iff −s1 is upper bounded.
(13) If s1 is upper bounded, then sup s1 = −inf(−s1).
(14) If s1 is lower bounded, then inf s1 = −sup(−s1).
(15) If s2 is lower bounded and s3 is lower bounded, then inf(s2 + s3) ≥

inf s2 + inf s3.

(16) If s2 is upper bounded and s3 is upper bounded, then sup(s2 + s3) ≤
sup s2 + sup s3.

Let f be a sequence of real numbers. We introduce f is non-negative as a
synonym of f is non-negative yielding.

Let f be a sequence of real numbers. Let us observe that f is non-negative
if and only if:

(Def. 3) For every n holds f(n) ≥ 0.

The following propositions are true:
(17) If s1 is non-negative, then s1 ↑ k is non-negative.
(18) If s1 is lower bounded and non-negative, then inf s1 ≥ 0.

(19) If s1 is upper bounded and non-negative, then sup s1 ≥ 0.

(20) Suppose s2 is lower bounded and non-negative and s3 is lower bounded
and non-negative. Then s2 s3 is lower bounded and inf(s2 s3) ≥ inf s2 ·
inf s3.

(21) Suppose s2 is upper bounded and non-negative and s3 is upper bounded
and non-negative. Then s2 s3 is upper bounded and sup(s2 s3) ≤ sup s2 ·
sup s3.

(22) If s1 is non-decreasing and upper bounded, then s1 is bounded.
(23) If s1 is non-increasing and lower bounded, then s1 is bounded.
(24) If s1 is non-decreasing and upper bounded, then lim s1 = sup s1.
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(25) If s1 is non-increasing and lower bounded, then lim s1 = inf s1.

(26) If s1 is upper bounded, then s1 ↑ k is upper bounded.
(27) If s1 is lower bounded, then s1 ↑ k is lower bounded.
(28) If s1 is bounded, then s1 ↑ k is bounded.
(29) For all s1, n holds {s1(k) : n ≤ k} is a subset of R.
(30) rng(s1 ↑ k) = {s1(n) : k ≤ n}.
(31) If s1 is upper bounded, then for every n and for every subset R of R

such that R = {s1(k) : n ≤ k} holds R is upper bounded.
(32) If s1 is lower bounded, then for every n and for every subset R of R such

that R = {s1(k) : n ≤ k} holds R is lower bounded.
(33) If s1 is bounded, then for every n and for every subset R of R such that

R = {s1(k) : n ≤ k} holds R is bounded.
(34) If s1 is non-decreasing, then for every n and for every subset R of R such

that R = {s1(k) : n ≤ k} holds inf R = s1(n).
(35) If s1 is non-increasing, then for every n and for every subset R of R such

that R = {s1(k) : n ≤ k} holds supR = s1(n).
(36) Let given s1. Then there exists a function f from N into R such that

for every n and for every subset Y of R if Y = {s1(k) : n ≤ k}, then
f(n) = sup Y.

(37) Let given s1. Then there exists a function f from N into R such that
for every n and for every subset Y of R if Y = {s1(k) : n ≤ k}, then
f(n) = inf Y.

Let s1 be a sequence of real numbers. The inferior realsequence s1 yields a
sequence of real numbers and is defined as follows:

(Def. 4) For every n and for every subset Y of R such that Y = {s1(k) : n ≤ k}
holds (the inferior realsequence s1)(n) = inf Y.

Let s1 be a sequence of real numbers. The superior realsequence s1 yields a
sequence of real numbers and is defined by:

(Def. 5) For every n and for every subset Y of R such that Y = {s1(k) : n ≤ k}
holds (the superior realsequence s1)(n) = supY.

Next we state a number of propositions:
(38) (The inferior realsequence s1)(n) = inf(s1 ↑ n).
(39) (The superior realsequence s1)(n) = sup(s1 ↑ n).
(40) If s1 is lower bounded, then (the inferior realsequence s1)(0) = inf s1.

(41) If s1 is upper bounded, then (the superior realsequence s1)(0) = sup s1.

(42) Suppose s1 is lower bounded. Then r = (the inferior realsequence s1)(n)
if and only if for every k holds r ≤ s1(n + k) and for every s such that
0 < s there exists k such that s1(n + k) < r + s.
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(43) Suppose s1 is upper bounded. Then r = (the superior realsequence
s1)(n) if and only if for every k holds s1(n + k) ≤ r and for every s such
that 0 < s there exists k such that r − s < s1(n + k).

(44) If s1 is lower bounded, then for every k holds r ≤ s1(n + k) iff r ≤ (the
inferior realsequence s1)(n).

(45) Suppose s1 is lower bounded. Then for every m such that n ≤ m holds
r ≤ s1(m) if and only if r ≤ (the inferior realsequence s1)(n).

(46) If s1 is upper bounded, then for every k holds s1(n + k) ≤ r iff (the
superior realsequence s1)(n) ≤ r.

(47) Suppose s1 is upper bounded. Then for every m such that n ≤ m holds
s1(m) ≤ r if and only if (the superior realsequence s1)(n) ≤ r.

(48) If s1 is lower bounded, then (the inferior realsequence s1)(n) = min((the
inferior realsequence s1)(n + 1), s1(n)).

(49) If s1 is upper bounded, then (the superior realsequence s1)(n) =
max((the superior realsequence s1)(n + 1), s1(n)).

(50) If s1 is lower bounded, then (the inferior realsequence s1)(n) ≤ (the
inferior realsequence s1)(n + 1).

(51) If s1 is upper bounded, then (the superior realsequence s1)(n+1) ≤ (the
superior realsequence s1)(n).

(52) If s1 is lower bounded, then the inferior realsequence s1 is non-decreasing.

(53) If s1 is upper bounded, then the superior realsequence s1 is non-
increasing.

(54) If s1 is bounded, then (the inferior realsequence s1)(n) ≤ (the superior
realsequence s1)(n).

(55) If s1 is bounded, then (the inferior realsequence s1)(n) ≤ inf (the supe-
rior realsequence s1).

(56) If s1 is bounded, then sup (the inferior realsequence s1) ≤ (the superior
realsequence s1)(n).

(57) If s1 is bounded, then sup (the inferior realsequence s1) ≤ inf (the supe-
rior realsequence s1).

(58) If s1 is bounded, then the superior realsequence s1 is bounded and the
inferior realsequence s1 is bounded.

(59) Suppose s1 is bounded. Then
(i) the inferior realsequence s1 is convergent, and
(ii) lim (the inferior realsequence s1) = sup (the inferior realsequence s1).

(60) Suppose s1 is bounded. Then
(i) the superior realsequence s1 is convergent, and
(ii) lim (the superior realsequence s1) = inf (the superior realsequence s1).
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(61) If s1 is lower bounded, then (the inferior realsequence s1)(n) =
−(the superior realsequence −s1)(n).

(62) If s1 is upper bounded, then (the superior realsequence s1)(n) =
−(the inferior realsequence −s1)(n).

(63) If s1 is lower bounded, then the inferior realsequence s1 =
−the superior realsequence −s1.

(64) If s1 is upper bounded, then the superior realsequence s1 =
−the inferior realsequence −s1.

(65) If s1 is non-decreasing, then s1(n) ≤ (the inferior realsequence s1)(n+1).
(66) If s1 is non-decreasing, then the inferior realsequence s1 = s1.

(67) If s1 is non-decreasing and upper bounded, then s1(n) ≤ (the superior
realsequence s1)(n + 1).

(68) Suppose s1 is non-decreasing and upper bounded. Then (the superior
realsequence s1)(n) = (the superior realsequence s1)(n + 1).

(69) Suppose s1 is non-decreasing and upper bounded. Then (the superior
realsequence s1)(n) = sup s1 and the superior realsequence s1 is constant.

(70) If s1 is non-decreasing and upper bounded, then inf (the superior realse-
quence s1) = sup s1.

(71) If s1 is non-increasing, then (the superior realsequence s1)(n+1) ≤ s1(n).
(72) If s1 is non-increasing, then the superior realsequence s1 = s1.

(73) If s1 is non-increasing and lower bounded, then (the inferior realsequence
s1)(n + 1) ≤ s1(n).

(74) Suppose s1 is non-increasing and lower bounded. Then (the inferior
realsequence s1)(n) = (the inferior realsequence s1)(n + 1).

(75) Suppose s1 is non-increasing and lower bounded. Then (the inferior
realsequence s1)(n) = inf s1 and the inferior realsequence s1 is constant.

(76) If s1 is non-increasing and lower bounded, then sup (the inferior realse-
quence s1) = inf s1.

(77) Suppose s2 is bounded and s3 is bounded and for every n holds s2(n) ≤
s3(n). Then

(i) for every n holds (the superior realsequence s2)(n) ≤ (the superior
realsequence s3)(n), and

(ii) for every n holds (the inferior realsequence s2)(n) ≤ (the inferior re-
alsequence s3)(n).

(78) Suppose s2 is lower bounded and s3 is lower bounded. Then (the inferior
realsequence s2 + s3)(n) ≥ (the inferior realsequence s2)(n) + (the inferior
realsequence s3)(n).

(79) Suppose s2 is upper bounded and s3 is upper bounded. Then (the su-
perior realsequence s2 + s3)(n) ≤ (the superior realsequence s2)(n) + (the
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superior realsequence s3)(n).

(80) Suppose s2 is lower bounded and non-negative and s3 is lower bounded
and non-negative. Then (the inferior realsequence s2 s3)(n) ≥ (the inferior
realsequence s2)(n) · (the inferior realsequence s3)(n).

(81) Suppose s2 is lower bounded and non-negative and s3 is lower bounded
and non-negative. Then (the inferior realsequence s2 s3)(n) ≥ (the inferior
realsequence s2)(n) · (the inferior realsequence s3)(n).

(82) Suppose s2 is upper bounded and non-negative and s3 is upper bounded
and non-negative. Then (the superior realsequence s2 s3)(n) ≤ (the supe-
rior realsequence s2)(n) · (the superior realsequence s3)(n).

Let s1 be a sequence of real numbers. The functor lim sup s1 yielding an
element of R is defined as follows:

(Def. 6) lim sup s1 = inf (the superior realsequence s1).

Let s1 be a sequence of real numbers. The functor lim inf s1 yielding an
element of R is defined by:

(Def. 7) lim inf s1 = sup (the inferior realsequence s1).

Next we state a number of propositions:

(83) If s1 is bounded, then lim inf s1 ≤ r iff for every s such that 0 < s and
for every n there exists k such that s1(n + k) < r + s.

(84) If s1 is bounded, then r ≤ lim inf s1 iff for every s such that 0 < s there
exists n such that for every k holds r − s < s1(n + k).

(85) Suppose s1 is bounded. Then r = lim inf s1 if and only if for every s

such that 0 < s holds for every n there exists k such that s1(n+k) < r+s

and there exists n such that for every k holds r − s < s1(n + k).

(86) If s1 is bounded, then r ≤ lim sup s1 iff for every s such that 0 < s and
for every n there exists k such that s1(n + k) > r − s.

(87) If s1 is bounded, then lim sup s1 ≤ r iff for every s such that 0 < s there
exists n such that for every k holds s1(n + k) < r + s.

(88) Suppose s1 is bounded. Then r = lim sup s1 if and only if for every s

such that 0 < s holds for every n there exists k such that s1(n+k) > r−s

and there exists n such that for every k holds s1(n + k) < r + s.

(89) If s1 is bounded, then lim inf s1 ≤ lim sup s1.

(90) s1 is bounded and lim sup s1 = lim inf s1 iff s1 is convergent.

(91) If s1 is convergent, then lim s1 = lim sup s1 and lim s1 = lim inf s1.

(92) If s1 is bounded, then lim sup(−s1) = −lim inf s1 and lim inf(−s1) =
−lim sup s1.

(93) If s2 is bounded and s3 is bounded and for every n holds s2(n) ≤ s3(n),
then lim sup s2 ≤ lim sup s3 and lim inf s2 ≤ lim inf s3.



inferior limit and superior limit . . . 381

(94) Suppose s2 is bounded and s3 is bounded. Then lim inf s2 + lim inf s3 ≤
lim inf(s2+s3) and lim inf(s2+s3) ≤ lim inf s2+lim sup s3 and lim inf(s2+
s3) ≤ lim sup s2+lim inf s3 and lim inf s2+lim sup s3 ≤ lim sup(s2+s3) and
lim sup s2+lim inf s3 ≤ lim sup(s2+s3) and lim sup(s2+s3) ≤ lim sup s2+
lim sup s3 and if s2 is convergent or s3 is convergent, then lim inf(s2+s3) =
lim inf s2 + lim inf s3 and lim sup(s2 + s3) = lim sup s2 + lim sup s3.

(95) If s2 is bounded and non-negative and s3 is bounded and non-negative,
then lim inf s2 · lim inf s3 ≤ lim inf(s2 s3) and lim sup(s2 s3) ≤ lim sup s2 ·
lim sup s3.
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The papers [1], [8], [4], [2], [9], [3], [6], [5], and [7] provide the terminology and
notation for this paper.

1. Preliminaries

In this paper x, y, t denote real numbers.
Next we state a number of propositions:

(1) If x > 0, then 1
x = x−1.

(2) If x > 1, then (
√

x2−1
x )2 < 1.

(3) ( x√
x2+1

)2 < 1.

(4)
√

x2 + 1 > 0.

(5)
√

x2 + 1 + x > 0.
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(6) If y ≥ 0 and x ≥ 1, then x+1
y ≥ 0.

(7) If y ≥ 0 and x ≥ 1, then x−1
y ≥ 0.

(8) If x ≥ 1, then
√

x+1
2 ≥ 1.

(9) If y ≥ 0 and x ≥ 1, then x2−1
y ≥ 0.

(10) If x ≥ 1, then
√

x+1
2 +

√
x−1

2 > 0.

(11) If x2 < 1, then x + 1 > 0 and 1− x > 0.

(12) If x 6= 1, then (1− x)2 > 0.

(13) If x2 < 1, then x2+1
1−x2 ≥ 0.

(14) If x2 < 1, then ( 2·x
1+x2 )2 < 1.

(15) If 0 < x and x < 1, then 1+x
1−x > 0.

(16) If 0 < x and x < 1, then x2 < 1.

(17) If 0 < x and x < 1, then 1√
1−x2

> 1.

(18) If 0 < x and x < 1, then 2·x
1−x2 > 0.

