Intersections of Intervals and Balls in $\mathcal{E}_{\mathrm{T}}^{n}$

Artur Korniłowicz ${ }^{1}$
University of Białystok

Yasunari Shidama
Shinshu University
Nagano

MML Identifier: TOPREAL9.

The terminology and notation used in this paper are introduced in the following papers: [17], [19], [1], [4], [16], [8], [14], [2], [3], [5], [18], [13], [7], [9], [6], [15], [11], [12], and [10].

1. Preliminaries

For simplicity, we follow the rules: n denotes a natural number, a, b, r denote real numbers, x, y, z denote points of $\mathcal{E}_{\mathrm{T}}^{n}$, and e denotes a point of \mathcal{E}^{n}.

The following propositions are true:
(1) $x-y-z=x-z-y$.
(2) If $x+y=x+z$, then $y=z$.
(3) If n is non empty, then $x \neq x+1$.REAL n.
(4) For every set x such that $x=(1-r) \cdot y+r \cdot z$ holds $x=y$ iff $r=0$ or $y=z$ and $x=z$ iff $r=1$ or $y=z$.
(5) For every finite sequence f of elements of \mathbb{R} holds $|f|^{2}=\sum^{2} f$.
(6) For every non empty metric space M and for all points z_{1}, z_{2}, z_{3} of M such that $z_{1} \neq z_{2}$ and $z_{1} \in \overline{\operatorname{Ball}}\left(z_{3}, r\right)$ and $z_{2} \in \overline{\operatorname{Ball}}\left(z_{3}, r\right)$ holds $r>0$.

[^0]
2. SUBSETS of $\mathcal{E}_{\mathrm{T}}^{n}$

Let n be a natural number, let x be a point of $\mathcal{E}_{\mathrm{T}}^{n}$, and let r be a real number. The functor $\operatorname{Ball}(x, r)$ yields a subset of $\mathcal{E}_{\mathrm{T}}^{n}$ and is defined by:
(Def. 1) $\operatorname{Ball}(x, r)=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{n}:|p-x|<r\right\}$.
The functor $\overline{\operatorname{Ball}}(x, r)$ yielding a subset of $\mathcal{E}_{\mathrm{T}}^{n}$ is defined by:
(Def. 2) $\overline{\operatorname{Ball}}(x, r)=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{n}:|p-x| \leqslant r\right\}$.
The functor Sphere (x, r) yielding a subset of $\mathcal{E}_{\mathrm{T}}^{n}$ is defined as follows:
(Def. 3) $\operatorname{Sphere}(x, r)=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{n}:|p-x|=r\right\}$.
We now state a number of propositions:
(7) $y \in \operatorname{Ball}(x, r)$ iff $|y-x|<r$.
(8) $y \in \overline{\operatorname{Ball}}(x, r)$ iff $|y-x| \leqslant r$.
(9) $y \in \operatorname{Sphere}(x, r)$ iff $|y-x|=r$.
(10) If $y \in \operatorname{Ball}\left(0_{\mathcal{E}_{\mathrm{T}}^{n}}, r\right)$, then $|y|<r$.
(11) If $y \in \overline{\operatorname{Ball}}\left(0_{\mathcal{E}_{\mathrm{T}}}, r\right)$, then $|y| \leqslant r$.
(12) If $y \in \operatorname{Sphere}\left(\left(0_{\mathcal{E}_{\mathrm{T}}^{n}}^{n}\right), r\right)$, then $|y|=r$.
(13) If $x=e$, then $\operatorname{Ball}(e, r)=\operatorname{Ball}(x, r)$.
(14) If $x=e$, then $\overline{\operatorname{Ball}}(e, r)=\overline{\operatorname{Ball}}(x, r)$.
(15) If $x=e$, then $\operatorname{Sphere}(e, r)=\operatorname{Sphere}(x, r)$.
(16) $\operatorname{Ball}(x, r) \subseteq \overline{\operatorname{Ball}}(x, r)$.
(17) $\operatorname{Sphere}(x, r) \subseteq \overline{\operatorname{Ball}}(x, r)$.
(18) $\operatorname{Ball}(x, r) \cup \operatorname{Sphere}(x, r)=\overline{\operatorname{Ball}}(x, r)$.
(19) $\operatorname{Ball}(x, r)$ misses $\operatorname{Sphere}(x, r)$.

