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The terminology and notation used in this paper are introduced in the following

papers: [17], [19], [1], [4], [16], [8], [14], [2], [3], [5], [18], [13], [7], [9], [6], [15],

[11], [12], and [10].

1. Preliminaries

For simplicity, we follow the rules: n denotes a natural number, a, b, r denote

real numbers, x, y, z denote points of En

T
, and e denotes a point of En.

The following propositions are true:

(1) x− y − z = x− z − y.

(2) If x + y = x + z, then y = z.

(3) If n is non empty, then x 6= x + 1.REALn.

(4) For every set x such that x = (1− r) · y + r · z holds x = y iff r = 0 or

y = z and x = z iff r = 1 or y = z.

(5) For every finite sequence f of elements of R holds |f |2 =
∑

2f.

(6) For every non empty metric space M and for all points z1, z2, z3 of M

such that z1 6= z2 and z1 ∈ Ball(z3, r) and z2 ∈ Ball(z3, r) holds r > 0.

1The paper was written during author’s post-doctoral fellowship granted by Shinshu Uni-

versity, Japan. This work has been partially supported by KBN grant 4 T11C 039 24.

301
c© 2004 University of Białystok

ISSN 1426–2630



302 artur korniłowicz and yasunari shidama

2. Subsets of En

T

Let n be a natural number, let x be a point of En

T
, and let r be a real number.

The functor Ball(x, r) yields a subset of En

T
and is defined by:

(Def. 1) Ball(x, r) = {p; p ranges over points of En

T
: |p− x| < r}.

The functor Ball(x, r) yielding a subset of En

T
is defined by:

(Def. 2) Ball(x, r) = {p; p ranges over points of En

T
: |p− x| ¬ r}.

The functor Sphere(x, r) yielding a subset of En

T
is defined as follows:

(Def. 3) Sphere(x, r) = {p; p ranges over points of En

T
: |p− x| = r}.

We now state a number of propositions:

(7) y ∈ Ball(x, r) iff |y − x| < r.

(8) y ∈ Ball(x, r) iff |y − x| ¬ r.

(9) y ∈ Sphere(x, r) iff |y − x| = r.

(10) If y ∈ Ball(0En

T
, r), then |y| < r.

(11) If y ∈ Ball(0En

T
, r), then |y| ¬ r.

(12) If y ∈ Sphere((0En

T
), r), then |y| = r.

(13) If x = e, then Ball(e, r) = Ball(x, r).

(14) If x = e, then Ball(e, r) = Ball(x, r).

(15) If x = e, then Sphere(e, r) = Sphere(x, r).

(16) Ball(x, r) ⊆ Ball(x, r).

(17) Sphere(x, r) ⊆ Ball(x, r).

(18) Ball(x, r) ∪ Sphere(x, r) = Ball(x, r).

(19) Ball(x, r) misses Sphere(x, r).

Let us consider n, x and let r be a non positive real number. One can check

that Ball(x, r) is empty.

Let us consider n, x and let r be a positive real number. Note that Ball(x, r)

is non empty.

One can prove the following propositions:

(20) If Ball(x, r) is non empty, then r > 0.

(21) If Ball(x, r) is empty, then r ¬ 0.

Let us consider n, x and let r be a negative real number. Observe that

Ball(x, r) is empty.

Let us consider n, x and let r be a non negative real number. Observe that

Ball(x, r) is non empty.

The following three propositions are true:

(22) If Ball(x, r) is non empty, then r  0.

(23) If Ball(x, r) is empty, then r < 0.
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(24) If a + b = 1 and |a| + |b| = 1 and b 6= 0 and x ∈ Ball(z, r) and y ∈

Ball(z, r), then a · x + b · y ∈ Ball(z, r).

Let us consider n, x, r. One can check the following observations:

∗ Ball(x, r) is open and Bounded,

∗ Ball(x, r) is closed and Bounded, and

∗ Sphere(x, r) is closed and Bounded.

Let us consider n, x, r. Observe that Ball(x, r) is convex and Ball(x, r) is

convex.

Let n be a natural number and let f be a map from En

T
into En

T
. We say that

f is homogeneous if and only if:

(Def. 4) For every real number r and for every point x of En

T
holds f(r·x) = r·f(x).

We say that f is additive if and only if:

(Def. 5) For all points x, y of En

T
holds f(x + y) = f(x) + f(y).

Let us consider n. One can verify that (En

T
) 7−→ 0En

T
is homogeneous and

additive.

Let us consider n. Observe that there exists a map from En

T
into En

T
which

is homogeneous, additive, and continuous.

Let a, c be real numbers. One can check that AffineMap(a, 0, c, 0) is homo-

geneous and additive.

One can prove the following proposition

(25) For every homogeneous additive map f from En

T
into En

T
and for every

convex subset X of En

T
holds f◦X is convex.

In the sequel p, q are points of En

T
.

Let n be a natural number and let p, q be points of En

T
. The functor HL(p, q)

yields a subset of En

T
and is defined by:

(Def. 6) HL(p, q) = {(1− l) · p + l · q; l ranges over real numbers: 0 ¬ l}.

One can prove the following proposition

(26) For every set x holds x ∈ HL(p, q) iff there exists a real number l such

that x = (1− l) · p + l · q and 0 ¬ l.