(19) If 0 < x and x < 1, then 0 < (1− x2)2.

(20) If 0 < x and x < 1, then 1+x2

1−x2 > 1.

(21) If 1 < x2, then ( 1
x)2 < 1.

(22) If 0 < x and x ≤ 1, then 1− x2 ≥ 0.

(23) If 1 ≤ x, then 0 < x +
√

x2 − 1.

(24) If 1 ≤ x and 1 ≤ y, then 0 ≤ x ·
√

y2 − 1 + y ·
√

x2 − 1.

(25) If 1 ≤ x and 1 ≤ y and |y| ≤ |x|, then 0 < y −
√

y2 − 1.

(26) If 1 ≤ x and 1 ≤ y and |y| ≤ |x|, then 0 ≤ y ·
√

x2 − 1− x ·
√

y2 − 1.

(27) If x2 < 1 and y2 < 1, then x · y 6= −1.

(28) If x2 < 1 and y2 < 1, then x · y 6= 1.

(29) If x 6= 0, then expx 6= 1.

(30) If 0 6= x, then (expx)2 − 1 6= 0.

(31) If 0 < t, then t2−1
t2+1

< 1.

(32) If −1 < t and t < 1, then 0 < t+1
1−t .

2. Formulas and Identities of Inverse Hyperbolic Functions

Let x be a real number. The functor sinh′ x yields a real number and is
defined by:

(Def. 1) sinh′ x = loge(x +
√

x2 + 1).
Let x be a real number. The functor cosh′1 x yielding a real number is defined

by:



formulas and identities of inverse . . . 385

(Def. 2) cosh′1 x = loge(x +
√

x2 − 1).
Let x be a real number. The functor cosh′2 x yields a real number and is

defined by:
(Def. 3) cosh′2 x = −loge(x +

√
x2 − 1).

Let x be a real number. The functor tanh′ x yields a real number and is
defined by:

(Def. 4) tanh′ x = 1
2 · loge(

1+x
1−x).

Let x be a real number. The functor coth′ x yielding a real number is defined
as follows:

(Def. 5) coth′ x = 1
2 · loge(

x+1
x−1).

Let x be a real number. The functor sech′1 x yields a real number and is
defined by:

(Def. 6) sech′1 x = loge(
1+

√
1−x2

x ).
Let x be a real number. The functor sech′2 x yielding a real number is defined

as follows:
(Def. 7) sech′2 x = −loge(

1+
√

1−x2

x ).
Let x be a real number. The functor csch′ x yielding a real number is defined

by:
(Def. 8)(i) csch′ x = loge(

1+
√

1+x2

x ) if 0 < x,

(ii) csch′ x = loge(
1−

√
1+x2

x ) if x < 0,

(iii) x < 0, otherwise.
The following propositions are true:

(33) If 0 ≤ x, then sinh′ x = cosh′1
√

x2 + 1.

(34) If x < 0, then sinh′ x = cosh′2
√

x2 + 1.

(35) sinh′ x = tanh′( x√
x2+1

).

(36) If x ≥ 1, then cosh′1 x = sinh′
√

x2 − 1.

(37) If x > 1, then cosh′1 x = tanh′(
√

x2−1
x ).

(38) If x ≥ 1, then cosh′1 x = 2 · cosh′1
√

x+1
2 .

(39) If x ≥ 1, then cosh′2 x = 2 · cosh′2
√

x+1
2 .

(40) If x ≥ 1, then cosh′1 x = 2 · sinh′
√

x−1
2 .

(41) If x2 < 1, then tanh′ x = sinh′( x√
1−x2

).

(42) If 0 < x and x < 1, then tanh′ x = cosh′1(
1√

1−x2
).

(43) If x2 < 1, then tanh′ x = 1
2 · sinh′( 2·x

1−x2 ).

(44) If x > 0 and x < 1, then tanh′ x = 1
2 · cosh′1(

1+x2

1−x2 ).

(45) If x2 < 1, then tanh′ x = 1
2 · tanh′( 2·x

1+x2 ).
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(46) If x2 > 1, then coth′ x = tanh′( 1
x).

(47) If x > 0 and x ≤ 1, then sech′1 x = cosh′1(
1
x).

(48) If x > 0 and x ≤ 1, then sech′2 x = cosh′2(
1
x).

(49) If x > 0, then csch′ x = sinh′( 1
x).

(50) If x·y+
√

x2 + 1·
√

y2 + 1 ≥ 0, then sinh′ x+sinh′ y = sinh′(x·
√

1 + y2+
y ·
√

1 + x2).
(51) sinh′ x− sinh′ y = sinh′(x ·

√
1 + y2 − y ·

√
1 + x2).

(52) If 1 ≤ x and 1 ≤ y, then cosh′1 x + cosh′1 y = cosh′1(x · y +√
(x2 − 1) · (y2 − 1)).

(53) If 1 ≤ x and 1 ≤ y, then cosh′2 x + cosh′2 y = cosh′2(x · y +√
(x2 − 1) · (y2 − 1)).

(54) If 1 ≤ x and 1 ≤ y and |y| ≤ |x|, then cosh′1 x− cosh′1 y = cosh′1(x · y −√
(x2 − 1) · (y2 − 1)).

(55) If 1 ≤ x and 1 ≤ y and |y| ≤ |x|, then cosh′2 x− cosh′2 y = cosh′2(x · y −√
(x2 − 1) · (y2 − 1)).

(56) If x2 < 1 and y2 < 1, then tanh′ x + tanh′ y = tanh′( x+y
1+x·y ).

(57) If x2 < 1 and y2 < 1, then tanh′ x− tanh′ y = tanh′( x−y
1−x·y ).

(58) If 0 < x and (x−1
x+1)2 < 1, then loge x = 2 · tanh′(x−1

x+1).

(59) If 0 < x and (x2−1
x2+1

)2 < 1, then loge x = tanh′(x2−1
x2+1

).

(60) If 1 < x and 1 ≤ x2+1
2·x , then loge x = cosh′1(

x2+1
2·x ).

(61) If 0 < x and x < 1 and 1 ≤ x2+1
2·x , then loge x = cosh′2(

x2+1
2·x ).

(62) If 0 < x, then loge x = sinh′(x2−1
2·x ).

(63) If y = 1
2 · (expx− exp(−x)), then x = loge(y +

√
y2 + 1).

(64) If y = 1
2 · (expx + exp(−x)) and 1 ≤ y, then x = loge(y +

√
y2 − 1) or

x = −loge(y +
√

y2 − 1).

(65) If y = exp x−exp(−x)
exp x+exp(−x) , then x = 1

2 · loge(
1+y
1−y ).

(66) If y = exp x+exp(−x)
exp x−exp(−x) and x 6= 0, then x = 1

2 · loge(
y+1
y−1).

(67) If y = 1
exp x+exp(−x)

2

, then x = loge(
1+
√

1−y2

y ) or x = −loge(
1+
√

1−y2

y ).

(68) If y = 1
exp x−exp(−x)

2

and x 6= 0, then x = loge(
1+
√

1+y2

y ) or x =

loge(
1−
√

1+y2

y ).

(69) (The function cosh)(2 · x) = 1 + 2 · (the function sinh)(x)2.

(70) (The function cosh)(x)2 = 1 + (the function sinh)(x)2.

(71) (The function sinh)(x)2 = (the function cosh)(x)2 − 1.

(72) sinh(5 · x) = 5 · sinhx + 20 · (sinhx)3 + 16 · (sinhx)5.
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(73) cosh(5 · x) = (5 · coshx− 20 · (coshx)3) + 16 · (coshx)5.
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Euclidean Spaces
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Summary. In the paper we introduce basic properties of lines in the plane

on this space. Lines and planes are expressed by the vector equation and are the

image of R and R2. By this, we can say that the properties of the classic Euclid

geometry are satisfied also in Rn as we know them intuitively. Next, we define

the metric between the point and the line of this space.

MML identifier: EUCLIDLP, version: 7.5.01 4.39.921

The notation and terminology used here are introduced in the following papers:
[1], [5], [12], [4], [9], [14], [13], [8], [15], [6], [2], [3], [7], [11], and [10].

We follow the rules: a, a1, a2, a3, b, b1, b2, b3, r, s, t, u are real numbers, n

is a natural number, and x0, x, x1, x2, x3, y0, y, y1, y2, y3 are elements of Rn.
One can prove the following propositions:

(1) s
t · (u · x) = s·u

t · x and 1
t · (u · x) = u

t · x.

(2) x1 + (x2 + x3) = (x1 + x2) + x3.

(3) x− 〈0, . . . , 0︸ ︷︷ ︸
n

〉 = x.

(4) 〈0, . . . , 0︸ ︷︷ ︸
n

〉 − x = −x.

(5) x1 − (x2 + x3) = x1 − x2 − x3.

(6) x1 − x2 = x1 +−x2.

(7) x− x = 〈0, . . . , 0︸ ︷︷ ︸
n

〉 and x +−x = 〈0, . . . , 0︸ ︷︷ ︸
n

〉.

(8) −a · x = (−a) · x and −a · x = a · −x.

(9) x1 − (x2 − x3) = (x1 − x2) + x3.

(10) x1 + (x2 − x3) = (x1 + x2)− x3.

389
c© 2005 University of Bia lystok

ISSN 1426–2630



390 akihiro kubo

(11) x1 = x2 + x3 iff x2 = x1 − x3.

(12) x = x1 + x2 + x3 iff x− x1 = x2 + x3.

(13) −(x1 + x2 + x3) = −x1 +−x2 +−x3.

(14) x1 = x2 iff x1 − x2 = 〈0, . . . , 0︸ ︷︷ ︸
n

〉.

(15) If x1 − x0 = t · x and x1 6= x0, then t 6= 0.

(16) (a− b) ·x = a ·x+(−b) ·x and (a− b) ·x = a ·x+−b · x and (a− b) ·x =
a · x− b · x.

(17) a · (x−y) = a ·x+−a · y and a · (x−y) = a ·x+(−a) ·y and a · (x−y) =
a · x− a · y.

(18) (s− t− u) · x = s · x− t · x− u · x.

(19) x− (a1 · x1 + a2 · x2 + a3 · x3) = x + ((−a1) · x1 + (−a2) · x2 + (−a3) · x3).
(20) x− (s + t + u) · y = x + (−s) · y + (−t) · y + (−u) · y.

(21) (x1 + x2) + (y1 + y2) = x1 + y1 + (x2 + y2).
(22) (x1 + x2 + x3) + (y1 + y2 + y3) = x1 + y1 + (x2 + y2) + (x3 + y3).
(23) (x1 + x2)− (y1 + y2) = (x1 − y1) + (x2 − y2).
(24) (x1 + x2 + x3)− (y1 + y2 + y3) = (x1 − y1) + (x2 − y2) + (x3 − y3).
(25) a · (x1 + x2 + x3) = a · x1 + a · x2 + a · x3.

(26) a · (b1 · x1 + b2 · x2) = a · b1 · x1 + a · b2 · x2.

(27) a · (b1 · x1 + b2 · x2 + b3 · x3) = a · b1 · x1 + a · b2 · x2 + a · b3 · x3.

(28) a1 · x1 + a2 · x2 + (b1 · x1 + b2 · x2) = (a1 + b1) · x1 + (a2 + b2) · x2.

(29) a1 · x1 + a2 · x2 + a3 · x3 + (b1 · x1 + b2 · x2 + b3 · x3) = ((a1 + b1) · x1 +
(a2 + b2) · x2) + (a3 + b3) · x3.

(30) (a1 · x1 + a2 · x2)− (b1 · x1 + b2 · x2) = (a1 − b1) · x1 + (a2 − b2) · x2.

(31) (a1 · x1 + a2 · x2 + a3 · x3)− (b1 · x1 + b2 · x2 + b3 · x3) = (a1 − b1) · x1 +
(a2 − b2) · x2 + (a3 − b3) · x3.

(32) If a1 + a2 + a3 = 1, then a1 · x1 + a2 · x2 + a3 · x3 = x1 + a2 · (x2 − x1) +
a3 · (x3 − x1).

(33) If x = x1 + a2 · (x2− x1) + a3 · (x3− x1), then there exists a real number
a1 such that x = a1 · x1 + a2 · x2 + a3 · x3 and a1 + a2 + a3 = 1.

(34) For every natural number n such that n ≥ 1 holds 1 ∗ n 6= 〈0, . . . , 0︸ ︷︷ ︸
n

〉.

(35) For every subset A of Rn and for all x1, x2 such that A is a line and
x1 ∈ A and x2 ∈ A and x1 6= x2 holds A = Line(x1, x2).

(36) For all elements x1, x2 of Rn such that y1 ∈ Line(x1, x2) and y2 ∈
Line(x1, x2) there exists a such that y2 − y1 = a · (x2 − x1).

Let us consider n and let x1, x2 be elements of Rn. The predicate x1 ‖ x2

is defined as follows:



lines on planes in n-dimensional . . . 391

(Def. 1) x1 6= 〈0, . . . , 0︸ ︷︷ ︸
n

〉 and x2 6= 〈0, . . . , 0︸ ︷︷ ︸
n

〉 and there exists r such that x1 = r·x2.

One can prove the following proposition

(37) For all elements x1, x2 of Rn such that x1 ‖ x2 there exists a such that
a 6= 0 and x1 = a · x2.

Let us consider n and let x1, x2 be elements of Rn. Let us note that the
predicate x1 ‖ x2 is symmetric.

The following proposition is true

(38) If x1 ‖ x2 and x2 ‖ x3, then x1 ‖ x3.

Let n be a natural number and let x1, x2 be elements of Rn. We say that
x1 and x2 are linearly independent if and only if:

(Def. 2) For all real numbers a1, a2 such that a1 · x1 + a2 · x2 = 〈0, . . . , 0︸ ︷︷ ︸
n

〉 holds

a1 = 0 and a2 = 0.

Let us note that the predicate x1 and x2 are linearly independent is symmetric.
Let us consider n and let x1, x2 be elements of Rn. We introduce x1 and x2

are linearly dependent as an antonym of x1 and x2 are linearly independent.
Next we state a number of propositions:

(39) If x1 and x2 are linearly independent, then x1 6= 〈0, . . . , 0︸ ︷︷ ︸
n

〉 and x2 6=

〈0, . . . , 0︸ ︷︷ ︸
n

〉.