Let us consider n, x and let r be a non positive real number. One can check that $\operatorname{Ball}(x, r)$ is empty.

Let us consider n, x and let r be a positive real number. Note that $\operatorname{Ball}(x, r)$ is non empty.

One can prove the following propositions:
(20) If $\operatorname{Ball}(x, r)$ is non empty, then $r>0$.
(21) If $\operatorname{Ball}(x, r)$ is empty, then $r \leqslant 0$.

Let us consider n, x and let r be a negative real number. Observe that $\overline{\operatorname{Ball}}(x, r)$ is empty.

Let us consider n, x and let r be a non negative real number. Observe that $\overline{\operatorname{Ball}}(x, r)$ is non empty.

The following three propositions are true:
(22) If $\overline{\operatorname{Ball}}(x, r)$ is non empty, then $r \geqslant 0$.
(23) If $\overline{\operatorname{Ball}}(x, r)$ is empty, then $r<0$.
(24) If $a+b=1$ and $|a|+|b|=1$ and $b \neq 0$ and $x \in \overline{\operatorname{Ball}}(z, r)$ and $y \in$ $\operatorname{Ball}(z, r)$, then $a \cdot x+b \cdot y \in \operatorname{Ball}(z, r)$.
Let us consider n, x, r. One can check the following observations:

* $\operatorname{Ball}(x, r)$ is open and Bounded,
* $\overline{\operatorname{Ball}}(x, r)$ is closed and Bounded, and
* Sphere (x, r) is closed and Bounded.

Let us consider n, x, r. Observe that $\operatorname{Ball}(x, r)$ is convex and $\overline{\operatorname{Ball}}(x, r)$ is convex.

Let n be a natural number and let f be a map from $\mathcal{E}_{\mathrm{T}}^{n}$ into $\mathcal{E}_{\mathrm{T}}^{n}$. We say that f is homogeneous if and only if:
(Def. 4) For every real number r and for every point x of $\mathcal{E}_{\mathrm{T}}^{n}$ holds $f(r \cdot x)=r \cdot f(x)$.
We say that f is additive if and only if:
(Def. 5) For all points x, y of $\mathcal{E}_{\mathrm{T}}^{n}$ holds $f(x+y)=f(x)+f(y)$.
Let us consider n. One can verify that $\left(\mathcal{E}_{\mathrm{T}}^{n}\right) \longmapsto 0_{\mathcal{E}_{\mathrm{T}}^{n}}$ is homogeneous and additive.

Let us consider n. Observe that there exists a map from $\mathcal{E}_{\mathrm{T}}^{n}$ into $\mathcal{E}_{\mathrm{T}}^{n}$ which is homogeneous, additive, and continuous.

Let a, c be real numbers. One can check that $\operatorname{AffineMap}(a, 0, c, 0)$ is homogeneous and additive.

One can prove the following proposition
(25) For every homogeneous additive map f from $\mathcal{E}_{\mathrm{T}}^{n}$ into $\mathcal{E}_{\mathrm{T}}^{n}$ and for every convex subset X of $\mathcal{E}_{\mathrm{T}}^{n}$ holds $f^{\circ} X$ is convex.
In the sequel p, q are points of $\mathcal{E}_{\mathrm{T}}^{n}$.
Let n be a natural number and let p, q be points of $\mathcal{E}_{\mathrm{T}}^{n}$. The functor $\operatorname{HL}(p, q)$ yields a subset of $\mathcal{E}_{\mathrm{T}}^{n}$ and is defined by:
(Def. 6) $\mathrm{HL}(p, q)=\{(1-l) \cdot p+l \cdot q ; l$ ranges over real numbers: $0 \leqslant l\}$.
One can prove the following proposition
(26) For every set x holds $x \in \operatorname{HL}(p, q)$ iff there exists a real number l such that $x=(1-l) \cdot p+l \cdot q$ and $0 \leqslant l$.
Let us consider n, p, q. One can verify that $\operatorname{HL}(p, q)$ is non empty.
The following propositions are true:
(27) $p \in \operatorname{HL}(p, q)$.
(28) $q \in \operatorname{HL}(p, q)$.
(29) $\mathrm{HL}(p, p)=\{p\}$.
(30) If $x \in \mathrm{HL}(p, q)$, then $\mathrm{HL}(p, x) \subseteq \operatorname{HL}(p, q)$.
(31) If $x \in \operatorname{HL}(p, q)$ and $x \neq p$, then $\operatorname{HL}(p, q)=\mathrm{HL}(p, x)$.
(32) $\mathcal{L}(p, q) \subseteq \operatorname{HL}(p, q)$.

