Algebra of Complex Vector Valued Functions

Noboru Endou
Gifu National College of Technology

Summary. This article is an extension of [17].

MML Identifier: VFUNCT_2.

The notation and terminology used here have been introduced in the following papers: [12], [15], [2], [11], [4], [16], [5], [7], [14], [9], [8], [3], [1], [13], [10], and [6].

For simplicity, we follow the rules: M denotes a non empty set, V denotes a complex normed space, f, f_{1}, f_{2}, f_{3} denote partial functions from M to the carrier of V, and z, z_{1}, z_{2} denote complex numbers.

Let M be a non empty set, let V be a complex normed space, and let f_{1}, f_{2} be partial functions from M to the carrier of V. The functor $f_{1}+f_{2}$ yields a partial function from M to the carrier of V and is defined by:
(Def. 1) $\quad \operatorname{dom}\left(f_{1}+f_{2}\right)=\operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ and for every element c of M such that $c \in \operatorname{dom}\left(f_{1}+f_{2}\right)$ holds $\left(f_{1}+f_{2}\right)_{c}=\left(f_{1}\right)_{c}+\left(f_{2}\right)_{c}$.
The functor $f_{1}-f_{2}$ yields a partial function from M to the carrier of V and is defined as follows:
(Def. 2) $\quad \operatorname{dom}\left(f_{1}-f_{2}\right)=\operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ and for every element c of M such that $c \in \operatorname{dom}\left(f_{1}-f_{2}\right)$ holds $\left(f_{1}-f_{2}\right)_{c}=\left(f_{1}\right)_{c}-\left(f_{2}\right)_{c}$.
Let M be a non empty set, let V be a complex normed space, let f_{1} be a partial function from M to \mathbb{C}, and let f_{2} be a partial function from M to the carrier of V. The functor $f_{1} f_{2}$ yielding a partial function from M to the carrier of V is defined by:
(Def. 3) $\operatorname{dom}\left(f_{1} f_{2}\right)=\operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ and for every element c of M such that $c \in \operatorname{dom}\left(f_{1} f_{2}\right)$ holds $\left(f_{1} f_{2}\right)_{c}=\left(f_{1}\right)_{c} \cdot\left(f_{2}\right)_{c}$.
Let X be a non empty set, let V be a complex normed space, let f be a partial function from X to the carrier of V, and let z be a complex number. The
functor $z f$ yields a partial function from X to the carrier of V and is defined as follows:
(Def. 4) $\operatorname{dom}(z f)=\operatorname{dom} f$ and for every element x of X such that $x \in \operatorname{dom}(z f)$ holds $(z f)_{x}=z \cdot f_{x}$.
Let X be a non empty set, let V be a complex normed space, and let f be a partial function from X to the carrier of V. The functor $\|f\|$ yielding a partial function from X to \mathbb{R} is defined as follows:
(Def. 5) $\quad \operatorname{dom}\|f\|=\operatorname{dom} f$ and for every element x of X such that $x \in \operatorname{dom}\|f\|$ holds $\|f\|(x)=\left\|f_{x}\right\|$.