(40) For all x1, x2 such that x1 and x2 are linearly independent holds if
a1 · x1 + a2 · x2 = b1 · x1 + b2 · x2, then a1 = b1 and a2 = b2.

(41) Let given x1, x2, y1, y1. Suppose y1 and y2 are linearly independent.
Suppose y1 = a1 ·x1 +a2 ·x2 and y2 = b1 ·x1 +b2 ·x2. Then there exist real
numbers c1, c2, d1, d2 such that x1 = c1 ·y1+c2 ·y2 and x2 = d1 ·y1+d2 ·y2.

(42) If x1 and x2 are linearly independent, then x1 6= x2.

(43) If x2 − x1 and x3 − x1 are linearly independent, then x2 6= x3.

(44) If x1 and x2 are linearly independent, then x1 + t ·x2 and x2 are linearly
independent.

(45) Suppose x1 − x0 and x3 − x2 are linearly independent and y0 ∈
Line(x0, x1) and y1 ∈ Line(x0, x1) and y0 6= y1 and y2 ∈ Line(x2, x3)
and y3 ∈ Line(x2, x3) and y2 6= y3. Then y1 − y0 and y3 − y2 are linearly
independent.

(46) If x1 ‖ x2, then x1 and x2 are linearly dependent and x1 6= 〈0, . . . , 0︸ ︷︷ ︸
n

〉

and x2 6= 〈0, . . . , 0︸ ︷︷ ︸
n

〉.
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(47) If x1 and x2 are linearly dependent, then x1 = 〈0, . . . , 0︸ ︷︷ ︸
n

〉 or x2 =

〈0, . . . , 0︸ ︷︷ ︸
n

〉 or x1 ‖ x2.

(48) For all elements x1, x2, y1 of Rn there exists an element y2 of Rn such
that y2 ∈ Line(x1, x2) and x1 − x2, y1 − y2 are orthogonal.

Let us consider n and let x1, x2 be elements of Rn. The predicate x1 ⊥ x2

is defined by:

(Def. 3) x1 6= 〈0, . . . , 0︸ ︷︷ ︸
n

〉 and x2 6= 〈0, . . . , 0︸ ︷︷ ︸
n

〉 and x1, x2 are orthogonal.

Let us note that the predicate x1 ⊥ x2 is symmetric.
The following propositions are true:

(49) If x ⊥ y0 and y0 ‖ y1, then x ⊥ y1.

(50) If x ⊥ y, then x and y are linearly independent.
(51) If x1 ‖ x2, then x1 6⊥ x2.

(52) If x1 ⊥ x2, then x1 ∦ x2.

Let us consider n. The functor Lines(Rn) yields a family of subsets of Rn

and is defined by:

(Def. 4) Lines(Rn) = {Line(x1, x2)}.
Let us consider n. Note that Lines(Rn) is non empty.
The following proposition is true

(53) Line(x1, x2) ∈ Lines(Rn).

In the sequel L, L0, L1, L2 are elements of Lines(Rn).
The following propositions are true:

(54) If x1 ∈ L and x2 ∈ L, then Line(x1, x2) ⊆ L.

(55) L1 meets L2 iff there exists x such that x ∈ L1 and x ∈ L2.

(56) If L0 misses L1 and x ∈ L0, then x /∈ L1.

(57) There exist x1, x2 such that L = Line(x1, x2).
(58) There exists x such that x ∈ L.

(59) If x0 ∈ L and L is a line, then there exists x1 such that x1 6= x0 and
x1 ∈ L.

(60) If x /∈ L and L is a line, then there exist x1, x2 such that L = Line(x1, x2)
and x− x1 ⊥ x2 − x1.

(61) If x /∈ L and L is a line, then there exist x1, x2 such that L = Line(x1, x2)
and x− x1 and x2 − x1 are linearly independent.

Let n be a natural number, let x be an element of Rn, and let L be an
element of Lines(Rn). The functor ρ(x, L) yields a real number and is defined
by:
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(Def. 5) There exists a subset S of R such that S = {|x − x0|;x0 ranges over
elements of Rn: x0 ∈ L} and ρ(x, L) = inf S.

Next we state three propositions:

(62) There exists x0 such that x0 ∈ L and |x− x0| = ρ(x, L).

(63) ρ(x, L) ≥ 0.

(64) x ∈ L iff ρ(x, L) = 0.

Let us consider n and let us consider L1, L2. The predicate L1 ‖ L2 is
defined as follows:

(Def. 6) There exist elements x1, x2, y1, y2 of Rn such that L1 = Line(x1, x2)
and L2 = Line(y1, y2) and x2 − x1 ‖ y2 − y1.

Let us note that the predicate L1 ‖ L2 is symmetric.
The following proposition is true

(65) If L0 ‖ L1 and L1 ‖ L2, then L0 ‖ L2.

Let us consider n and let us consider L1, L2. The predicate L1 ⊥ L2 is
defined by:

(Def. 7) There exist elements x1, x2, y1, y2 of Rn such that L1 = Line(x1, x2)
and L2 = Line(y1, y2) and x2 − x1 ⊥ y2 − y1.

Let us note that the predicate L1 ⊥ L2 is symmetric.
We now state a number of propositions:

(66) If L0 ⊥ L1 and L1 ‖ L2, then L0 ⊥ L2.

(67) If x /∈ L and L is a line, then there exists L0 such that x ∈ L0 and
L0 ⊥ L and L0 meets L.

(68) If L1 misses L2, then there exists x such that x ∈ L1 and x /∈ L2.

(69) If x1 ∈ L and x2 ∈ L and x1 6= x2, then Line(x1, x2) = L and L is a line.

(70) If L1 is a line and L2 is a line and L1 = L2, then L1 ‖ L2.

(71) If L1 ‖ L2, then L1 is a line and L2 is a line.

(72) If L1 ⊥ L2, then L1 is a line and L2 is a line.

(73) If x ∈ L and a 6= 1 and a · x ∈ L, then 〈0, . . . , 0︸ ︷︷ ︸
n

〉 ∈ L.

(74) If x1 ∈ L and x2 ∈ L, then there exists x3 such that x3 ∈ L and
x3 − x1 = a · (x2 − x1).

(75) If x1 ∈ L and x2 ∈ L and x3 ∈ L and x1 6= x2, then there exists a such
that x3 − x1 = a · (x2 − x1).

(76) If L1 ‖ L2 and L1 6= L2, then L1 misses L2.

(77) If L1 ‖ L2, then L1 = L2 or L1 misses L2.

(78) If L1 ‖ L2 and L1 meets L2, then L1 = L2.

(79) If L is a line, then there exists L0 such that x ∈ L0 and L0 ‖ L.
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(80) For all x, L such that x /∈ L and L is a line there exists L0 such that
x ∈ L0 and L0 ‖ L and L0 6= L.

(81) For all x0, x1, y0, y1, L1, L2 such that x0 ∈ L1 and x1 ∈ L1 and x0 6= x1

and y0 ∈ L2 and y1 ∈ L2 and y0 6= y1 and L1 ⊥ L2 holds x1−x0 ⊥ y1−y0.

(82) For all L1, L2 such that L1 ⊥ L2 holds L1 6= L2.

(83) For all x1, x2, L such that L is a line and L = Line(x1, x2) holds x1 6= x2.

(84) If x0 ∈ L1 and x1 ∈ L1 and x0 6= x1 and y0 ∈ L2 and y1 ∈ L2 and
y0 6= y1 and L1 ‖ L2, then x1 − x0 ‖ y1 − y0.

(85) Suppose x2 − x1 and x3 − x1 are linearly independent and y2 ∈
Line(x1, x2) and y3 ∈ Line(x1, x3) and L1 = Line(x2, x3) and L2 =
Line(y2, y3). Then L1 ‖ L2 if and only if there exists a such that a 6= 0
and y2 − x1 = a · (x2 − x1) and y3 − x1 = a · (x3 − x1).

(86) For all L1, L2 such that L1 is a line and L2 is a line and L1 6= L2 there
exists x such that x ∈ L1 and x /∈ L2.

(87) For all x, L1, L2 such that L1 ⊥ L2 and x ∈ L2 there exists L0 such that
x ∈ L0 and L0 ⊥ L2 and L0 ‖ L1.

(88) For all x, L1, L2 such that x ∈ L1 and x ∈ L2 and L1 ⊥ L2 there exists
x0 such that x 6= x0 and x0 ∈ L1 and x0 /∈ L2.

Let n be a natural number and let x1, x2, x3 be elements of Rn. The functor
Plane(x1, x2, x3) yielding a subset of Rn is defined as follows:

(Def. 8) Plane(x1, x2, x3) = {a1 · x1 + a2 · x2 + a3 · x3 : a1 + a2 + a3 = 1}.
Let n be a natural number and let x1, x2, x3 be elements of Rn. One can

check that Plane(x1, x2, x3) is non empty.
Let us consider n and let A be a subset of Rn. We say that A is plane if

and only if:

(Def. 9) There exist x1, x2, x3 such that x2 − x1 and x3 − x1 are linearly inde-
pendent and A = Plane(x1, x2, x3).

One can prove the following propositions:

(89) x1 ∈ Plane(x1, x2, x3) and x2 ∈ Plane(x1, x2, x3) and x3 ∈
Plane(x1, x2, x3).

(90) If x1 ∈ Plane(y1, y2, y3) and x2 ∈ Plane(y1, y2, y3) and x3 ∈
Plane(y1, y2, y3), then Plane(x1, x2, x3) ⊆ Plane(y1, y2, y3).

(91) Let A be a subset of Rn and given x, x1, x2, x3. Suppose x ∈
Plane(x1, x2, x3) and there exist real numbers c1, c2, c3 such that c1 +c2 +
c3 = 0 and x = c1 ·x1 + c2 ·x2 + c3 ·x3. Then 〈0, . . . , 0︸ ︷︷ ︸

n

〉 ∈ Plane(x1, x2, x3).

(92) If y1 ∈ Plane(x1, x2, x3) and y2 ∈ Plane(x1, x2, x3), then Line(y1, y2) ⊆
Plane(x1, x2, x3).
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(93) For every subset A of Rn and for every x such that A is plane and x ∈ A

and there exists a such that a 6= 1 and a · x ∈ A holds 〈0, . . . , 0︸ ︷︷ ︸
n

〉 ∈ A.

(94) If x1−x1 and x3−x1 are linearly independent and x ∈ Plane(x1, x2, x3)
and x = a1 · x1 + a2 · x2 + a3 · x3, then a1 + a2 + a3 = 1 or 〈0, . . . , 0︸ ︷︷ ︸

n

〉 ∈

Plane(x1, x2, x3).
(95) x ∈ Plane(x1, x2, x3) iff there exist a1, a2, a3 such that a1 + a2 + a3 = 1

and x = a1 · x1 + a2 · x2 + a3 · x3.

(96) Suppose that
(i) x2 − x1 and x3 − x1 are linearly independent,
(ii) x ∈ Plane(x1, x2, x3),
(iii) a1 + a2 + a3 = 1,

(iv) x = a1 · x1 + a2 · x2 + a3 · x3,

(v) b1 + b2 + b3 = 1, and
(vi) x = b1 · x1 + b2 · x2 + b3 · x3.

Then a1 = b1 and a2 = b2 and a3 = b3.

Let us consider n. The functor Planes(Rn) yielding a family of subsets of
Rn is defined by:

(Def. 10) Planes(Rn) = {Plane(x1, x2, x3)}.
Let us consider n. Note that Planes(Rn) is non empty.
The following proposition is true

(97) Plane(x1, x2, x3) ∈ Planes(Rn).

In the sequel P , P0, P1, P2 are elements of Planes(Rn).
Next we state several propositions:

(98) If x1 ∈ P and x2 ∈ P and x3 ∈ P, then Plane(x1, x2, x3) ⊆ P.

(99) If x1 ∈ P and x2 ∈ P and x3 ∈ P and x2 − x1 and x3 − x1 are linearly
independent, then P = Plane(x1, x2, x3).

(100) If P1 is plane and P1 ⊆ P2, then P1 = P2.

(101) Line(x1, x2) ⊆ Plane(x1, x2, x3) and Line(x2, x3) ⊆ Plane(x1, x2, x3) and
Line(x3, x1) ⊆ Plane(x1, x2, x3).

(102) If x1 ∈ P and x2 ∈ P, then Line(x1, x2) ⊆ P.

Let n be a natural number and let L1, L2 be elements of Lines(Rn). We say
that L1 and L2 are coplanar if and only if:

(Def. 11) There exist elements x1, x2, x3 of Rn such that L1 ⊆ Plane(x1, x2, x3)
and L2 ⊆ Plane(x1, x2, x3).

We now state a number of propositions:
(103) L1 and L2 are coplanar iff there exists P such that L1 ⊆ P and L2 ⊆ P.

(104) If L1 ‖ L2, then L1 and L2 are coplanar.
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(105) Suppose L1 is a line and L2 is a line and L1 and L2 are coplanar and L1

misses L2. Then there exists P such that L1 ⊆ P and L2 ⊆ P and P is
plane.

(106) There exists P such that x ∈ P and L ⊆ P.

(107) If x /∈ L and L is a line, then there exists P such that x ∈ P and L ⊆ P

and P is plane.
(108) If x ∈ P and L ⊆ P and x /∈ L and L is a line, then P is plane.
(109) If x /∈ L and L is a line and x ∈ P0 and L ⊆ P0 and x ∈ P1 and L ⊆ P1,

then P0 = P1.

(110) If L1 is a line and L2 is a line and L1 and L2 are coplanar and L1 6= L2,

then there exists P such that L1 ⊆ P and L2 ⊆ P and P is plane.
(111) For all L1, L2 such that L1 is a line and L2 is a line and L1 6= L2 and

L1 meets L2 there exists P such that L1 ⊆ P and L2 ⊆ P and P is plane.
(112) If L1 is a line and L2 is a line and L1 6= L2 and L1 meets L2 and L1 ⊆ P1

and L2 ⊆ P1 and L1 ⊆ P2 and L2 ⊆ P2, then P1 = P2.

(113) If L1 ‖ L2 and L1 6= L2, then there exists P such that L1 ⊆ P and
L2 ⊆ P and P is plane.

(114) If L1 ⊥ L2 and L1 meets L2, then there exists P such that P is plane
and L1 ⊆ P and L2 ⊆ P.

