The Continuous Functions on Normed Linear Spaces

Takaya Nishiyama
Shinshu University
Nagano

Keiji Ohkubo Yasunari Shidama
Shinshu University
Nagano
Shinshu University
Nagano

Abstract

Summary. In this article, the basic properties of the continuous function on normed linear spaces are described.

MML Identifier: NFCONT_1.

The articles [16], [19], [20], [2], [21], [4], [9], [3], [1], [11], [15], [5], [17], [18], [10], [7], [8], [6], [13], [22], [12], and [14] provide the notation and terminology for this paper.

We use the following convention: n is a natural number, x, X, X_{1} are sets, and s, r, p are real numbers.

Let S, T be 1-sorted structures. A partial function from S to T is a partial function from the carrier of S to the carrier of T.

For simplicity, we adopt the following rules: S, T denote real normed spaces, f, f_{1}, f_{2} denote partial functions from S to T, s_{1} denotes a sequence of S, x_{0}, x_{1}, x_{2} denote points of S, and Y denotes a subset of S.

Let R_{1} be a real linear space and let S_{1} be a sequence of R_{1}. The functor $-S_{1}$ yields a sequence of R_{1} and is defined as follows:
(Def. 1) For every n holds $\left(-S_{1}\right)(n)=-S_{1}(n)$.
Next we state two propositions:
(1) For all sequences s_{2}, s_{3} of S holds $s_{2}-s_{3}=s_{2}+-s_{3}$.
(2) For every sequence s_{4} of S holds $-s_{4}=(-1) \cdot s_{4}$.

Let us consider S, T and let f be a partial function from S to T. The functor $\|f\|$ yielding a partial function from the carrier of S to \mathbb{R} is defined as follows:
(Def. 2) $\quad \operatorname{dom}\|f\|=\operatorname{dom} f$ and for every point c of S such that $c \in \operatorname{dom}\|f\|$ holds $\|f\|(c)=\left\|f_{c}\right\|$.

Let us consider S, x_{0}. A subset of S is called a neighbourhood of x_{0} if:
(Def. 3) There exists a real number g such that $0<g$ and $\{y ; y$ ranges over points of $\left.S:\left\|y-x_{0}\right\|<g\right\} \subseteq$ it.
The following two propositions are true:
(3) For every real number g such that $0<g$ holds $\{y$; y ranges over points of $\left.S:\left\|y-x_{0}\right\|<g\right\}$ is a neighbourhood of x_{0}.
(4) For every neighbourhood N of x_{0} holds $x_{0} \in N$.

Let us consider S and let X be a subset of S. We say that X is compact if and only if the condition (Def. 4) is satisfied.
(Def. 4) Let s_{1} be a sequence of S. Suppose $\operatorname{rng} s_{1} \subseteq X$. Then there exists a sequence s_{5} of S such that s_{5} is a subsequence of s_{1} and convergent and $\lim s_{5} \in X$.
Let us consider S and let X be a subset of S. We say that X is closed if and only if:
(Def. 5) For every sequence s_{1} of S such that $\operatorname{rng} s_{1} \subseteq X$ and s_{1} is convergent holds $\lim s_{1} \in X$.
Let us consider S and let X be a subset of S. We say that X is open if and only if:
(Def. 6) $\quad X^{\mathrm{c}}$ is closed.
Let us consider S, T, let us consider f, and let s_{4} be a sequence of S. Let us assume that $\operatorname{rng} s_{4} \subseteq \operatorname{dom} f$. The functor $f \cdot s_{4}$ yields a sequence of T and is defined as follows:
(Def. 7) $f \cdot s_{4}=\left(f\right.$ qua function) $\cdot\left(s_{4}\right)$.
Let us consider S, let f be a partial function from the carrier of S to \mathbb{R}, and let s_{4} be a sequence of S. Let us assume that $\operatorname{rng} s_{4} \subseteq \operatorname{dom} f$. The functor $f \cdot s_{4}$ yields a sequence of real numbers and is defined as follows:
(Def. 8) $f \cdot s_{4}=\left(f\right.$ qua function) $\cdot\left(s_{4}\right)$.
Let us consider S, T and let us consider f, x_{0}. We say that f is continuous in x_{0} if and only if:
(Def. 9) $\quad x_{0} \in \operatorname{dom} f$ and for every s_{1} such that $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ and s_{1} is convergent and $\lim s_{1}=x_{0}$ holds $f \cdot s_{1}$ is convergent and $f_{x_{0}}=\lim \left(f \cdot s_{1}\right)$.
Let us consider S, let f be a partial function from the carrier of S to \mathbb{R}, and let us consider x_{0}. We say that f is continuous in x_{0} if and only if:
(Def. 10) $\quad x_{0} \in \operatorname{dom} f$ and for every s_{1} such that $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ and s_{1} is convergent and $\lim s_{1}=x_{0}$ holds $f \cdot s_{1}$ is convergent and $f_{x_{0}}=\lim \left(f \cdot s_{1}\right)$.
The scheme SeqPointNormSpChoice deals with a non empty normed structure \mathcal{A} and a binary predicate \mathcal{P}, and states that:

There exists a sequence s_{1} of \mathcal{A} such that for every natural number n holds $\mathcal{P}\left[n, s_{1}(n)\right]$
provided the following condition is met:

- For every natural number n there exists a point r of \mathcal{A} such that $\mathcal{P}[n, r]$.
The following propositions are true:
(5) For every sequence s_{4} of S and for every partial function h from S to T such that $\operatorname{rng} s_{4} \subseteq$ dom h holds $s_{4}(n) \in \operatorname{dom} h$.
(6) For every sequence s_{4} of S and for every set x holds $x \in \operatorname{rng} s_{4}$ iff there exists n such that $x=s_{4}(n)$.
(7) For all sequences s_{4}, s_{2} of S such that s_{2} is a subsequence of s_{4} holds $\operatorname{rng} s_{2} \subseteq \operatorname{rng} s_{4}$.
(8) For all f, s_{1} such that $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ and for every n holds $\left(f \cdot s_{1}\right)(n)=$ $f_{s_{1}(n)}$.
(9) Let f be a partial function from the carrier of S to \mathbb{R} and given s_{1}. If $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$, then for every n holds $\left(f \cdot s_{1}\right)(n)=f_{s_{1}(n)}$.
(10) Let h be a partial function from S to T, s_{4} be a sequence of S, and N_{1} be an increasing sequence of naturals. If $\operatorname{rng} s_{4} \subseteq \operatorname{dom} h$, then $\left(h \cdot s_{4}\right) \cdot N_{1}=$ $h \cdot\left(s_{4} \cdot N_{1}\right)$.
(11) Let h be a partial function from the carrier of S to \mathbb{R}, s_{4} be a sequence of S, and N_{1} be an increasing sequence of naturals. If rng $s_{4} \subseteq \operatorname{dom} h$, then $\left(h \cdot s_{4}\right) \cdot N_{1}=h \cdot\left(s_{4} \cdot N_{1}\right)$.
(12) Let h be a partial function from S to T and s_{2}, s_{3} be sequences of S. If $\operatorname{rng} s_{2} \subseteq \operatorname{dom} h$ and s_{3} is a subsequence of s_{2}, then $h \cdot s_{3}$ is a subsequence of $h \cdot s_{2}$.
(13) Let h be a partial function from the carrier of S to \mathbb{R} and s_{2}, s_{3} be sequences of S. If $\mathrm{rng} s_{2} \subseteq \operatorname{dom} h$ and s_{3} is a subsequence of s_{2}, then $h \cdot s_{3}$ is a subsequence of $h \cdot s_{2}$.
(14) f is continuous in x_{0} if and only if the following conditions are satisfied:
(i) $\quad x_{0} \in \operatorname{dom} f$, and
(ii) for every r such that $0<r$ there exists s such that $0<s$ and for every x_{1} such that $x_{1} \in \operatorname{dom} f$ and $\left\|x_{1}-x_{0}\right\|<s$ holds $\left\|f_{x_{1}}-f_{x_{0}}\right\|<r$.
(15) Let f be a partial function from the carrier of S to \mathbb{R}. Then f is continuous in x_{0} if and only if the following conditions are satisfied:
(i) $\quad x_{0} \in \operatorname{dom} f$, and
(ii) for every r such that $0<r$ there exists s such that $0<s$ and for every x_{1} such that $x_{1} \in \operatorname{dom} f$ and $\left\|x_{1}-x_{0}\right\|<s$ holds $\left|f_{x_{1}}-f_{x_{0}}\right|<r$.