The functor $-f$ yields a partial function from X to the carrier of V and is defined by:
(Def. 6) $\operatorname{dom}(-f)=\operatorname{dom} f$ and for every element x of X such that $x \in \operatorname{dom}(-f)$ holds $(-f)_{x}=-f_{x}$.
The following propositions are true:
(1) Let f_{1} be a partial function from M to \mathbb{C} and f_{2} be a partial function from M to the carrier of V. Then $\operatorname{dom}\left(f_{1} f_{2}\right) \backslash\left(f_{1} f_{2}\right)^{-1}\left(\left\{0_{V}\right\}\right)=\left(\operatorname{dom} f_{1} \backslash\right.$ $\left.f_{1}^{-1}(\{0\})\right) \cap\left(\operatorname{dom} f_{2} \backslash f_{2}^{-1}\left(\left\{0_{V}\right\}\right)\right)$.
(2) $\|f\|^{-1}(\{0\})=f^{-1}\left(\left\{0_{V}\right\}\right)$ and $(-f)^{-1}\left(\left\{0_{V}\right\}\right)=f^{-1}\left(\left\{0_{V}\right\}\right)$.
(3) If $z \neq 0_{\mathbb{C}}$, then $(z f)^{-1}\left(\left\{0_{V}\right\}\right)=f^{-1}\left(\left\{0_{V}\right\}\right)$.
(4) $f_{1}+f_{2}=f_{2}+f_{1}$.
(5) $\left(f_{1}+f_{2}\right)+f_{3}=f_{1}+\left(f_{2}+f_{3}\right)$.
(6) Let f_{1}, f_{2} be partial functions from M to \mathbb{C} and f_{3} be a partial function from M to the carrier of V. Then $\left(f_{1} f_{2}\right) f_{3}=f_{1}\left(f_{2} f_{3}\right)$.
(7) For all partial functions f_{1}, f_{2} from M to \mathbb{C} holds $\left(f_{1}+f_{2}\right) f_{3}=f_{1} f_{3}+$ $f_{2} f_{3}$.
(8) For every partial function f_{3} from M to \mathbb{C} holds $f_{3}\left(f_{1}+f_{2}\right)=f_{3} f_{1}+$ $f_{3} f_{2}$.
(9) For every partial function f_{1} from M to \mathbb{C} holds $z\left(f_{1} f_{2}\right)=\left(z f_{1}\right) f_{2}$.
(10) For every partial function f_{1} from M to \mathbb{C} holds $z\left(f_{1} f_{2}\right)=f_{1}\left(z f_{2}\right)$.
(11) For all partial functions f_{1}, f_{2} from M to \mathbb{C} holds $\left(f_{1}-f_{2}\right) f_{3}=f_{1} f_{3}$ $f_{2} f_{3}$.
(12) For every partial function f_{3} from M to \mathbb{C} holds $f_{3} f_{1}-f_{3} f_{2}=f_{3}\left(f_{1}-\right.$ f_{2}).
(13) $z\left(f_{1}+f_{2}\right)=z f_{1}+z f_{2}$.
(14) $\left(z_{1} \cdot z_{2}\right) f=z_{1}\left(z_{2} f\right)$.
(15) $z\left(f_{1}-f_{2}\right)=z f_{1}-z f_{2}$.
(16) $\quad f_{1}-f_{2}=\left(-1_{\mathbb{C}}\right)\left(f_{2}-f_{1}\right)$.
(17) $f_{1}-\left(f_{2}+f_{3}\right)=f_{1}-f_{2}-f_{3}$.
(18) $1_{\mathbb{C}} f=f$.
(19) $f_{1}-\left(f_{2}-f_{3}\right)=\left(f_{1}-f_{2}\right)+f_{3}$.
(20) $f_{1}+\left(f_{2}-f_{3}\right)=\left(f_{1}+f_{2}\right)-f_{3}$.
(21) For every partial function f_{1} from M to \mathbb{C} holds $\left\|f_{1} f_{2}\right\|=\left|f_{1}\right|\left\|f_{2}\right\|$.
(22) $\|z f\|=|z|\|f\|$.
(23) $\quad-f=\left(-1_{\mathbb{C}}\right) f$.
(24) $--f=f$.
(25) $f_{1}-f_{2}=f_{1}+-f_{2}$.
(26) $f_{1}--f_{2}=f_{1}+f_{2}$.