(115) If L0 ⊆ P and L1 ⊆ P and L2 ⊆ P and x ∈ L0 and x ∈ L1 and x ∈ L2

and L0 ⊥ L2 and L1 ⊥ L2, then L0 = L1.

(116) If L1 and L2 are coplanar and L1 ⊥ L2, then L1 meets L2.
(117) If L1 ⊆ P and L2 ⊆ P and L1 ⊥ L2 and x ∈ P and L0 ‖ L2 and x ∈ L0,

then L0 ⊆ P and L0 ⊥ L1.

(118) If L ⊆ P and L1 ⊆ P and L2 ⊆ P and L ⊥ L1 and L ⊥ L2, then L1 ‖ L2.

(119) Suppose L0 ⊆ P and L1 ⊆ P and L2 ⊆ P and L0 ‖ L1 and L1 ‖ L2

and L0 6= L1 and L1 6= L2 and L2 6= L0 and L meets L0 and L meets L1.
Then L meets L2.

(120) If L1 and L2 are coplanar and L1 is a line and L2 is a line and L1 misses
L2, then L1 ‖ L2.

(121) If x1 ∈ P and x2 ∈ P and y1 ∈ P and y2 ∈ P and x2 − x1 and y2 − y1

are linearly independent, then Line(x1, x2) meets Line(y1, y2).
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[3] Czes law Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized

Mathematics, 1(3):529–536, 1990.
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[6] Czes law Byliński. The sum and product of finite sequences of real numbers. Formalized
Mathematics, 1(4):661–668, 1990.

[7] Agata Darmochwa l. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[9] Jaros law Kotowicz. Convergent real sequences. Upper and lower bound of sets of real

numbers. Formalized Mathematics, 1(3):477–481, 1990.
[10] Akihiro Kubo. Lines in n-dimensional Euclidean spaces. Formalized Mathematics,

11(4):371–376, 2003.
[11] Yatsuka Nakamura, Andrzej Trybulec, and Czes law Byliński. Bounded domains and
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Next we state the proposition
(1) If X ⊆ Y and cardX = cardY, then X = Y.

In the sequel F is a function from X ∪ {x} into Y ∪ {y}.
One can prove the following proposition

(2) For all X, Y , x, y such that if Y = ∅, then X = ∅ and x /∈ X holds
card(Y X) = {F : rng(F �X) ⊆ Y ∧ F (x) = y} .

In the sequel F is a function from X ∪ {x} into Y .
One can prove the following two propositions:
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(4) If if Y = ∅, then X = ∅, then card(Y X) = (cardY )card X .

In the sequel F1 denotes a function from X into Y and F2 denotes a function
from X ∪ {x} into Y ∪ {y}.

One can prove the following two propositions:
(5) Let given X, Y , x, y. Suppose if Y is empty, then X is

empty and x /∈ X and y /∈ Y. Then {F1 : F1 is one-to-one} =
{F2 : F2 is one-to-one ∧ F2(x) = y} .

(6) n!
(n−′k)! is a natural number.

In the sequel F is a function from X into Y .
The following proposition is true

(7) If cardX ≤ cardY, then {F : F is one-to-one} = (card Y )!
(card Y −′card X)! .

In the sequel F denotes a function from X into X.
The following proposition is true

(8) {F : F is a permutation of X} = (cardX)!.

Let us consider X, k, x1, x2. The functor Choose(X, k, x1, x2) yields a subset
of {x1, x2}X and is defined as follows:

(Def. 1) x ∈ Choose(X, k, x1, x2) iff there exists a function f from X into {x1, x2}
such that f = x and f−1({x1}) = k.

We now state several propositions:
(9) If cardX 6= k, then Choose(X, k, x1, x1) is empty.

(10) If cardX < k, then Choose(X, k, x1, x2) is empty.
(11) If x1 6= x2, then cardChoose(X, 0, x1, x2) = 1.

(12) cardChoose(X, cardX, x1, x2) = 1.

(13) If f(y) = x and y ∈ dom f, then {y} ∪ (f�(dom f \ {y}))−1({x}) =
f−1({x}).

In the sequel g denotes a function from X ∪ {z} into {x, y}.
The following propositions are true:

(14) If z /∈ X, then cardChoose(X, k, x, y) =

{g : g−1({x}) = k + 1 ∧ g(z) = x} .

(15) If f(y) 6= x, then (f�(dom f \ {y}))−1({x}) = f−1({x}).
(16) If z /∈ X and x 6= y, then cardChoose(X, k, x, y) =

{g : g−1({x}) = k ∧ g(z) = y} .

(17) If x 6= y and z /∈ X, then cardChoose(X ∪ {z}, k + 1, x, y) =
cardChoose(X, k + 1, x, y) + cardChoose(X, k, x, y).

(18) If x 6= y, then cardChoose(X, k, x, y) =
(
card X

k

)
.

(19) If x 6= y, then (Y 7−→ y)+·(X 7−→ x) ∈ Choose(X ∪ Y, cardX, x, y).



cardinal numbers and finite sets 401

(20) If x 6= y and X misses Y , then (X 7−→ x)+·(Y 7−→ y) ∈ Choose(X ∪
Y, cardX, x, y).

Let F , C1 be functions and let y be a set. The functor Intersection(F,C1, y)
yielding a subset of

⋃
rng F is defined as follows:

(Def. 2) z ∈ Intersection(F,C1, y) iff z ∈
⋃

rng F and for every x such that
x ∈ dom C1 and C1(x) = y holds z ∈ F (x).

In the sequel F , C1 denote functions.
The following propositions are true:

(21) For all F , C1 such that dom F ∩ C1
−1({x}) is non empty holds y ∈

Intersection(F,C1, x) iff for every z such that z ∈ dom C1 and C1(z) = x

holds y ∈ F (z).
(22) If Intersection(F,C1, y) is non empty, then C1

−1({y}) ⊆ dom F.

(23) If Intersection(F,C1, y) is non empty, then for all x1, x2 such that x1 ∈
C1

−1({y}) and x2 ∈ C1
−1({y}) holds F (x1) meets F (x2).

(24) If z ∈ Intersection(F,C1, y) and y ∈ rng C1, then there exists x such that
x ∈ dom C1 and C1(x) = y and z ∈ F (x).

(25) If F is empty or
⋃

rng F is empty, then Intersection(F,C1, y) =
⋃

rng F.

(26) If F �C1
−1({y}) = C1

−1({y}) 7−→
⋃

rng F, then Intersection(F,C1, y) =⋃
rng F.

(27) If
⋃

rng F is non empty and Intersection(F,C1, y) =
⋃

rng F, then
F �C1

−1({y}) = C1
−1({y}) 7−→

⋃
rng F.

(28) Intersection(F, ∅, y) =
⋃

rng F.

(29) Intersection(F,C1, y) ⊆ Intersection(F,C1�X ′, y).
(30) If C1

−1({y}) = (C1�X ′)−1({y}), then Intersection(F,C1, y) =
Intersection(F,C1�X ′, y).

(31) Intersection(F �X ′, C1, y) ⊆ Intersection(F,C1, y).
(32) If y ∈ rng C1 and C1

−1({y}) ⊆ X ′, then Intersection(F �X ′, C1, y) =
Intersection(F,C1, y).

(33) If x ∈ C1
−1({y}), then Intersection(F,C1, y) ⊆ F (x).

(34) If x ∈ C1
−1({y}), then Intersection(F,C1�(dom C1 \ {x}), y) ∩ F (x) =

Intersection(F,C1, y).
(35) For all functions C2, C3 such that C2

−1({x1}) = C3
−1({x2}) holds

Intersection(F,C2, x1) = Intersection(F,C3, x2).
(36) If C1

−1({y}) = ∅, then Intersection(F,C1, y) =
⋃

rng F.

(37) If {x} = C1
−1({y}), then Intersection(F,C1, y) = F (x).

(38) If {x1, x2} = C1
−1({y}), then Intersection(F,C1, y) = F (x1) ∩ F (x2).

(39) For every F such that F is non empty holds y ∈ Intersection(F,dom F 7−→
x, x) iff for every z such that z ∈ dom F holds y ∈ F (z).
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Let F be a function. We say that F is finite-yielding if and only if:
(Def. 3) For every x holds F (x) is finite.

Let us observe that there exists a function which is non empty and finite-
yielding and there exists a function which is empty and finite-yielding.

Let F be a finite-yielding function and let x be a set. Observe that F (x) is
finite.

Let F be a finite-yielding function and let X be a set. One can check that
F �X is finite-yielding.

Let F be a finite-yielding function and let G be a function. Note that F ·G
is finite-yielding and Intersect(F,G) is finite-yielding.

In the sequel F3 is a finite-yielding function.
The following two propositions are true:

(40) If y ∈ rng C1, then Intersection(F3, C1, y) is finite.
(41) If dom F3 is finite, then

⋃
rng F3 is finite.

Let F be a finite 0-sequence and let us consider n. Then F �n is a finite
0-sequence.

Let D be a set, let F be a finite 0-sequence of D, and let us consider n.
Then F �n is a finite 0-sequence of D.

In the sequel D is a non empty set and b is a binary operation on D.
Next we state several propositions:

(42) For every finite 0-sequence F of D and for all b, n such that n ∈ dom F

but b has a unity or n 6= 0 holds b(b� F �n, F (n)) = b� F �(n + 1).
(43) For every finite 0-sequence F of D and for every n such that lenF = n+1

holds F = (F �n) a 〈F (n)〉.
(44) For every finite 0-sequence F of N and for every n such that n ∈ dom F

holds
∑

(F �n) + F (n) =
∑

(F �(n + 1)).
(45) For every finite 0-sequence F of N and for every n such that rng F ⊆

{0, n} holds
∑

F = n · card(F−1({n})).
(46) x ∈ Choose(n, k, 1, 0) iff there exists a finite 0-sequence F of N such that

F = x and dom F = n and rng F ⊆ {0, 1} and
∑

F = k.

(47) For every finite 0-sequence F of D and for every b such that b has a
unity or len F ≥ 1 holds b� F = b�XFS2FS(F ).

(48) Let F , G be finite 0-sequences of D and P be a permutation of dom F.

Suppose b is commutative and associative but b has a unity or lenF ≥ 1
but G = F · P. Then b� F = b�G.

Let us consider k and let F be a finite-yielding function. Let us assume that
dom F is finite. The card intersection of F wrt k yielding a natural number is
defined by the condition (Def. 4).

(Def. 4) Let x, y be sets, X be a finite set, and P be a function from
cardChoose(X, k, x, y) into Choose(X, k, x, y). Suppose dom F = X and



cardinal numbers and finite sets 403

P is one-to-one and x 6= y. Then there exists a finite 0-sequence X1 of N
such that dom X1 = dom P and for all z, f such that z ∈ dom X1 and
f = P (z) holds X1(z) = Intersection(F, f, x) and the card intersection of
F wrt k =

∑
X1.

One can prove the following propositions:
(49) Let x, y be sets, X be a finite set, and P be a function from

cardChoose(X, k, x, y) into Choose(X, k, x, y). Suppose dom F3 = X and
P is one-to-one and x 6= y. Let X1 be a finite 0-sequence of N. Suppose
dom X1 = dom P and for all z, f such that z ∈ dom X1 and f = P (z)
holds X1(z) = Intersection(F3, f, x) . Then the card intersection of F3 wrt
k =

∑
X1.

(50) If dom F3 is finite and k = 0, then the card intersection of F3 wrt k =⋃
rng F3 .

(51) If dom F3 = X and k > cardX, then the card intersection of F3 wrt
k = 0.

(52) Let given F3, X. Suppose dom F3 = X. Let P be a function from
cardX into X. Suppose P is one-to-one. Then there exists a finite 0-
sequence X1 of N such that dom X1 = cardX and for every z such that
z ∈ dom X1 holds X1(z) = card(F3 ·P )(z) and the card intersection of F3

wrt 1 =
∑

X1.

(53) If dom F3 = X, then the card intersection of F3 wrt cardX =
Intersection(F3, X 7−→ x, x) .

(54) If F3 = {x} 7−→ X, then the card intersection of F3 wrt 1 = cardX.

(55) Suppose x 6= y and F3 = [x 7−→ X, y 7−→ Y ]. Then the card intersection
of F3 wrt 1 = card X + cardY and the card intersection of F3 wrt 2
= card(X ∩ Y ).

(56) Let given F3, x. Suppose dom F3 is finite and x ∈ dom F3. Then the
card intersection of F3 wrt 1 = (the card intersection of F3�(dom F3 \{x})
wrt 1)+ cardF3(x).

(57) dom Intersect(F,dom F 7−→ X ′) = dom F and for every x such that
x ∈ dom F holds (Intersect(F,dom F 7−→ X ′))(x) = F (x) ∩X ′.

(58)
⋃

rng F ∩X ′ =
⋃

rng Intersect(F,dom F 7−→ X ′).
(59) Intersection(F,C1, y) ∩ X ′ = Intersection(Intersect(F,dom F 7−→

X ′), C1, y).
(60) Let F , G be finite 0-sequences. Suppose F is one-to-one and G is one-

to-one and rng F misses rng G. Then F a G is one-to-one.
(61) Let given F3, X, x, n. Suppose dom F3 = X and x ∈ dom F3 and

k > 0. Then the card intersection of F3 wrt k + 1 = (the card in-
tersection of F3�(dom F3 \ {x}) wrt k + 1) + (the card intersection of
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Intersect(F3�(dom F3 \ {x}),dom F3 \ {x} 7−→ F3(x)) wrt k).
(62) Let F , G, b1 be finite 0-sequences of D. Suppose that

(i) b is commutative and associative,
(ii) b has a unity or lenF ≥ 1,

(iii) lenF = lenG,

(iv) lenF = len b1, and
(v) for every n such that n ∈ dom b1 holds b1(n) = b(F (n), G(n)).

Then b� F a G = b� b1.

Let F4 be a finite 0-sequence of Z. The functor
∑

F4 yielding an integer is
defined as follows:

(Def. 5)
∑

F4 = +Z � F4.

Let F4 be a finite 0-sequence of Z and let us consider x. Then F4(x) is an
integer.

Next we state several propositions:
(63) For every finite 0-sequence F5 of N and for every finite 0-sequence F4 of

Z such that F4 = F5 holds
∑

F4 =
∑

F5.