(16) Let given f, x_{0}. Then f is continuous in x_{0} if and only if the following conditions are satisfied:
(i) $\quad x_{0} \in \operatorname{dom} f$, and
(ii) for every neighbourhood N_{2} of $f_{x_{0}}$ there exists a neighbourhood N of x_{0} such that for every x_{1} such that $x_{1} \in \operatorname{dom} f$ and $x_{1} \in N$ holds $f_{x_{1}} \in N_{2}$.
(17) Let given f, x_{0}. Then f is continuous in x_{0} if and only if the following conditions are satisfied:
(i) $\quad x_{0} \in \operatorname{dom} f$, and
(ii) for every neighbourhood N_{2} of $f_{x_{0}}$ there exists a neighbourhood N of x_{0} such that $f^{\circ} N \subseteq N_{2}$.
(18) If $x_{0} \in \operatorname{dom} f$ and there exists a neighbourhood N of x_{0} such that $\operatorname{dom} f \cap N=\left\{x_{0}\right\}$, then f is continuous in x_{0}.
(19) Let h_{1}, h_{2} be partial functions from S to T and s_{4} be a sequence of S. If $\operatorname{rng} s_{4} \subseteq \operatorname{dom} h_{1} \cap \operatorname{dom} h_{2}$, then $\left(h_{1}+h_{2}\right) \cdot s_{4}=h_{1} \cdot s_{4}+h_{2} \cdot s_{4}$ and $\left(h_{1}-h_{2}\right) \cdot s_{4}=h_{1} \cdot s_{4}-h_{2} \cdot s_{4}$.
(20) Let h be a partial function from S to T, s_{4} be a sequence of S, and r be a real number. If $\operatorname{rng} s_{4} \subseteq \operatorname{dom} h$, then $(r h) \cdot s_{4}=r \cdot\left(h \cdot s_{4}\right)$.
(21) Let h be a partial function from S to T and s_{4} be a sequence of S. If $\operatorname{rng} s_{4} \subseteq \operatorname{dom} h$, then $\left\|h \cdot s_{4}\right\|=\|h\| \cdot s_{4}$ and $-h \cdot s_{4}=(-h) \cdot s_{4}$.
(22) If f_{1} is continuous in x_{0} and f_{2} is continuous in x_{0}, then $f_{1}+f_{2}$ is continuous in x_{0} and $f_{1}-f_{2}$ is continuous in x_{0}.
(23) If f is continuous in x_{0}, then $r f$ is continuous in x_{0}.
(24) If f is continuous in x_{0}, then $\|f\|$ is continuous in x_{0} and $-f$ is continuous in x_{0}.
Let us consider S, T and let us consider f, X. We say that f is continuous on X if and only if:
(Def. 11) $X \subseteq \operatorname{dom} f$ and for every x_{0} such that $x_{0} \in X$ holds $f \upharpoonright X$ is continuous in x_{0}.
Let us consider S, let f be a partial function from the carrier of S to \mathbb{R}, and let us consider X. We say that f is continuous on X if and only if:
(Def. 12) $\quad X \subseteq \operatorname{dom} f$ and for every x_{0} such that $x_{0} \in X$ holds $f \upharpoonright X$ is continuous in x_{0}.
One can prove the following propositions:
(25) Let given X, f. Then f is continuous on X if and only if the following conditions are satisfied:
(i) $\quad X \subseteq \operatorname{dom} f$, and
(ii) for every s_{1} such that $\operatorname{rng} s_{1} \subseteq X$ and s_{1} is convergent and $\lim s_{1} \in X$ holds $f \cdot s_{1}$ is convergent and $f_{\lim s_{1}}=\lim \left(f \cdot s_{1}\right)$.
(26) $\quad f$ is continuous on X if and only if the following conditions are satisfied:
(i) $X \subseteq \operatorname{dom} f$, and
(ii) for all x_{0}, r such that $x_{0} \in X$ and $0<r$ there exists s such that $0<s$ and for every x_{1} such that $x_{1} \in X$ and $\left\|x_{1}-x_{0}\right\|<s$ holds $\left\|f_{x_{1}}-f_{x_{0}}\right\|<r$.
(27) Let f be a partial function from the carrier of S to \mathbb{R}. Then f is continuous on X if and only if the following conditions are satisfied:
(i) $\quad X \subseteq \operatorname{dom} f$, and
(ii) for all x_{0}, r such that $x_{0} \in X$ and $0<r$ there exists s such that $0<s$ and for every x_{1} such that $x_{1} \in X$ and $\left\|x_{1}-x_{0}\right\|<s$ holds $\left|f_{x_{1}}-f_{x_{0}}\right|<r$.
(28) $\quad f$ is continuous on X iff $f \upharpoonright X$ is continuous on X.
(29) Let f be a partial function from the carrier of S to \mathbb{R}. Then f is continuous on X if and only if $f \upharpoonright X$ is continuous on X.
(30) If f is continuous on X and $X_{1} \subseteq X$, then f is continuous on X_{1}.
(31) If $x_{0} \in \operatorname{dom} f$, then f is continuous on $\left\{x_{0}\right\}$.
(32) For all X, f_{1}, f_{2} such that f_{1} is continuous on X and f_{2} is continuous on X holds $f_{1}+f_{2}$ is continuous on X and $f_{1}-f_{2}$ is continuous on X.
(33) Let given X, X_{1}, f_{1}, f_{2}. Suppose f_{1} is continuous on X and f_{2} is continuous on X_{1}. Then $f_{1}+f_{2}$ is continuous on $X \cap X_{1}$ and $f_{1}-f_{2}$ is continuous on $X \cap X_{1}$.
(34) For all r, X, f such that f is continuous on X holds $r f$ is continuous on X.
(35) If f is continuous on X, then $\|f\|$ is continuous on X and $-f$ is continuous on X.
(36) Suppose f is total and for all x_{1}, x_{2} holds $f_{x_{1}+x_{2}}=f_{x_{1}}+f_{x_{2}}$ and there exists x_{0} such that f is continuous in x_{0}. Then f is continuous on the carrier of S.
(37) For every f such that $\operatorname{dom} f$ is compact and f is continuous on $\operatorname{dom} f$ holds rng f is compact.
(38) Let f be a partial function from the carrier of S to \mathbb{R}. If $\operatorname{dom} f$ is compact and f is continuous on $\operatorname{dom} f$, then $\operatorname{rng} f$ is compact.
(39) If $Y \subseteq \operatorname{dom} f$ and Y is compact and f is continuous on Y, then $f^{\circ} Y$ is compact.
(40) Let f be a partial function from the carrier of S to \mathbb{R}. Suppose $\operatorname{dom} f \neq \emptyset$ and $\operatorname{dom} f$ is compact and f is continuous on $\operatorname{dom} f$. Then there exist x_{1}, x_{2} such that $x_{1} \in \operatorname{dom} f$ and $x_{2} \in \operatorname{dom} f$ and $f_{x_{1}}=\sup \operatorname{rng} f$ and $f_{x_{2}}=\inf \operatorname{rng} f$.
(41) Let given f. Suppose $\operatorname{dom} f \neq \emptyset$ and $\operatorname{dom} f$ is compact and f is continuous on $\operatorname{dom} f$. Then there exist x_{1}, x_{2} such that $x_{1} \in \operatorname{dom} f$ and $x_{2} \in \operatorname{dom} f$ and $\|f\|_{x_{1}}=\sup \operatorname{rng}\|f\|$ and $\|f\|_{x_{2}}=\inf \operatorname{rng}\|f\|$.
