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The notation and terminology used here have been introduced in the following

papers: [12], [15], [2], [11], [4], [16], [5], [7], [14], [9], [8], [3], [1], [13], [10], and [6].

For simplicity, we follow the rules: M denotes a non empty set, V denotes

a complex normed space, f , f1, f2, f3 denote partial functions from M to the

carrier of V , and z, z1, z2 denote complex numbers.

Let M be a non empty set, let V be a complex normed space, and let f1,

f2 be partial functions from M to the carrier of V . The functor f1 + f2 yields a

partial function from M to the carrier of V and is defined by:

(Def. 1) dom(f1 + f2) = dom f1 ∩ dom f2 and for every element c of M such that

c ∈ dom(f1 + f2) holds (f1 + f2)c = (f1)c + (f2)c.

The functor f1 − f2 yields a partial function from M to the carrier of V and is

defined as follows:

(Def. 2) dom(f1− f2) = dom f1 ∩ dom f2 and for every element c of M such that

c ∈ dom(f1 − f2) holds (f1 − f2)c = (f1)c − (f2)c.

Let M be a non empty set, let V be a complex normed space, let f1 be a

partial function from M to C, and let f2 be a partial function from M to the

carrier of V . The functor f1 f2 yielding a partial function from M to the carrier

of V is defined by:

(Def. 3) dom(f1 f2) = dom f1 ∩ dom f2 and for every element c of M such that

c ∈ dom(f1 f2) holds (f1 f2)c = (f1)c · (f2)c.

Let X be a non empty set, let V be a complex normed space, let f be a

partial function from X to the carrier of V , and let z be a complex number. The
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functor z f yields a partial function from X to the carrier of V and is defined

as follows:

(Def. 4) dom(z f) = dom f and for every element x of X such that x ∈ dom(z f)

holds (z f)x = z · fx.

Let X be a non empty set, let V be a complex normed space, and let f be a

partial function from X to the carrier of V . The functor ‖f‖ yielding a partial

function from X to R is defined as follows:

(Def. 5) dom‖f‖ = dom f and for every element x of X such that x ∈ dom‖f‖

holds ‖f‖(x) = ‖fx‖.

The functor −f yields a partial function from X to the carrier of V and is

defined by:

(Def. 6) dom(−f) = dom f and for every element x of X such that x ∈ dom(−f)

holds (−f)x = −fx.

The following propositions are true:

(1) Let f1 be a partial function from M to C and f2 be a partial function

fromM to the carrier of V . Then dom(f1 f2)\(f1 f2)
−1({0V }) = (dom f1\

f1
−1({0})) ∩ (dom f2 \ f2

−1({0V })).

(2) ‖f‖−1({0}) = f−1({0V }) and (−f)−1({0V }) = f−1({0V }).

(3) If z 6= 0C, then (z f)−1({0V }) = f−1({0V }).

(4) f1 + f2 = f2 + f1.

(5) (f1 + f2) + f3 = f1 + (f2 + f3).

(6) Let f1, f2 be partial functions from M to C and f3 be a partial function

from M to the carrier of V . Then (f1 f2) f3 = f1 (f2 f3).

(7) For all partial functions f1, f2 from M to C holds (f1 + f2) f3 = f1 f3 +

f2 f3.

(8) For every partial function f3 from M to C holds f3 (f1 + f2) = f3 f1 +

f3 f2.

(9) For every partial function f1 from M to C holds z (f1 f2) = (z f1) f2.

(10) For every partial function f1 from M to C holds z (f1 f2) = f1 (z f2).

(11) For all partial functions f1, f2 from M to C holds (f1 − f2) f3 = f1 f3 −

f2 f3.

(12) For every partial function f3 from M to C holds f3 f1 − f3 f2 = f3 (f1 −

f2).

(13) z (f1 + f2) = z f1 + z f2.

(14) (z1 · z2) f = z1 (z2 f).

(15) z (f1 − f2) = z f1 − z f2.

(16) f1 − f2 = (−1C) (f2 − f1).

(17) f1 − (f2 + f3) = f1 − f2 − f3.
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(18) 1C f = f.

(19) f1 − (f2 − f3) = (f1 − f2) + f3.