Let us consider n, p, q. Note that $\mathrm{HL}(p, q)$ is convex.
One can prove the following propositions:
(33) If $y \in \operatorname{Sphere}(x, r)$ and $z \in \operatorname{Ball}(x, r)$, then $\mathcal{L}(y, z) \cap \operatorname{Sphere}(x, r)=\{y\}$.
(34) If $y \in \operatorname{Sphere}(x, r)$ and $z \in \operatorname{Sphere}(x, r)$, then $\mathcal{L}(y, z) \backslash\{y, z\} \subseteq \operatorname{Ball}(x, r)$.
(35) If $y \in \operatorname{Sphere}(x, r)$ and $z \in \operatorname{Sphere}(x, r)$, then $\mathcal{L}(y, z) \cap \operatorname{Sphere}(x, r)=$ $\{y, z\}$.
(36) If $y \in \operatorname{Sphere}(x, r)$ and $z \in \operatorname{Sphere}(x, r)$, then $\operatorname{HL}(y, z) \cap \operatorname{Sphere}(x, r)=$ $\{y, z\}$.
(37) If $y \neq z$ and $y \in \operatorname{Ball}(x, r)$, then there exists a point e of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $\{e\}=\operatorname{HL}(y, z) \cap \operatorname{Sphere}(x, r)$.
(38) If $y \neq z$ and $y \in \operatorname{Sphere}(x, r)$ and $z \in \overline{\operatorname{Ball}}(x, r)$, then there exists a point e of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $e \neq y$ and $\{y, e\}=\mathrm{HL}(y, z) \cap$ Sphere (x, r).
Let us consider n, x and let r be a negative real number. Observe that $\operatorname{Sphere}(x, r)$ is empty.

Let n be a non empty natural number, let x be a point of $\mathcal{E}_{\mathrm{T}}^{n}$, and let r be a non negative real number. Observe that $\operatorname{Sphere}(x, r)$ is non empty.

Next we state two propositions:
(39) If $\operatorname{Sphere}(x, r)$ is non empty, then $r \geqslant 0$.
(40) If n is non empty and $\operatorname{Sphere}(x, r)$ is empty, then $r<0$.

3. Subsets of $\mathcal{E}_{\text {T }}^{2}$

In the sequel s, t are points of $\mathcal{E}_{\mathrm{T}}^{2}$.
The following propositions are true:
(41) $(a \cdot s+b \cdot t)_{\mathbf{1}}=a \cdot s_{\mathbf{1}}+b \cdot t_{\mathbf{1}}$.
(42) $(a \cdot s+b \cdot t)_{\mathbf{2}}=a \cdot s_{\mathbf{2}}+b \cdot t_{\mathbf{2}}$.
(43) $t \in \operatorname{Circle}(a, b, r)$ iff $|t-[a, b]|=r$.
(44) $t \in$ ClosedInsideOfCircle (a, b, r) iff $|t-[a, b]| \leqslant r$.
(45) $t \in \operatorname{InsideOfCircle}(a, b, r)$ iff $|t-[a, b]|<r$.

Let a, b be real numbers and let r be a positive real number. Observe that InsideOfCircle (a, b, r) is non empty.

Let a, b be real numbers and let r be a non negative real number. Observe that ClosedInsideOfCircle (a, b, r) is non empty.