(64) Let F , F4 be finite 0-sequences of Z and i be an integer. If dom F =
dom F4 and for every n such that n ∈ dom F holds i · F (n) = F4(n), then
i ·

∑
F =

∑
F4.

(65) If x ∈ dom F, then
⋃

rng F =
⋃

rng(F �(dom F \ {x})) ∪ F (x).
(66) Let F3 be a finite-yielding function and given X. Then there exists a

finite 0-sequence X1 of Z such that dom X1 = cardX and for every n such
that n ∈ dom X1 holds X1(n) = (−1)n · the card intersection of F3 wrt
n + 1.

(67) Let F3 be a finite-yielding function and given X. Suppose dom F3 = X.

Let X1 be a finite 0-sequence of Z. Suppose dom X1 = cardX and for
every n such that n ∈ dom X1 holds X1(n) = (−1)n · the card intersection
of F3 wrt n + 1. Then

⋃
rng F3 =

∑
X1.

(68) Let given F3, X, n, k. Suppose dom F3 = X. Given x, y such
that x 6= y and for every f such that f ∈ Choose(X, k, x, y) holds
Intersection(F3, f, x) = n. Then the card intersection of F3 wrt k =
n ·

(
card X

k

)
.

(69) Let given F3, X. Suppose dom F3 = X. Let X2 be a finite 0-sequence of
N. Suppose dom X2 = cardX and for every n such that n ∈ dom X2 there
exist x, y such that x 6= y and for every f such that f ∈ Choose(X, n +
1, x, y) holds Intersection(F3, f, x) = X2(n). Then there exists a finite 0-
sequence F of Z such that dom F = card X and

⋃
rng F3 =

∑
F and for

every n such that n ∈ dom F holds F (n) = (−1)n ·X2(n) ·
(
card X
n+1

)
.

In the sequel g denotes a function from X into Y .
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The following propositions are true:
(70) Let X, Y be finite sets. Suppose X is non empty and Y is non empty.

Then there exists a finite 0-sequence F of Z such that dom F = cardY +1
and

∑
F = {g : g is onto} and for every n such that n ∈ dom F holds

F (n) = (−1)n ·
(
card Y

n

)
· (cardY − n)card X .

(71) Let given n, k. Suppose k ≤ n. Then there exists a finite 0-sequence F

of Z such that n block k = 1
k! ·

∑
F and dom F = k + 1 and for every m

such that m ∈ dom F holds F (m) = (−1)m ·
(

k
m

)
· (k −m)n.

In the sequel A, B are finite sets and f is a function from A into B.
One can prove the following proposition

(72) Let given A, B and X be a finite set. Suppose if B is empty, then
A is empty and X ⊆ A. Let F be a function from A into B. Sup-
pose F is one-to-one and cardA = cardB. Then (card A −′ cardX)! =
{f : f is one-to-one ∧ rng(f�(A \X)) ⊆ F ◦(A \X) ∧∧

x (x ∈ X ⇒ f(x) = F (x))} .

In the sequel F denotes a function and h denotes a function from X into
rng F.

The following proposition is true
(73) Let given F . Suppose dom F = X and F is one-to-one. Then there

exists a finite 0-sequence X2 of Z such that
(i)

∑
X2 = {h : h is one-to-one ∧

∧
x (x ∈ X ⇒ h(x) 6= F (x))} ,

(ii) dom X2 = cardX + 1, and
(iii) for every n such that n ∈ dom X2 holds X2(n) = (−1)n·(card X)!

n! .

In the sequel h is a function from X into X.
The following proposition is true

(74) There exists a finite 0-sequence X2 of Z such that
(i)

∑
X2 = {h : h is one-to-one ∧

∧
x (x ∈ X ⇒ h(x) 6= x)} ,

(ii) dom X2 = cardX + 1, and
(iii) for every n such that n ∈ dom X2 holds X2(n) = (−1)n·(card X)!

n! .
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[10] Czes law Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[11] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[12] Rafa l Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890,

1990.
[13] Takaya Nishiyama, Hirofumi Fukura, and Yatsuka Nakamura. Logical correctness of

vector calculation programs. Formalized Mathematics, 12(3):375–380, 2004.
[14] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,

4(1):83–86, 1993.
[15] Library Committee of the Association of Mizar Users. Binary operations on numbers. To

appear in Formalized Mathematics.
[16] Karol Pa̧k. Stirling numbers of the second kind. Formalized Mathematics, 13(2):337–345,

2005.
[17] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[18] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.
[19] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[20] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics,

1(2):369–376, 1990.
[21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[22] Micha l J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[23] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics,

1(5):979–981, 1990.
[24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[25] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite se-

quences. Formalized Mathematics, 9(4):825–829, 2001.
[26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[27] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.

Received May 24, 2005



FORMALIZED MATHEMATICS

Volume 13, Number 3, Pages 407–412

University of Bia lystok, 2005

Some Equations Related to the Limit

of Sequence of Subsets

Bo Zhang
Shinshu University

Nagano, Japan

Hiroshi Yamazaki
Shinshu University

Nagano, Japan

Yatsuka Nakamura
Shinshu University

Nagano, Japan

Summary. Set operations for sequences of subsets are introduced here.

Some relations for these operations with the limit of sequences of subsets, also

with the inferior sequence and the superior sequence of sets, and with the inferior

limit and the superior limit of sets are shown.

MML identifier: SETLIM 2, version: 7.5.01 4.39.921

The articles [5], [2], [6], [1], [3], [4], and [7] provide the notation and terminology
for this paper.

For simplicity, we use the following convention: n, k denote natural numbers,
X denotes a set, A denotes a subset of X, and A1, A2 denote sequences of subsets
of X.

We now state two propositions:
(1) (The inferior setsequence A1)(n) = Intersection(A1 ↑ n).
(2) (The superior setsequence A1)(n) =

⋃
(A1 ↑ n).

Let us consider X and let A1, A2 be sequences of subsets of X. The functor
A1 ∩A2 yields a sequence of subsets of X and is defined as follows:

(Def. 1) For every n holds (A1 ∩A2)(n) = A1(n) ∩A2(n).
Let us note that the functor A1 ∩ A2 is commutative. The functor A1 ∪ A2

yielding a sequence of subsets of X is defined as follows:
(Def. 2) For every n holds (A1 ∪A2)(n) = A1(n) ∪A2(n).

Let us observe that the functor A1 ∪ A2 is commutative. The functor A1 \ A2

yielding a sequence of subsets of X is defined by:
(Def. 3) For every n holds (A1 \A2)(n) = A1(n) \A2(n).

The functor A1−. A2 yields a sequence of subsets of X and is defined as follows:
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(Def. 4) For every n holds (A1−. A2)(n) = A1(n)−. A2(n).
Let us note that the functor A1−. A2 is commutative.

One can prove the following propositions:
(3) A1−. A2 = (A1 \A2) ∪ (A2 \A1).
(4) (A1 ∩A2) ↑ k = A1 ↑ k ∩A2 ↑ k.

(5) (A1 ∪A2) ↑ k = A1 ↑ k ∪A2 ↑ k.

(6) (A1 \A2) ↑ k = A1 ↑ k \A2 ↑ k.

(7) (A1−. A2) ↑ k = A1 ↑ k−. A2 ↑ k.

(8)
⋃

(A1 ∩A2) ⊆
⋃

A1 ∩
⋃

A2.

(9)
⋃

(A1 ∪A2) =
⋃

A1 ∪
⋃

A2.

(10)
⋃

A1 \
⋃

A2 ⊆
⋃

(A1 \A2).
(11)

⋃
A1−.

⋃
A2 ⊆

⋃
(A1−. A2).

(12) Intersection(A1 ∩A2) = IntersectionA1 ∩ IntersectionA2.

(13) Intersection A1 ∪ IntersectionA2 ⊆ Intersection(A1 ∪A2).
(14) Intersection(A1 \A2) ⊆ IntersectionA1 \ IntersectionA2.

Let us consider X, let A1 be a sequence of subsets of X, and let A be a
subset of X. The functor A ∩A1 yielding a sequence of subsets of X is defined
by:

(Def. 5) For every n holds (A ∩A1)(n) = A ∩A1(n).
The functor A ∪A1 yielding a sequence of subsets of X is defined as follows:

(Def. 6) For every n holds (A ∪A1)(n) = A ∪A1(n).
The functor A \A1 yields a sequence of subsets of X and is defined by:

(Def. 7) For every n holds (A \A1)(n) = A \A1(n).
The functor A1 \A yields a sequence of subsets of X and is defined by:

(Def. 8) For every n holds (A1 \A)(n) = A1(n) \A.

The functor A−. A1 yielding a sequence of subsets of X is defined as follows:
(Def. 9) For every n holds (A−. A1)(n) = A−. A1(n).

One can prove the following propositions:
(15) A−. A1 = (A \A1) ∪ (A1 \A).
(16) (A ∩A1) ↑ k = A ∩A1 ↑ k.

(17) (A ∪A1) ↑ k = A ∪A1 ↑ k.

(18) (A \A1) ↑ k = A \A1 ↑ k.

(19) (A1 \A) ↑ k = A1 ↑ k \A.

(20) (A−. A1) ↑ k = A−. A1 ↑ k.

(21) If A1 is non-increasing, then A ∩A1 is non-increasing.
(22) If A1 is non-decreasing, then A ∩A1 is non-decreasing.
(23) If A1 is monotone, then A ∩A1 is monotone.
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(24) If A1 is non-increasing, then A ∪A1 is non-increasing.

(25) If A1 is non-decreasing, then A ∪A1 is non-decreasing.

(26) If A1 is monotone, then A ∪A1 is monotone.

(27) If A1 is non-increasing, then A \A1 is non-decreasing.

(28) If A1 is non-decreasing, then A \A1 is non-increasing.

(29) If A1 is monotone, then A \A1 is monotone.

(30) If A1 is non-increasing, then A1 \A is non-increasing.

(31) If A1 is non-decreasing, then A1 \A is non-decreasing.

(32) If A1 is monotone, then A1 \A is monotone.

(33) Intersection(A ∩A1) = A ∩ IntersectionA1.

(34) Intersection(A ∪A1) = A ∪ IntersectionA1.

(35) Intersection(A \A1) ⊆ A \ IntersectionA1.

(36) Intersection(A1 \A) = IntersectionA1 \A.

(37) Intersection(A−. A1) ⊆ A−. IntersectionA1.

(38)
⋃

(A ∩A1) = A ∩
⋃

A1.

(39)
⋃

(A ∪A1) = A ∪
⋃

A1.

(40) A \
⋃

A1 ⊆
⋃

(A \A1).

(41)
⋃

(A1 \A) =
⋃

A1 \A.

(42) A−.
⋃

A1 ⊆
⋃

(A−. A1).

(43) (The inferior setsequence A1 ∩ A2)(n) = (the inferior setsequence
A1)(n) ∩ (the inferior setsequence A2)(n).

(44) (The inferior setsequence A1)(n)∪(the inferior setsequence A2)(n) ⊆ (the
inferior setsequence A1 ∪A2)(n).

(45) (The inferior setsequence A1\A2)(n) ⊆ (the inferior setsequence A1)(n)\
(the inferior setsequence A2)(n).

(46) (The superior setsequence A1 ∩ A2)(n) ⊆ (the superior setsequence
A1)(n) ∩ (the superior setsequence A2)(n).

(47) (The superior setsequence A1 ∪ A2)(n) = (the superior setsequence
A1)(n) ∪ (the superior setsequence A2)(n).

(48) (The superior setsequence A1)(n) \ (the superior setsequence A2)(n) ⊆
(the superior setsequence A1 \A2)(n).

(49) (The superior setsequence A1)(n)−. (the superior setsequence A2)(n) ⊆
(the superior setsequence A1−. A2)(n).

(50) (The inferior setsequence A ∩ A1)(n) = A ∩ (the inferior setsequence
A1)(n).

(51) (The inferior setsequence A ∪ A1)(n) = A ∪ (the inferior setsequence
A1)(n).
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(52) (The inferior setsequence A \ A1)(n) ⊆ A \ (the inferior setsequence
A1)(n).

(53) (The inferior setsequence A1 \A)(n) = (the inferior setsequence A1)(n)\
A.

(54) (The inferior setsequence A−. A1)(n) ⊆ A−. (the inferior setsequence
A1)(n).

(55) (The superior setsequence A ∩ A1)(n) = A ∩ (the superior setsequence
A1)(n).

(56) (The superior setsequence A ∪ A1)(n) = A ∪ (the superior setsequence
A1)(n).

(57) A \ (the superior setsequence A1)(n) ⊆ (the superior setsequence A \
A1)(n).

(58) (The superior setsequence A1 \ A)(n) = (the superior setsequence
A1)(n) \A.

(59) A−. (the superior setsequence A1)(n) ⊆ (the superior setsequence
A−. A1)(n).

(60) lim inf(A1 ∩A2) = lim inf A1 ∩ lim inf A2.

(61) lim inf A1 ∪ lim inf A2 ⊆ lim inf(A1 ∪A2).
(62) lim inf(A1 \A2) ⊆ lim inf A1 \ lim inf A2.

(63) If A1 is convergent or A2 is convergent, then lim inf(A1 ∪ A2) =
lim inf A1 ∪ lim inf A2.

(64) If A2 is convergent, then lim inf(A1 \A2) = lim inf A1 \ lim inf A2.

(65) If A1 is convergent or A2 is convergent, then lim inf(A1−. A2) ⊆
lim inf A1−. lim inf A2.

(66) If A1 is convergent and A2 is convergent, then lim inf(A1−. A2) =
lim inf A1−. lim inf A2.

(67) lim sup(A1 ∩A2) ⊆ lim supA1 ∩ lim supA2.

(68) lim sup(A1 ∪A2) = lim supA1 ∪ lim supA2.

(69) lim supA1 \ lim supA2 ⊆ lim sup(A1 \A2).
(70) lim supA1−. lim supA2 ⊆ lim sup(A1−. A2).
(71) If A1 is convergent or A2 is convergent, then lim sup(A1 ∩ A2) =

lim supA1 ∩ lim supA2.

(72) If A2 is convergent, then lim sup(A1 \A2) = lim supA1 \ lim supA2.

(73) If A1 is convergent and A2 is convergent, then lim sup(A1−. A2) =
lim supA1−. lim supA2.

(74) lim inf(A ∩A1) = A ∩ lim inf A1.

(75) lim inf(A ∪A1) = A ∪ lim inf A1.