Let us consider n, p, q. One can verify that HL(p, q) is non empty.

The following propositions are true:

(27) p ∈ HL(p, q).

(28) q ∈ HL(p, q).

(29) HL(p, p) = {p}.

(30) If x ∈ HL(p, q), then HL(p, x) ⊆ HL(p, q).

(31) If x ∈ HL(p, q) and x 6= p, then HL(p, q) = HL(p, x).

(32) L(p, q) ⊆ HL(p, q).

Let us consider n, p, q. Note that HL(p, q) is convex.

One can prove the following propositions:
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(33) If y ∈ Sphere(x, r) and z ∈ Ball(x, r), then L(y, z) ∩ Sphere(x, r) = {y}.

(34) If y ∈ Sphere(x, r) and z ∈ Sphere(x, r), then L(y, z)\{y, z} ⊆ Ball(x, r).

(35) If y ∈ Sphere(x, r) and z ∈ Sphere(x, r), then L(y, z) ∩ Sphere(x, r) =

{y, z}.

(36) If y ∈ Sphere(x, r) and z ∈ Sphere(x, r), then HL(y, z) ∩ Sphere(x, r) =

{y, z}.

(37) If y 6= z and y ∈ Ball(x, r), then there exists a point e of En

T
such that

{e} = HL(y, z) ∩ Sphere(x, r).

(38) If y 6= z and y ∈ Sphere(x, r) and z ∈ Ball(x, r), then there exists a

point e of En

T
such that e 6= y and {y, e} = HL(y, z) ∩ Sphere(x, r).

Let us consider n, x and let r be a negative real number. Observe that

Sphere(x, r) is empty.

Let n be a non empty natural number, let x be a point of En

T
, and let r be

a non negative real number. Observe that Sphere(x, r) is non empty.

Next we state two propositions:

(39) If Sphere(x, r) is non empty, then r  0.

(40) If n is non empty and Sphere(x, r) is empty, then r < 0.

3. Subsets of E2

T

In the sequel s, t are points of E2

T
.

The following propositions are true:

(41) (a · s + b · t)1 = a · s1 + b · t1.

(42) (a · s + b · t)2 = a · s2 + b · t2.

(43) t ∈ Circle(a, b, r) iff |t− [a, b]| = r.

(44) t ∈ ClosedInsideOfCircle(a, b, r) iff |t− [a, b]| ¬ r.

(45) t ∈ InsideOfCircle(a, b, r) iff |t− [a, b]| < r.

Let a, b be real numbers and let r be a positive real number. Observe that

InsideOfCircle(a, b, r) is non empty.

Let a, b be real numbers and let r be a non negative real number. Observe

that ClosedInsideOfCircle(a, b, r) is non empty.

We now state a number of propositions:

(46) Circle(a, b, r) ⊆ ClosedInsideOfCircle(a, b, r).

(47) For every point x of E2 such that x = [a, b] holds Ball(x, r) =

ClosedInsideOfCircle(a, b, r).

(48) For every point x of E2 such that x = [a, b] holds Ball(x, r) =

InsideOfCircle(a, b, r).

(49) For every point x of E2 such that x = [a, b] holds Sphere(x, r) =

Circle(a, b, r).
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(50) Ball([a, b], r) = InsideOfCircle(a, b, r).

(51) Ball([a, b], r) = ClosedInsideOfCircle(a, b, r).

(52) Sphere([a, b], r) = Circle(a, b, r).

(53) InsideOfCircle(a, b, r) ⊆ ClosedInsideOfCircle(a, b, r).

(54) InsideOfCircle(a, b, r) misses Circle(a, b, r).

(55) InsideOfCircle(a, b, r) ∪ Circle(a, b, r) = ClosedInsideOfCircle(a, b, r).

(56) If s ∈ Sphere((0E2
T

), r), then (s1)
2 + (s2)

2 = r2.

(57) If s 6= t and s ∈ ClosedInsideOfCircle(a, b, r) and t ∈

ClosedInsideOfCircle(a, b, r), then r > 0.

(58) If s 6= t and s ∈ InsideOfCircle(a, b, r), then there exists a point e of E2

T

such that {e} = HL(s, t) ∩ Circle(a, b, r).

(59) If s ∈ Circle(a, b, r) and t ∈ InsideOfCircle(a, b, r), then L(s, t) ∩

Circle(a, b, r) = {s}.

(60) If s ∈ Circle(a, b, r) and t ∈ Circle(a, b, r), then L(s, t) \ {s, t} ⊆

InsideOfCircle(a, b, r).

(61) If s ∈ Circle(a, b, r) and t ∈ Circle(a, b, r), then L(s, t) ∩Circle(a, b, r) =

{s, t}.

(62) If s ∈ Circle(a, b, r) and t ∈ Circle(a, b, r), then HL(s, t)∩Circle(a, b, r) =

{s, t}.

(63) If s 6= t and s ∈ Circle(a, b, r) and t ∈ ClosedInsideOfCircle(a, b, r),

then there exists a point e of E2

T
such that e 6= s and {s, e} = HL(s, t) ∩

Circle(a, b, r).

Let a, b, r be real numbers. Observe that InsideOfCircle(a, b, r) is convex

and ClosedInsideOfCircle(a, b, r) is convex.
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