In the sequel X, Y denote sets.
We now state a number of propositions:
(27) $\left(f_{1}+f_{2}\right) \upharpoonright X=f_{1} \upharpoonright X+f_{2} \upharpoonright X$ and $\left(f_{1}+f_{2}\right) \upharpoonright X=f_{1} \upharpoonright X+f_{2}$ and $\left(f_{1}+f_{2}\right) \upharpoonright X=$ $f_{1}+f_{2} \mid X$.
(28) For every partial function f_{1} from M to \mathbb{C} holds $\left(f_{1} f_{2}\right) \mid X=$ $\left(f_{1} \mid X\right)\left(f_{2} \mid X\right)$ and $\left(f_{1} f_{2}\right) \upharpoonright X=\left(f_{1} \mid X\right) f_{2}$ and $\left(f_{1} f_{2}\right) \upharpoonright X=f_{1}\left(f_{2} \mid X\right)$.
(29) $\quad(-f) \upharpoonright X=-f \mid X$ and $\|f\| \upharpoonright X=\|f \upharpoonright X\|$.
(30) $\left(f_{1}-f_{2}\right) \upharpoonright X=f_{1} \upharpoonright X-f_{2} \upharpoonright X$ and $\left(f_{1}-f_{2}\right) \upharpoonright X=f_{1} \upharpoonright X-f_{2}$ and $\left(f_{1}-f_{2}\right) \upharpoonright X=$ $f_{1}-f_{2} \mid X$.
(31) $\quad(z f) \mid X=z(f \upharpoonright X)$.
(32) f_{1} is total and f_{2} is total iff $f_{1}+f_{2}$ is total and f_{1} is total and f_{2} is total iff $f_{1}-f_{2}$ is total.
(33) For every partial function f_{1} from M to \mathbb{C} holds f_{1} is total and f_{2} is total iff $f_{1} f_{2}$ is total.
(34) f is total iff $z f$ is total.
(35) f is total iff $-f$ is total.
(36) f is total iff $\|f\|$ is total.
(37) For every element x of M such that f_{1} is total and f_{2} is total holds $\left(f_{1}+f_{2}\right)_{x}=\left(f_{1}\right)_{x}+\left(f_{2}\right)_{x}$ and $\left(f_{1}-f_{2}\right)_{x}=\left(f_{1}\right)_{x}-\left(f_{2}\right)_{x}$.
(38) Let f_{1} be a partial function from M to \mathbb{C} and x be an element of M. If f_{1} is total and f_{2} is total, then $\left(f_{1} f_{2}\right)_{x}=\left(f_{1}\right)_{x} \cdot\left(f_{2}\right)_{x}$.
(39) For every element x of M such that f is total holds $(z f)_{x}=z \cdot f_{x}$.
(40) For every element x of M such that f is total holds $(-f)_{x}=-f_{x}$ and $\|f\|(x)=\left\|f_{x}\right\|$.
Let us consider M, let us consider V, and let us consider f, Y. We say that f is bounded on Y if and only if:
(Def. 7) There exists a real number r such that for every element x of M such that $x \in Y \cap \operatorname{dom} f$ holds $\left\|f_{x}\right\| \leqslant r$.
One can prove the following propositions:
(41) If $Y \subseteq X$ and f is bounded on X, then f is bounded on Y.
(42) If X misses $\operatorname{dom} f$, then f is bounded on X.
(43) $0_{\mathbb{C}} f$ is bounded on Y.
(44) If f is bounded on Y, then $z f$ is bounded on Y.
(45) If f is bounded on Y, then $\|f\|$ is bounded on Y and $-f$ is bounded on Y.
(46) If f_{1} is bounded on X and f_{2} is bounded on Y, then $f_{1}+f_{2}$ is bounded on $X \cap Y$.
(47) For every partial function f_{1} from M to \mathbb{C} such that f_{1} is bounded on X and f_{2} is bounded on Y holds $f_{1} f_{2}$ is bounded on $X \cap Y$.
(48) If f_{1} is bounded on X and f_{2} is bounded on Y, then $f_{1}-f_{2}$ is bounded on $X \cap Y$.
(49) If f is bounded on X and bounded on Y, then f is bounded on $X \cup Y$.
(50) If f_{1} is a constant on X and f_{2} is a constant on Y, then $f_{1}+f_{2}$ is a constant on $X \cap Y$ and $f_{1}-f_{2}$ is a constant on $X \cap Y$.
(51) Let f_{1} be a partial function from M to \mathbb{C}. Suppose f_{1} is a constant on X and f_{2} is a constant on Y. Then $f_{1} f_{2}$ is a constant on $X \cap Y$.
(52) If f is a constant on Y, then $z f$ is a constant on Y.
(53) If f is a constant on Y, then $\|f\|$ is a constant on Y and $-f$ is a constant on Y.
(54) If f is a constant on Y, then f is bounded on Y.
(55) If f is a constant on Y, then for every z holds $z f$ is bounded on Y and - f is bounded on Y and $\|f\|$ is bounded on Y.
(56) If f_{1} is bounded on X and f_{2} is a constant on Y, then $f_{1}+f_{2}$ is bounded on $X \cap Y$.
(57) If f_{1} is bounded on X and f_{2} is a constant on Y, then $f_{1}-f_{2}$ is bounded on $X \cap Y$ and $f_{2}-f_{1}$ is bounded on $X \cap Y$.

References

[1] Agnieszka Banachowicz and Anna Winnicka. Complex sequences. Formalized Mathematics, 4(1):121-124, 1993.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[6] Noboru Endou. Complex linear space and complex normed space. Formalized Mathematics, 12(2):93-102, 2004.
[7] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[8] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[9] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[10] Takashi Mitsuishi, Katsumi Wasaki, and Yasunari Shidama. Property of complex functions. Formalized Mathematics, 9(1):179-184, 2001.
[11] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[13] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[14] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[17] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992.

Received August 20, 2004