(76) lim inf(A \A1) ⊆ A \ lim inf A1.



some equations related to the limit . . . 411

(77) lim inf(A1 \A) = lim inf A1 \A.

(78) lim inf(A−. A1) ⊆ A−. lim inf A1.

(79) If A1 is convergent, then lim inf(A \A1) = A \ lim inf A1.

(80) If A1 is convergent, then lim inf(A−. A1) = A−. lim inf A1.

(81) lim sup(A ∩A1) = A ∩ lim supA1.

(82) lim sup(A ∪A1) = A ∪ lim supA1.

(83) A \ lim supA1 ⊆ lim sup(A \A1).
(84) lim sup(A1 \A) = lim supA1 \A.

(85) A−. lim supA1 ⊆ lim sup(A−. A1).
(86) If A1 is convergent, then lim sup(A \A1) = A \ lim supA1.

(87) If A1 is convergent, then lim sup(A−. A1) = A−. lim supA1.

(88) If A1 is convergent and A2 is convergent, then A1∩A2 is convergent and
lim(A1 ∩A2) = lim A1 ∩ lim A2.

(89) If A1 is convergent and A2 is convergent, then A1∪A2 is convergent and
lim(A1 ∪A2) = lim A1 ∪ lim A2.

(90) If A1 is convergent and A2 is convergent, then A1 \A2 is convergent and
lim(A1 \A2) = lim A1 \ lim A2.

(91) If A1 is convergent and A2 is convergent, then A1−. A2 is convergent and
lim(A1−. A2) = lim A1−. lim A2.

(92) If A1 is convergent, then A ∩ A1 is convergent and lim(A ∩ A1) = A ∩
lim A1.

(93) If A1 is convergent, then A ∪ A1 is convergent and lim(A ∪ A1) = A ∪
lim A1.

(94) If A1 is convergent, then A\A1 is convergent and lim(A\A1) = A\lim A1.

(95) If A1 is convergent, then A1\A is convergent and lim(A1\A) = lim A1\A.

(96) If A1 is convergent, then A−. A1 is convergent and lim(A−. A1) =
A−. lim A1.

References
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The notation and terminology used in this paper are introduced in the following
articles: [1], [9], [10], [5], [2], [4], [6], [7], [8], and [3].

For simplicity, we adopt the following convention: a, b, c are positive real
numbers, m, x, y, z are real numbers, n is a natural number, and s, s1, s2, s3,
s4, s5 are sequences of real numbers.

Let us consider x. Note that |x| is non negative.
We now state a number of propositions:

(1) If y > x and x ≥ 0 and m ≥ 0, then x
y ≤

x+m
y+m .

(2) a+b
2 ≥

√
a · b.

(3) b
a + a

b ≥ 2.

(4) (x+y
2 )2 ≥ x · y.

(5) x2+y2

2 ≥ (x+y
2 )2.

(6) x2 + y2 ≥ 2 · x · y.

(7) x2+y2

2 ≥ x · y.

(8) x2 + y2 ≥ 2 · |x| · |y|.
(9) (x + y)2 ≥ 4 · x · y.

(10) x2 + y2 + z2 ≥ x · y + y · z + x · z.
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(11) (x + y + z)2 ≥ 3 · (x · y + y · z + x · z).
(12) a3 + b3 + c3 ≥ 3 · a · b · c.
(13) a3+b3+c3

3 ≥ a · b · c.
(14) (a

b )3 + ( b
c)

3 + ( c
a)3 ≥ b

a + c
b + a

c .

(15) a + b + c ≥ 3 · 3
√

a · b · c.
(16) a+b+c

3 ≥ 3
√

a · b · c.
(17) If x + y + z = 1, then x · y + y · z + x · z ≤ 1

3 .

(18) If x + y = 1, then x · y ≤ 1
4 .

(19) If x + y = 1, then x2 + y2 ≥ 1
2 .

(20) If a + b = 1, then (1 + 1
a) · (1 + 1

b ) ≥ 9.

(21) If x + y = 1, then x3 + y3 ≥ 1
4 .

(22) If a + b = 1, then a3 + b3 < 1.

(23) If a + b = 1, then (a + 1
a) · (b + 1

b ) ≥
25
4 .

(24) If |x| ≤ a, then x2 ≤ a2.

(25) If |x| ≥ a, then x2 ≥ a2.

(26) ||x| − |y|| ≤ |x|+ |y|.
(27) If a · b · c = 1, then 1

a + 1
b + 1

c ≥
√

a +
√

b +
√

c.

(28) If x > 0 and y > 0 and z < 0 and x + y + z = 0, then (x2 + y2 + z2)3 ≥
6 · (x3 + y3 + z3)2.

(29) If a ≥ 1, then ab + ac ≥ 2 · a
√

b·c.

(30) If a ≥ b and b ≥ c, then aa · bb · cc ≥ (a · b · c)
a+b+c

3 .

(31) (a + b)n+2 ≥ an+2 + (n + 2) · an+1 · b.
(32) an+bn

2 ≥ (a+b
2 )n.

(33) If for every n holds s(n) > 0, then for every n holds (
∑κ

α=0 s(α))κ∈N(n) >

0.

(34) If for every n holds s(n) ≥ 0, then for every n holds (
∑κ

α=0 s(α))κ∈N(n) ≥
0.

(35) If for every n holds s(n) < 0, then (
∑κ

α=0 s(α))κ∈N(n) < 0.

(36) If s = s1 s1, then for every n holds (
∑κ

α=0 s(α))κ∈N(n) ≥ 0.

(37) If for every n holds s(n) > 0 and s(n) > s(n−1), then (n+1) ·s(n+1) >

(
∑κ

α=0 s(α))κ∈N(n).
(38) If s = s1 s2 and for every n holds s1(n) ≥ 0 and s2(n) ≥ 0,

then for every n holds (
∑κ

α=0 s(α))κ∈N(n) ≤ (
∑κ

α=0(s1)(α))κ∈N(n) ·
(
∑κ

α=0(s2)(α))κ∈N(n).
(39) If s = s1 s2 and for every n holds s1(n) < 0 and s2(n) < 0, then

(
∑κ

α=0 s(α))κ∈N(n) ≤ (
∑κ

α=0(s1)(α))κ∈N(n) · (
∑κ

α=0(s2)(α))κ∈N(n).
(40) For every n holds |(

∑κ
α=0 s(α))κ∈N(n)| ≤ (

∑κ
α=0|s|(α))κ∈N(n).
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(41) (
∑κ

α=0 s(α))κ∈N(n) ≤ (
∑κ

α=0|s|(α))κ∈N(n).
Let us consider s. The partial product of s yielding a sequence of real

numbers is defined by the conditions (Def. 1).
(Def. 1)(i) (The partial product of s)(0) = s(0), and

(ii) for every n holds (the partial product of s)(n+1) = (the partial product
of s)(n) · s(n + 1).

We now state a number of propositions:
(42) If for every n holds s(n) > 0, then (the partial product of s)(n) > 0.

(43) If for every n holds s(n) ≥ 0, then (the partial product of s)(n) ≥ 0.

(44) Suppose that for every n holds s(n) > 0 and s(n) < 1. Let given n. Then
(the partial product of s)(n) > 0 and (the partial product of s)(n) < 1.

(45) If for every n holds s(n) ≥ 1, then for every n holds (the partial product
of s)(n) ≥ 1.

(46) Suppose that for every n holds s1(n) ≥ 0 and s2(n) ≥ 0. Let given n.
Then (the partial product of s1)(n)+(the partial product of s2)(n) ≤ (the
partial product of s1 + s2)(n).

(47) If for every n holds s(n) = 2·n+1
2·n+2 , then (the partial product of s)(n) ≤

1√
3·n+4

.

(48) If for every n holds s1(n) = 1 + s(n) and s(n) > −1 and s(n) < 0, then
for every n holds 1 + (

∑κ
α=0 s(α))κ∈N(n) ≤ (the partial product of s1)(n).

(49) If for every n holds s1(n) = 1+s(n) and s(n) ≥ 0, then for every n holds
1 + (

∑κ
α=0 s(α))κ∈N(n) ≤ (the partial product of s1)(n).

(50) If s3 = s1 s2 and s4 = s1 s1 and s5 = s2 s2, then for every n holds
(
∑κ

α=0(s3)(α))κ∈N(n)2 ≤ (
∑κ

α=0(s4)(α))κ∈N(n) · (
∑κ

α=0(s5)(α))κ∈N(n).
(51) If s4 = s1 s1 and s5 = s2 s2 and for every n holds s1(n) ≥

0 and s2(n) ≥ 0 and s3(n) = (s1(n) + s2(n))2, then for ev-
ery n holds

√
(
∑κ

α=0(s3)(α))κ∈N(n) ≤
√

(
∑κ

α=0(s4)(α))κ∈N(n) +√
(
∑κ

α=0(s5)(α))κ∈N(n).
(52) If for every n holds s(n) > 0 and s(n) > s(n − 1), then

(
∑κ

α=0 s(α))κ∈N(n) ≥ (n + 1) · n+1
√

(the partial product of s)(n).
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[3] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[4] Jaros law Kotowicz. Real sequences and basic operations on them. Formalized Mathemat-

ics, 1(2):269–272, 1990.
[5] Rafa l Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890,

1990.
[6] Library Committee of the Association of Mizar Users. Binary operations on numbers. To

appear in Formalized Mathematics.



416 fuguo ge and xiquan liang
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The articles [10], [6], [12], [1], [13], [4], [5], [2], [7], [9], [8], [3], and [11] provide
the notation and terminology for this paper.

The following propositions are true:
(1) Let X be a set, Y be a non empty set, f be a function from X into Y ,

and A be a subset of X. If f is one-to-one, then (f−1)◦f◦A = A.

(2) For every natural number n holds n > 0 iff Seg n 6= ∅.
Let F1, F2 be finite topology spaces and let h be a map from F1 into F2.

We say that h is a homeomorphism if and only if the conditions (Def. 1) are
satisfied.

(Def. 1)(i) h is one-to-one and onto, and
(ii) for every element x of F1 holds h◦(the neighbour-map of F1)(x) = (the

neighbour-map of F2)(h(x)).
One can prove the following propositions:

(3) Let F1, F2 be non empty finite topology spaces and h be a map from F1

into F2. Suppose h is a homeomorphism. Then there exists a map g from
F2 into F1 such that g = h−1 and g is a homeomorphism.
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(4) Let F1, F2 be non empty finite topology spaces, h be a map from F1 into
F2, n be a natural number, x be an element of F1, and y be an element of
F2. Suppose h is a homeomorphism and y = h(x). Let z be an element of
F1. Then z ∈ U(x, n) if and only if h(z) ∈ U(y, n).

(5) Let F1, F2 be non empty finite topology spaces, h be a map from F1 into
F2, n be a natural number, x be an element of F1, and y be an element of
F2. Suppose h is a homeomorphism and y = h(x). Let v be an element of
F2. Then h−1(v) ∈ U(x, n) if and only if v ∈ U(y, n).

(6) Let n be a non zero natural number and f be a map from FTSL1(n)
into FTSL1(n). If f is continuous 0, then there exists an element p of
FTSL1(n) such that f(p) ∈ U(p, 0).

(7) Let T be a non empty finite topology space, p be an element of T , and
k be a natural number. If T is filled, then U(p, k) ⊆ U(p, k + 1).

(8) Let T be a non empty finite topology space, p be an element of T , and
k be a natural number. If T is filled, then U(p, 0) ⊆ U(p, k).

(9) Let n be a non zero natural number, j1, j, k be natural numbers, and p

be an element of FTSL1(n). If p = j1, then j ∈ U(p, k) iff j ∈ Seg n and
|j1 − j| ≤ k + 1.

(10) Let k1, k2 be natural numbers, n be a non zero natural number, and
f be a map from FTSL1(n) into FTSL1(n). Suppose f is continuous k1

and k2 = dk1
2 e. Then there exists an element p of FTSL1(n) such that

f(p) ∈ U(p, k2).

Let n, m be natural numbers. The functor Nbdl2(n, m) yields a function
from [: Seg n, Seg m :] into 2[: Seg n, Seg m :] and is defined by:

(Def. 2) For every set x such that x ∈ [: Seg n, Seg m :] and for all natural num-
bers i, j such that x = 〈〈i, j〉〉 holds (Nbdl2(n, m))(x) = [: (Nbdl1(n))(i),
(Nbdl1(m))(j) :].

Let n, m be natural numbers. The functor FTSL2(n, m) yielding a strict
finite topology space is defined as follows:

(Def. 3) FTSL2(n, m) = 〈[: Seg n, Seg m :],Nbdl2(n, m)〉.
Let n, m be non zero natural numbers. One can verify that FTSL2(n, m) is

non empty.
We now state three propositions:

(11) For all non zero natural numbers n, m holds FTSL2(n, m) is filled.

(12) For all non zero natural numbers n, m holds FTSL2(n, m) is symmetric.

(13) For every non zero natural number n holds there exists a map from
FTSL2(n, 1) into FTSL1(n) which is a homeomorphism.

Let n, m be natural numbers. The functor Nbds2(n, m) yielding a function
from [: Seg n, Seg m :] into 2[: Seg n, Seg m :] is defined by:
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(Def. 4) For every set x such that x ∈ [: Seg n, Seg m :] and for all natural numbers
i, j such that x = 〈〈i, j〉〉 holds (Nbds2(n, m))(x) = [: {i}, (Nbdl1(m))(j) :]∪
[: (Nbdl1(n))(i), {j} :].

Let n, m be natural numbers. The functor FTSS2(n, m) yielding a strict
finite topology space is defined as follows:

(Def. 5) FTSS2(n, m) = 〈[: Seg n, Seg m :],Nbds2(n, m)〉.
Let n, m be non zero natural numbers. Note that FTSS2(n, m) is non empty.
One can prove the following propositions:

(14) For all non zero natural numbers n, m holds FTSS2(n, m) is filled.
(15) For all non zero natural numbers n, m holds FTSS2(n, m) is symmetric.
(16) For every non zero natural number n holds there exists a map from

FTSS2(n, 1) into FTSL1(n) which is a homeomorphism.
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The following proposition is true
(1) For every real number x and for every natural number n holds |xn| =

|x|n.