We now state a number of propositions:
(46) $\operatorname{Circle}(a, b, r) \subseteq$ ClosedInsideOfCircle (a, b, r).
(47) For every point x of \mathcal{E}^{2} such that $x=[a, b]$ holds $\overline{\operatorname{Ball}}(x, r)=$ ClosedInsideOfCircle (a, b, r).
(48) For every point x of \mathcal{E}^{2} such that $x=[a, b]$ holds $\operatorname{Ball}(x, r)=$ InsideOfCircle (a, b, r).
(49) For every point x of \mathcal{E}^{2} such that $x=[a, b]$ holds $\operatorname{Sphere}(x, r)=$ Circle (a, b, r).
(50)
$\operatorname{Ball}([a, b], r)=\operatorname{InsideOfCircle}(a, b, r)$.
$\overline{\operatorname{Ball}}([a, b], r)=$ ClosedInsideOfCircle (a, b, r).
$\operatorname{Sphere}([a, b], r)=\operatorname{Circle}(a, b, r)$.
InsideOfCircle $(a, b, r) \subseteq$ ClosedInsideOfCircle (a, b, r).
InsideOfCircle (a, b, r) misses Circle (a, b, r).
InsideOfCircle $(a, b, r) \cup \operatorname{Circle}(a, b, r)=\operatorname{ClosedInsideOfCircle}(a, b, r)$.
If $s \in \operatorname{Sphere}\left(\left(0_{\mathcal{E}_{\mathrm{T}}^{2}}\right), r\right)$, then $\left(s_{\mathbf{1}}\right)^{\mathbf{2}}+\left(s_{\mathbf{2}}\right)^{\mathbf{2}}=r^{\mathbf{2}}$.
(57) If $s \neq t$ and $s \in \operatorname{ClosedInsideOfCircle}(a, b, r)$ and $t \in$ ClosedInsideOfCircle (a, b, r), then $r>0$.
(58) If $s \neq t$ and $s \in \operatorname{InsideOfCircle}(a, b, r)$, then there exists a point e of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $\{e\}=\operatorname{HL}(s, t) \cap \operatorname{Circle}(a, b, r)$.
(59) If $s \in \operatorname{Circle}(a, b, r)$ and $t \in \operatorname{InsideOfCircle}(a, b, r)$, then $\mathcal{L}(s, t) \cap$ Circle $(a, b, r)=\{s\}$.
(60) If $s \in \operatorname{Circle}(a, b, r)$ and $t \in \operatorname{Circle}(a, b, r)$, then $\mathcal{L}(s, t) \backslash\{s, t\} \subseteq$ InsideOfCircle (a, b, r).
(61) If $s \in \operatorname{Circle}(a, b, r)$ and $t \in \operatorname{Circle}(a, b, r)$, then $\mathcal{L}(s, t) \cap \operatorname{Circle}(a, b, r)=$ $\{s, t\}$.
(62) If $s \in \operatorname{Circle}(a, b, r)$ and $t \in \operatorname{Circle}(a, b, r)$, then $\operatorname{HL}(s, t) \cap \operatorname{Circle}(a, b, r)=$ $\{s, t\}$.
(63) If $s \neq t$ and $s \in \operatorname{Circle}(a, b, r)$ and $t \in \operatorname{ClosedInsideOfCircle}(a, b, r)$, then there exists a point e of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $e \neq s$ and $\{s, e\}=\operatorname{HL}(s, t) \cap$ Circle (a, b, r).
Let a, b, r be real numbers. Observe that InsideOfCircle (a, b, r) is convex and ClosedInsideOfCircle (a, b, r) is convex.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[6] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[7] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[9] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[10] Yatsuka Nakamura. General Fashoda meet theorem for unit circle and square. Formalized Mathematics, 11(3):213-224, 2003.
[11] Yatsuka Nakamura and Jarosław Kotowicz. The Jordan's property for certain subsets of the plane. Formalized Mathematics, 3(2):137-142, 1992.
[12] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. Formalized Mathematics, 8(1):1-13, 1999.
[13] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[14] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[15] Agnieszka Sakowicz, Jarosław Gryko, and Adam Grabowski. Sequences in $\mathcal{E}_{\mathrm{T}}^{N}$. Formalized Mathematics, 5(1):93-96, 1996.
[16] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[18] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Received May 10, 2004

[^0]: ${ }^{1}$ The paper was written during author's post-doctoral fellowship granted by Shinshu University, Japan. This work has been partially supported by KBN grant 4 T11C 03924.