(20) f1 + (f2 − f3) = (f1 + f2)− f3.

(21) For every partial function f1 from M to C holds ‖f1 f2‖ = |f1| ‖f2‖.

(22) ‖z f‖ = |z| ‖f‖.

(23) −f = (−1C) f.

(24) −−f = f.

(25) f1 − f2 = f1 +−f2.

(26) f1 −−f2 = f1 + f2.

In the sequel X, Y denote sets.

We now state a number of propositions:

(27) (f1+f2)↾X = f1↾X+f2↾X and (f1+f2)↾X = f1↾X+f2 and (f1+f2)↾X =

f1 + f2↾X.

(28) For every partial function f1 from M to C holds (f1 f2)↾X =

(f1↾X) (f2↾X) and (f1 f2)↾X = (f1↾X) f2 and (f1 f2)↾X = f1 (f2↾X).

(29) (−f)↾X = −f↾X and ‖f‖↾X = ‖f↾X‖.

(30) (f1−f2)↾X = f1↾X−f2↾X and (f1−f2)↾X = f1↾X−f2 and (f1−f2)↾X =

f1 − f2↾X.

(31) (z f)↾X = z (f↾X).

(32) f1 is total and f2 is total iff f1 + f2 is total and f1 is total and f2 is total

iff f1 − f2 is total.

(33) For every partial function f1 from M to C holds f1 is total and f2 is

total iff f1 f2 is total.

(34) f is total iff z f is total.

(35) f is total iff −f is total.

(36) f is total iff ‖f‖ is total.

(37) For every element x of M such that f1 is total and f2 is total holds

(f1 + f2)x = (f1)x + (f2)x and (f1 − f2)x = (f1)x − (f2)x.

(38) Let f1 be a partial function from M to C and x be an element of M . If

f1 is total and f2 is total, then (f1 f2)x = (f1)x · (f2)x.

(39) For every element x of M such that f is total holds (z f)x = z · fx.

(40) For every element x of M such that f is total holds (−f)x = −fx and

‖f‖(x) = ‖fx‖.

Let us consider M , let us consider V , and let us consider f , Y . We say that

f is bounded on Y if and only if:

(Def. 7) There exists a real number r such that for every element x of M such

that x ∈ Y ∩ dom f holds ‖fx‖ ¬ r.

One can prove the following propositions:
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(41) If Y ⊆ X and f is bounded on X, then f is bounded on Y .

(42) If X misses dom f, then f is bounded on X.

(43) 0C f is bounded on Y .

(44) If f is bounded on Y , then z f is bounded on Y .

(45) If f is bounded on Y , then ‖f‖ is bounded on Y and −f is bounded on

Y .

(46) If f1 is bounded on X and f2 is bounded on Y , then f1 + f2 is bounded

on X ∩ Y.

(47) For every partial function f1 from M to C such that f1 is bounded on

X and f2 is bounded on Y holds f1 f2 is bounded on X ∩ Y.

(48) If f1 is bounded on X and f2 is bounded on Y , then f1 − f2 is bounded

on X ∩ Y.

(49) If f is bounded on X and bounded on Y , then f is bounded on X ∪ Y.

(50) If f1 is a constant on X and f2 is a constant on Y , then f1 + f2 is a

constant on X ∩ Y and f1 − f2 is a constant on X ∩ Y.

(51) Let f1 be a partial function from M to C. Suppose f1 is a constant on

X and f2 is a constant on Y . Then f1 f2 is a constant on X ∩ Y.

(52) If f is a constant on Y , then z f is a constant on Y .

(53) If f is a constant on Y , then ‖f‖ is a constant on Y and −f is a constant

on Y .

(54) If f is a constant on Y , then f is bounded on Y .

(55) If f is a constant on Y , then for every z holds z f is bounded on Y and

−f is bounded on Y and ‖f‖ is bounded on Y .

(56) If f1 is bounded on X and f2 is a constant on Y , then f1 +f2 is bounded

on X ∩ Y.

(57) If f1 is bounded on X and f2 is a constant on Y , then f1−f2 is bounded

on X ∩ Y and f2 − f1 is bounded on X ∩ Y.
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