Let f be a partial function from R to R, let Z be a subset of R, and let a be
a real number. The functor Maclaurin(f, Z, a) yields a sequence of real numbers
and is defined by:

(Def. 1) Maclaurin(f, Z, a) = Taylor(f, Z, 0, a).
The following propositions are true:

(2) Let n be a natural number, f be a partial function from R to R,
and r be a real number. Suppose 0 < r and f is differentiable n + 1
times on ]−r, r[. Let x be a real number. Suppose x ∈ ]−r, r[. Then
there exists a real number s such that 0 < s and s < 1 and f(x) =
(
∑κ

α=0(Maclaurin(f, ]−r, r[, x))(α))κ∈N(n) + f ′(]−r,r[)(n+1)(s·x)·xn+1

(n+1)! .

(3) Let n be a natural number, f be a partial function from R to R,
and x0, r be real numbers. Suppose 0 < r and f is differentiable
n + 1 times on ]x0 − r, x0 + r[. Let x be a real number. Suppose
x ∈ ]x0− r, x0 + r[. Then there exists a real number s such that 0 < s and
s < 1 and |f(x) − (

∑κ
α=0(Taylor(f, ]x0 − r, x0 + r[, x0, x))(α))κ∈N(n)| =

|f
′(]x0−r,x0+r[)(n+1)(x0+s·(x−x0))·(x−x0)n+1

(n+1)! |.
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(4) Let n be a natural number, f be a partial function from R to R,
and r be a real number. Suppose 0 < r and f is differentiable n + 1
times on ]−r, r[. Let x be a real number. Suppose x ∈ ]−r, r[. Then
there exists a real number s such that 0 < s and s < 1 and |f(x) −
(
∑κ

α=0(Maclaurin(f, ]−r, r[, x))(α))κ∈N(n)| = |f
′(]−r,r[)(n+1)(s·x)·xn+1

(n+1)! |.
(5) For every real number r holds exp′�]−r,r[ = exp �]−r, r[ and

dom(exp �]−r, r[) = ]−r, r[.
(6) For every natural number n and for every real number r holds

exp′(]−r, r[)(n) = exp �]−r, r[.
(7) For every natural number n and for all real numbers r, x such that

x ∈ ]−r, r[ holds exp′(]−r, r[)(n)(x) = exp(x).
(8) For every natural number n and for all real numbers r, x such that 0 < r

holds (Maclaurin(exp, ]−r, r[, x))(n) = xn

n! .

(9) Let n be a natural number and r, x, s be real numbers. Suppose
x ∈ ]−r, r[ and 0 < s and s < 1. Then | exp′(]−r,r[)(n+1)(s·x)·xn+1

(n+1)! | ≤
|exp(s·x)|·|x|n+1

(n+1)! .

(10) For every real number r and for every natural number n holds exp is
differentiable n times on ]−r, r[.

(11) Let r be a real number. Suppose 0 < r. Then there exist real numbers
M , L such that

(i) 0 ≤ M,

(ii) 0 ≤ L, and
(iii) for every natural number n and for all real numbers x, s such that

x ∈ ]−r, r[ and 0 < s and s < 1 holds | exp′(]−r,r[)(n)(s·x)·xn

n! | ≤ M ·Ln

n! .

(12) Let M , L be real numbers. Suppose M ≥ 0 and L ≥ 0. Let e be a real
number. Suppose e > 0. Then there exists a natural number n such that
for every natural number m if n ≤ m, then M ·Lm

m! < e.

(13) Let r, e be real numbers. Suppose 0 < r and 0 < e. Then there exists
a natural number n such that for every natural number m if n ≤ m, then
for all real numbers x, s such that x ∈ ]−r, r[ and 0 < s and s < 1 holds
| exp′(]−r,r[)(m)(s·x)·xm

m! | < e.

(14) Let r, e be real numbers. Suppose 0 < r and 0 < e. Then there
exists a natural number n such that for every natural number m if
n ≤ m, then for every real number x such that x ∈ ]−r, r[ holds
|exp(x)− (

∑κ
α=0(Maclaurin(exp, ]−r, r[, x))(α))κ∈N(m)| < e.

(15) For every real number x holds xExpSeq is absolutely summable.
(16) For all real numbers r, x such that 0 < r holds Maclaurin(exp, ]−r, r[, x) =

xExpSeq and Maclaurin(exp, ]−r, r[, x) is absolutely summable and
exp(x) =

∑
Maclaurin(exp, ]−r, r[, x).
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(17) Let r be a real number. Then
(i) (the function sin)′�]−r,r[ = (the function cos)�]−r, r[,
(ii) (the function cos)′�]−r,r[ = (−the function sin)�]−r, r[,
(iii) dom((the function sin)�]−r, r[) = ]−r, r[, and
(iv) dom((the function cos)�]−r, r[) = ]−r, r[.

(18) Let f be a partial function from R to R and Z be a subset of R. If f is
differentiable on Z, then (−f)′�Z = −f ′

�Z .

(19) Let r be a real number and n be a natural number. Then
(i) (the function sin)′(]−r, r[)(2 · n) = (−1)n ((the function sin)�]−r, r[),
(ii) (the function sin)′(]−r, r[)(2·n+1) = (−1)n ((the function cos)�]−r, r[),
(iii) (the function cos)′(]−r, r[)(2 · n) = (−1)n ((the function cos)�]−r, r[),

and
(iv) (the function cos)′(]−r, r[)(2 · n + 1) = (−1)n+1 ((the function

sin)�]−r, r[).
(20) Let n be a natural number and r, x be real numbers. Suppose r > 0.

Then
(i) (Maclaurin(the function sin, ]−r, r[, x))(2 · n) = 0,

(ii) (Maclaurin(the function sin, ]−r, r[, x))(2 · n + 1) = (−1)n·x2·n+1

(2·n+1)! ,

(iii) (Maclaurin(the function cos, ]−r, r[, x))(2 · n) = (−1)n·x2·n

(2·n)! , and
(iv) (Maclaurin(the function cos, ]−r, r[, x))(2 · n + 1) = 0.

(21) Let r be a real number and n be a natural number. Then the function
sin is differentiable n times on ]−r, r[ and the function cos is differentiable
n times on ]−r, r[.

(22) Let r be a real number. Suppose r > 0. Then there exist real numbers
r1, r2 such that

(i) r1 ≥ 0,

(ii) r2 ≥ 0, and
(iii) for every natural number n and for all real numbers x, s such that x ∈

]−r, r[ and 0 < s and s < 1 holds | (the function sin)′(]−r,r[)(n)(s·x)·xn

n! | ≤ r1·r2
n

n!

and | (the function cos)′(]−r,r[)(n)(s·x)·xn

n! | ≤ r1·r2
n

n! .

(23) Let r, e be real numbers. Suppose 0 < r and 0 < e. Then there
exists a natural number n such that for every natural number m if
n ≤ m, then for all real numbers x, s such that x ∈ ]−r, r[ and
0 < s and s < 1 holds | (the function sin)′(]−r,r[)(m)(s·x)·xm

m! | < e and

| (the function cos)′(]−r,r[)(m)(s·x)·xm

m! | < e.

(24) Let r, e be real numbers. Suppose 0 < r and 0 < e.

Then there exists a natural number n such that for every natu-
ral number m if n ≤ m, then for every real number x such that
x ∈ ]−r, r[ holds |(the function sin)(x) − (

∑κ
α=0(Maclaurin(the func-
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tion sin, ]−r, r[, x))(α))κ∈N(m)| < e and |(the function cos)(x) −
(
∑κ

α=0(Maclaurin(the function cos, ]−r, r[, x))(α))κ∈N(m)| < e.

(25) Let r, x be real numbers and m be a natural number. Suppose
0 < r. Then (

∑κ
α=0(Maclaurin(the function sin, ]−r, r[, x))(α))κ∈N(2 ·

m + 1) = (
∑κ

α=0 xP sin(α))κ∈N(m) and (
∑κ

α=0(Maclaurin(the function
cos, ]−r, r[, x))(α))κ∈N(2 ·m + 1) = (

∑κ
α=0 xP cos(α))κ∈N(m).

(26) Let r, x be real numbers and m be a natural number. Suppose 0 < r

and m > 0. Then (
∑κ

α=0(Maclaurin(the function sin, ]−r, r[, x))(α))κ∈N(2·
m) = (

∑κ
α=0 xP sin(α))κ∈N(m − 1) and (

∑κ
α=0(Maclaurin(the function

cos, ]−r, r[, x))(α))κ∈N(2 ·m) = (
∑κ

α=0 xP cos(α))κ∈N(m).
(27) Let r, x be real numbers and m be a natural number. If 0 <

r, then (
∑κ

α=0(Maclaurin(the function cos, ]−r, r[, x))(α))κ∈N(2 · m) =
(
∑κ

α=0 xP cos(α))κ∈N(m).
(28) Let r, x be real numbers. Suppose r > 0. Then

(i) (
∑κ

α=0(Maclaurin(the function sin, ]−r, r[, x))(α))κ∈N is convergent,
(ii) (the function sin)(x) =

∑
Maclaurin(the function sin, ]−r, r[, x),

(iii) (
∑κ

α=0(Maclaurin(the function cos, ]−r, r[, x))(α))κ∈N is convergent,
and

(iv) (the function cos)(x) =
∑

Maclaurin(the function cos, ]−r, r[, x).

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
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For simplicity, we follow the rules: x, a, b, c denote real numbers, n denotes
a natural number, Z denotes an open subset of R, and f , f1, f2 denote partial
functions from R to R.

One can prove the following propositions:

(1) Suppose Z ⊆ dom(log (e) · f) and for every x such that x ∈ Z holds
f(x) = a + x and f(x) > 0. Then log (e) · f is differentiable on Z and for
every x such that x ∈ Z holds (log (e) · f)′�Z(x) = 1

a+x .

(2) Suppose Z ⊆ dom(log (e) · f) and for every x such that x ∈ Z holds
f(x) = x− a and f(x) > 0. Then log (e) · f is differentiable on Z and for
every x such that x ∈ Z holds (log (e) · f)′�Z(x) = 1

x−a .

(3) Suppose Z ⊆ dom(−log (e) · f) and for every x such that x ∈ Z holds
f(x) = a − x and f(x) > 0. Then −log (e) · f is differentiable on Z and
for every x such that x ∈ Z holds (−log (e) · f)′�Z(x) = 1

a−x .
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(4) Suppose Z ⊆ dom(idZ−a f) and f = log (e)·f1 and for every x such that
x ∈ Z holds f1(x) = a + x and f1(x) > 0. Then idZ − a f is differentiable
on Z and for every x such that x ∈ Z holds (idZ − a f)′�Z(x) = x

a+x .

(5) Suppose Z ⊆ dom((2 · a) f − idZ) and f = log (e) · f1 and for every x

such that x ∈ Z holds f1(x) = a + x and f1(x) > 0. Then (2 · a) f − idZ

is differentiable on Z and for every x such that x ∈ Z holds ((2 · a) f −
idZ)′�Z(x) = a−x

a+x .

(6) Suppose Z ⊆ dom(idZ − (2 · a) f) and f = log (e) · f1 and for every x

such that x ∈ Z holds f1(x) = x + a and f1(x) > 0. Then idZ − (2 · a) f

is differentiable on Z and for every x such that x ∈ Z holds (idZ − (2 ·
a) f)′�Z(x) = x−a

x+a .

(7) Suppose Z ⊆ dom(idZ + (2 · a) f) and f = log (e) · f1 and for every x

such that x ∈ Z holds f1(x) = x − a and f1(x) > 0. Then idZ + (2 · a) f

is differentiable on Z and for every x such that x ∈ Z holds (idZ + (2 ·
a) f)′�Z(x) = x+a

x−a .

(8) Suppose Z ⊆ dom(idZ + (a − b) f) and f = log (e) · f1 and for every x

such that x ∈ Z holds f1(x) = x + b and f1(x) > 0. Then idZ + (a− b) f

is differentiable on Z and for every x such that x ∈ Z holds (idZ + (a −
b) f)′�Z(x) = x+a

x+b .

(9) Suppose Z ⊆ dom(idZ + (a + b) f) and f = log (e) · f1 and for every x

such that x ∈ Z holds f1(x) = x− b and f1(x) > 0. Then idZ + (a + b) f

is differentiable on Z and for every x such that x ∈ Z holds (idZ + (a +
b) f)′�Z(x) = x+a

x−b .

(10) Suppose Z ⊆ dom(idZ − (a + b) f) and f = log (e) · f1 and for every x

such that x ∈ Z holds f1(x) = x + b and f1(x) > 0. Then idZ − (a + b) f

is differentiable on Z and for every x such that x ∈ Z holds (idZ − (a +
b) f)′�Z(x) = x−a

x+b .

(11) Suppose Z ⊆ dom(idZ + (b − a) f) and f = log (e) · f1 and for every x

such that x ∈ Z holds f1(x) = x− b and f1(x) > 0. Then idZ + (b− a) f

is differentiable on Z and for every x such that x ∈ Z holds (idZ + (b −
a) f)′�Z(x) = x−a

x−b .

(12) Suppose Z ⊆ dom(f1 + c f2) and for every x such that x ∈ Z holds
f1(x) = a + b · x and f2 = 2

Z. Then f1 + c f2 is differentiable on Z and for
every x such that x ∈ Z holds (f1 + c f2)′�Z(x) = b + 2 · c · x.

(13) Suppose Z ⊆ dom(log (e) · (f1 + c f2)) and f2 = 2
Z and for every x

such that x ∈ Z holds f1(x) = a + b · x and (f1 + c f2)(x) > 0. Then
log (e) · (f1 + c f2) is differentiable on Z and for every x such that x ∈ Z

holds (log (e) · (f1 + c f2))′�Z(x) = b+2·c·x
a+b·x+c·x2 .

(14) Suppose Z ⊆ dom f and for every x such that x ∈ Z holds f(x) = a + x

and f(x) 6= 0. Then 1
f is differentiable on Z and for every x such that



several differentiable formulas . . . 429

x ∈ Z holds ( 1
f )′�Z(x) = − 1

(a+x)2
.

(15) Suppose Z ⊆ dom((−1) 1
f ) and for every x such that x ∈ Z holds f(x) =

a + x and f(x) 6= 0. Then (−1) 1
f is differentiable on Z and for every x

such that x ∈ Z holds ((−1) 1
f )′�Z(x) = 1

(a+x)2
.

