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The notation and terminology used in this paper are introduced in the following

articles: [15], [18], [19], [1], [20], [3], [2], [7], [14], [16], [9], [13], [4], [17], [6], [5],

[11], [21], [10], [12], and [8].

1. The Uniform Continuity of Functions on Normed Linear Spaces

For simplicity, we follow the rules: X, X1 are sets, s, r, p are real numbers,

S, T are real normed spaces, f , f1, f2 are partial functions from S to T , x1, x2

are points of S, and Y is a subset of S.

Let us consider X, S, T and let us consider f . We say that f is uniformly

continuous on X if and only if the conditions (Def. 1) are satisfied.

(Def. 1)(i) X ⊆ dom f, and

(ii) for every r such that 0 < r there exists s such that 0 < s and for all x1,

x2 such that x1 ∈ X and x2 ∈ X and ‖x1−x2‖ < s holds ‖fx1
− fx2

‖ < r.

Let us consider X, S and let f be a partial function from the carrier of S

to R. We say that f is uniformly continuous on X if and only if the conditions

(Def. 2) are satisfied.

1The paper was written during author’s post-doctoral fellowship granted by Shinshu Uni-
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(Def. 2)(i) X ⊆ dom f, and

(ii) for every r such that 0 < r there exists s such that 0 < s and for all x1,

x2 such that x1 ∈ X and x2 ∈ X and ‖x1 − x2‖ < s holds |fx1
− fx2

| < r.

The following propositions are true:

(1) If f is uniformly continuous on X and X1 ⊆ X, then f is uniformly

continuous on X1.

(2) If f1 is uniformly continuous on X and f2 is uniformly continuous on

X1, then f1 + f2 is uniformly continuous on X ∩X1.

(3) If f1 is uniformly continuous on X and f2 is uniformly continuous on

X1, then f1 − f2 is uniformly continuous on X ∩X1.

(4) If f is uniformly continuous on X, then p f is uniformly continuous on

X.

(5) If f is uniformly continuous on X, then −f is uniformly continuous on

X.

(6) If f is uniformly continuous on X, then ‖f‖ is uniformly continuous on

X.

(7) If f is uniformly continuous on X, then f is continuous on X.

(8) Let f be a partial function from the carrier of S to R. If f is uniformly

continuous on X, then f is continuous on X.

(9) If f is Lipschitzian on X, then f is uniformly continuous on X.

(10) For all f , Y such that Y is compact and f is continuous on Y holds f is

uniformly continuous on Y .

(11) If Y ⊆ dom f and Y is compact and f is uniformly continuous on Y ,

then f◦Y is compact.

(12) Let f be a partial function from the carrier of S to R and given Y .

Suppose Y 6= ∅ and Y ⊆ dom f and Y is compact and f is uniformly

continuous on Y . Then there exist x1, x2 such that x1 ∈ Y and x2 ∈ Y

and fx1
= sup(f◦Y ) and fx2

= inf(f◦Y ).

(13) If X ⊆ dom f and f is a constant on X, then f is uniformly continuous

on X.

2. The Contraction Mapping Principle on Normed Linear Spaces

Let M be a real Banach space. A function from the carrier of M into the

carrier of M is said to be a contraction of M if:

(Def. 3) There exists a real number L such that 0 < L and L < 1 and for all

points x, y of M holds ‖it(x)− it(y)‖ ¬ L · ‖x− y‖.

The following two propositions are true:



the uniform continuity of functions on . . . 279

(14) Let X be a real Banach space and f be a function from X into X.

Suppose f is a contraction of X. Then there exists a point x3 of X such

that f(x3) = x3 and for every point x of X such that f(x) = x holds

x3 = x.

(15) Let X be a real Banach space and f be a function from X into X. Given

a natural number n0 such that f
n0 is a contraction of X. Then there exists

a point x3 of X such that f(x3) = x3 and for every point x of X such that

f(x) = x holds x3 = x.
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