(16) Suppose Z ⊆ dom f and for every x such that x ∈ Z holds f(x) = a− x

and f(x) 6= 0. Then 1
f is differentiable on Z and for every x such that

x ∈ Z holds ( 1
f )′�Z(x) = 1

(a−x)2
.

(17) Suppose Z ⊆ dom(f1 + f2) and for every x such that x ∈ Z holds
f1(x) = a2 and f2 = 2

Z. Then f1 + f2 is differentiable on Z and for every
x such that x ∈ Z holds (f1 + f2)′�Z(x) = 2 · x.

(18) Suppose Z ⊆ dom(log (e) · (f1 + f2)) and f2 = 2
Z and for every x such

that x ∈ Z holds f1(x) = a2 and (f1 + f2)(x) > 0. Then log (e) · (f1 + f2)
is differentiable on Z and for every x such that x ∈ Z holds (log (e) · (f1 +
f2))′�Z(x) = 2·x

a2+x2 .

(19) Suppose Z ⊆ dom(−log (e) · (f1 − f2)) and f2 = 2
Z and for every

x such that x ∈ Z holds f1(x) = a2 and (f1 − f2)(x) > 0. Then
−log (e) · (f1 − f2) is differentiable on Z and for every x such that x ∈ Z

holds (−log (e) · (f1 − f2))′�Z(x) = 2·x
a2−x2 .

(20) Suppose Z ⊆ dom(f1 + f2) and for every x such that x ∈ Z holds
f1(x) = a and f2 = 3

Z. Then f1 + f2 is differentiable on Z and for every x

such that x ∈ Z holds (f1 + f2)′�Z(x) = 3 · x2.

(21) Suppose Z ⊆ dom(log (e) · (f1 + f2)) and f2 = 3
Z and for every x such

that x ∈ Z holds f1(x) = a and (f1 +f2)(x) > 0. Then log (e) · (f1 +f2) is
differentiable on Z and for every x such that x ∈ Z holds (log (e) · (f1 +
f2))′�Z(x) = 3·x2

a+x3 .

(22) Suppose Z ⊆ dom(log (e) · f1

f2
) and for every x such that x ∈ Z holds

f1(x) = a + x and f1(x) > 0 and f2(x) = a − x and f2(x) > 0. Then
log (e) · f1

f2
is differentiable on Z and for every x such that x ∈ Z holds

(log (e) · f1

f2
)′�Z(x) = 2·a

a2−x2 .

(23) Suppose Z ⊆ dom(log (e) · f1

f2
) and for every x such that x ∈ Z holds

f1(x) = x − a and f1(x) > 0 and f2(x) = x + a and f2(x) > 0. Then
log (e) · f1

f2
is differentiable on Z and for every x such that x ∈ Z holds

(log (e) · f1

f2
)′�Z(x) = 2·a

x2−a2 .

(24) Suppose Z ⊆ dom(log (e) · f1

f2
) and for every x such that x ∈ Z holds

f1(x) = x − a and f1(x) > 0 and f2(x) = x − b and f2(x) > 0. Then
log (e) · f1

f2
is differentiable on Z and for every x such that x ∈ Z holds

(log (e) · f1

f2
)′�Z(x) = a−b

(x−a)·(x−b) .

(25) Suppose Z ⊆ dom( 1
a−b f) and f = log (e) · f1

f2
and for every x such that
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x ∈ Z holds f1(x) = x− a and f1(x) > 0 and f2(x) = x− b and f2(x) > 0
and a− b 6= 0. Then 1

a−b f is differentiable on Z and for every x such that
x ∈ Z holds ( 1

a−b f)′�Z(x) = 1
(x−a)·(x−b) .

(26) Suppose Z ⊆ dom(log (e) · f1

f2
) and f2 = 2

Z and for every x such that
x ∈ Z holds f1(x) = x− a and f1(x) > 0 and f2(x) > 0 and x 6= 0. Then
log (e) · f1

f2
is differentiable on Z and for every x such that x ∈ Z holds

(log (e) · f1

f2
)′�Z(x) = 2·a−x

x·(x−a) .

(27) Suppose Z ⊆ dom((
3
2
R) · f) and for every x such that x ∈ Z holds f(x) =

a + x and f(x) > 0. Then (
3
2
R) · f is differentiable on Z and for every x

such that x ∈ Z holds ((
3
2
R) · f)′�Z(x) = 3

2 · (a + x)
1
2
R.

(28) Suppose Z ⊆ dom(2
3 ((

3
2
R) · f)) and for every x such that x ∈ Z holds

f(x) = a + x and f(x) > 0. Then 2
3 ((

3
2
R) · f) is differentiable on Z and for

every x such that x ∈ Z holds (2
3 ((

3
2
R) · f))′�Z(x) = (a + x)

1
2
R.

(29) Suppose Z ⊆ dom((−2
3) ((

3
2
R) · f)) and for every x such that x ∈ Z holds

f(x) = a− x and f(x) > 0. Then (−2
3) ((

3
2
R) · f) is differentiable on Z and

for every x such that x ∈ Z holds ((−2
3) ((

3
2
R) · f))′�Z(x) = (a− x)

1
2
R.

(30) Suppose Z ⊆ dom(2 ((
1
2
R) · f)) and for every x such that x ∈ Z holds

f(x) = a + x and f(x) > 0. Then 2 ((
1
2
R) · f) is differentiable on Z and for

every x such that x ∈ Z holds (2 ((
1
2
R) · f))′�Z(x) = (a + x)

− 1
2

R .

(31) Suppose Z ⊆ dom((−2) ((
1
2
R) · f)) and for every x such that x ∈ Z holds

f(x) = a− x and f(x) > 0. Then (−2) ((
1
2
R) · f) is differentiable on Z and

for every x such that x ∈ Z holds ((−2) ((
1
2
R) · f))′�Z(x) = (a− x)

− 1
2

R .

(32) Suppose Z ⊆ dom( 2
3·b ((

3
2
R) · f)) and for every x such that x ∈ Z holds

f(x) = a + b · x and b 6= 0 and f(x) > 0. Then 2
3·b ((

3
2
R) · f) is differentiable

on Z and for every x such that x ∈ Z holds ( 2
3·b ((

3
2
R)·f))′�Z(x) = (a+b·x)

1
2
R.

(33) Suppose Z ⊆ dom((− 2
3·b) ((

3
2
R) ·f)) and for every x such that x ∈ Z holds

f(x) = a−b·x and b 6= 0 and f(x) > 0. Then (− 2
3·b) ((

3
2
R)·f) is differentiable

on Z and for every x such that x ∈ Z holds ((− 2
3·b) ((

3
2
R) · f))′�Z(x) =

(a− b · x)
1
2
R.

(34) Suppose Z ⊆ dom((
1
2
R)·f) and f = f1+f2 and f2 = 2

Z and for every x such

that x ∈ Z holds f1(x) = a2 and f(x) > 0. Then (
1
2
R) ·f is differentiable on
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Z and for every x such that x ∈ Z holds ((
1
2
R) · f)′�Z(x) = x · (a2 + x2)

− 1
2

R .

(35) Suppose Z ⊆ dom(−(
1
2
R) · f) and f = f1 − f2 and f2 = 2

Z and for every

x such that x ∈ Z holds f1(x) = a2 and f(x) > 0. Then −(
1
2
R) · f is

differentiable on Z and for every x such that x ∈ Z holds (−(
1
2
R) · f)′�Z(x) =

x · (a2 − x2)
− 1

2
R .

(36) Suppose Z ⊆ dom(2 ((
1
2
R) · f)) and f = f1 + f2 and f2 = 2

Z and for

every x such that x ∈ Z holds f1(x) = x and f(x) > 0. Then 2 ((
1
2
R) · f)

is differentiable on Z and for every x such that x ∈ Z holds (2 ((
1
2
R) ·

f))′�Z(x) = (2 · x + 1) · (x2 + x)
− 1

2
R .

(37) Suppose Z ⊆ dom((the function sin) ·f) and for every x such that x ∈ Z

holds f(x) = a · x + b. Then
(i) (the function sin) ·f is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function sin) ·f)′�Z(x) = a · (the

function cos)(a · x + b).
(38) Suppose Z ⊆ dom((the function cos) ·f) and for every x such that x ∈ Z

holds f(x) = a · x + b. Then
(i) (the function cos) ·f is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function cos) ·f)′�Z(x) =

−a · (the function sin)(a · x + b).
(39) Suppose that for every x such that x ∈ Z holds (the function cos)(x) 6= 0.

Then
(i) 1

the function cos is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ( 1

the function cos)
′
�Z(x) =

(the function sin)(x)
(the function cos)(x)2

.

(40) Suppose that for every x such that x ∈ Z holds (the function sin)(x) 6= 0.

Then
(i) 1

the function sin is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ( 1

the function sin)′�Z(x) =

− (the function cos)(x)
(the function sin)(x)2

.

(41) Suppose Z ⊆ dom((the function sin) (the function cos)). Then
(i) (the function sin) (the function cos) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function sin) (the function

cos))′�Z(x) = cos(2 · x).
(42) Suppose Z ⊆ dom(log (e) · (the function cos)) and for every x such that

x ∈ Z holds (the function cos)(x) > 0. Then log (e) · (the function cos) is
differentiable on Z and for every x such that x ∈ Z holds (log (e) · (the
function cos))′�Z(x) = −tanx.
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(43) Suppose Z ⊆ dom(log (e) · (the function sin)) and for every x such that
x ∈ Z holds (the function sin)(x) > 0. Then log (e) · (the function sin) is
differentiable on Z and for every x such that x ∈ Z holds (log (e) · (the
function sin))′�Z(x) = cotx.

(44) Suppose Z ⊆ dom((−idZ) (the function cos)). Then
(i) (−idZ) (the function cos) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((−idZ) (the function cos))′�Z(x) =

−(the function cos)(x) + x · (the function sin)(x).
(45) Suppose Z ⊆ dom(idZ (the function sin)). Then

(i) idZ (the function sin) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (idZ (the function sin))′�Z(x) = (the

function sin)(x) + x · (the function cos)(x).
(46) Suppose Z ⊆ dom((−idZ) (the function cos)+the function sin). Then

(i) (−idZ) (the function cos)+the function sin is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((−idZ) (the function cos)+the

function sin)′�Z(x) = x · (the function sin)(x).
(47) Suppose Z ⊆ dom(idZ (the function sin)+the function cos). Then

(i) idZ (the function sin)+the function cos is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (idZ (the function sin)+the function

cos)′�Z(x) = x · (the function cos)(x).

(48) Suppose Z ⊆ dom(2 ((
1
2
R) · (the function sin))) and for every x such that

x ∈ Z holds (the function sin)(x) > 0. Then

(i) 2 ((
1
2
R) · (the function sin)) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (2 ((
1
2
R) · (the function sin)))′�Z(x) =

(the function cos)(x) · (the function sin)(x)
− 1

2
R .

(49) Suppose Z ⊆ dom(1
2 ((2Z) · (the function sin))). Then

(i) 1
2 ((2Z) · (the function sin)) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (1
2 ((2Z) · (the function sin)))′�Z(x) =

(the function sin)(x) · (the function cos)(x).
(50) Suppose that

(i) Z ⊆ dom((the function sin)+1
2 ((2Z) · (the function sin))), and

(ii) for every x such that x ∈ Z holds (the function sin)(x) > 0 and (the
function sin)(x) < 1.

Then
(iii) (the function sin)+1

2 ((2Z) · (the function sin)) is differentiable on Z, and
(iv) for every x such that x ∈ Z holds ((the function sin)+1

2 ((2Z) · (the

function sin)))′�Z(x) = (the function cos)(x)3

1−(the function sin)(x) .

(51) Suppose that
(i) Z ⊆ dom(1

2 ((2Z) · (the function sin))−the function cos), and
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(ii) for every x such that x ∈ Z holds (the function sin)(x) > 0 and (the
function cos)(x) < 1.

Then
(iii) 1

2 ((2Z) · (the function sin))−the function cos is differentiable on Z, and
(iv) for every x such that x ∈ Z holds (1

2 ((2Z) · (the function sin))−the

function cos)′�Z(x) = (the function sin)(x)3

1−(the function cos)(x) .

(52) Suppose that
(i) Z ⊆ dom((the function sin)−1

2 ((2Z) · (the function sin))), and
(ii) for every x such that x ∈ Z holds (the function sin)(x) > 0 and (the

function sin)(x) > −1.

Then
(iii) (the function sin)−1

2 ((2Z) · (the function sin)) is differentiable on Z, and
(iv) for every x such that x ∈ Z holds ((the function sin)−1

2 ((2Z) · (the

function sin)))′�Z(x) = (the function cos)(x)3

1+(the function sin)(x) .

(53) Suppose that
(i) Z ⊆ dom(−the function cos− 1

2 ((2Z) · (the function sin))), and
(ii) for every x such that x ∈ Z holds (the function sin)(x) > 0 and (the

function cos)(x) > −1.

Then
(iii) −the function cos − 1

2 ((2Z) · (the function sin)) is differentiable on Z,
and

(iv) for every x such that x ∈ Z holds (−the function cos − 1
2 ((2Z) · (the

function sin)))′�Z(x) = (the function sin)(x)3

1+(the function cos)(x) .

(54) Suppose Z ⊆ dom( 1
n ((n

Z) · (the function sin))) and n > 0. Then
(i) 1

n ((n
Z) · (the function sin)) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( 1
n ((n

Z) · (the function sin)))′�Z(x) =
((the function sin)(x)n−1

Z ) · (the function cos)(x).

(55) Suppose Z ⊆ dom(exp f) and for every x such that x ∈ Z holds f(x) =
x− 1. Then exp f is differentiable on Z and for every x such that x ∈ Z

holds (exp f)′�Z(x) = x · exp(x).

(56) Suppose Z ⊆ dom(log (e) · exp
exp +f ) and for every x such that x ∈ Z holds

f(x) = 1. Then log (e) · exp
exp+f is differentiable on Z and for every x such

that x ∈ Z holds (log (e) · exp
exp+f )′�Z(x) = 1

exp(x)+1 .

(57) Suppose Z ⊆ dom(log (e) · exp−f
exp ) and for every x such that x ∈ Z holds

f(x) = 1 and (exp−f)(x) > 0. Then log (e) · exp−f
exp is differentiable on Z

and for every x such that x ∈ Z holds (log (e) · exp−f
exp )′�Z(x) = 1

exp(x)−1 .
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