(42) $\|f\| \upharpoonright X=\|f \upharpoonright X\|$.
(43) Let given f, Y. Suppose $Y \neq \emptyset$ and $Y \subseteq \operatorname{dom} f$ and Y is compact and f is continuous on Y. Then there exist x_{1}, x_{2} such that $x_{1} \in Y$ and $x_{2} \in Y$ and $\|f\|_{x_{1}}=\sup \left(\|f\|^{\circ} Y\right)$ and $\|f\|_{x_{2}}=\inf \left(\|f\|^{\circ} Y\right)$.
(44) Let f be a partial function from the carrier of S to \mathbb{R} and given Y. Suppose $Y \neq \emptyset$ and $Y \subseteq \operatorname{dom} f$ and Y is compact and f is continuous on Y. Then there exist x_{1}, x_{2} such that $x_{1} \in Y$ and $x_{2} \in Y$ and $f_{x_{1}}=\sup \left(f^{\circ} Y\right)$
and $f_{x_{2}}=\inf \left(f^{\circ} Y\right)$.
Let us consider S, T and let us consider X, f. We say that f is Lipschitzian on X if and only if:
(Def. 13) $X \subseteq \operatorname{dom} f$ and there exists r such that $0<r$ and for all x_{1}, x_{2} such that $x_{1} \in X$ and $x_{2} \in X$ holds $\left\|f_{x_{1}}-f_{x_{2}}\right\| \leqslant r \cdot\left\|x_{1}-x_{2}\right\|$.
Let us consider S, let us consider X, and let f be a partial function from the carrier of S to \mathbb{R}. We say that f is Lipschitzian on X if and only if:
(Def. 14) $X \subseteq \operatorname{dom} f$ and there exists r such that $0<r$ and for all x_{1}, x_{2} such that $x_{1} \in X$ and $x_{2} \in X$ holds $\left|f_{x_{1}}-f_{x_{2}}\right| \leqslant r \cdot\left\|x_{1}-x_{2}\right\|$.
The following propositions are true:
(45) If f is Lipschitzian on X and $X_{1} \subseteq X$, then f is Lipschitzian on X_{1}.
(46) If f_{1} is Lipschitzian on X and f_{2} is Lipschitzian on X_{1}, then $f_{1}+f_{2}$ is Lipschitzian on $X \cap X_{1}$.
(47) If f_{1} is Lipschitzian on X and f_{2} is Lipschitzian on X_{1}, then $f_{1}-f_{2}$ is Lipschitzian on $X \cap X_{1}$.
(48) If f is Lipschitzian on X, then $p f$ is Lipschitzian on X.
(49) If f is Lipschitzian on X, then $-f$ is Lipschitzian on X and $\|f\|$ is Lipschitzian on X.
(50) If $X \subseteq \operatorname{dom} f$ and f is a constant on X, then f is Lipschitzian on X.
(51) id_{Y} is Lipschitzian on Y.
(52) If f is Lipschitzian on X, then f is continuous on X.
(53) Let f be a partial function from the carrier of S to \mathbb{R}. If f is Lipschitzian on X, then f is continuous on X.
(54) For every f such that there exists a point r of T such that $\operatorname{rng} f=\{r\}$ holds f is continuous on $\operatorname{dom} f$.
(55) If $X \subseteq \operatorname{dom} f$ and f is a constant on X, then f is continuous on X.
(56) For every partial function f from S to S such that for every x_{0} such that $x_{0} \in \operatorname{dom} f$ holds $f_{x_{0}}=x_{0}$ holds f is continuous on $\operatorname{dom} f$.
(57) For every partial function f from S to S such that $f=\operatorname{id}_{\operatorname{dom} f}$ holds f is continuous on $\operatorname{dom} f$.
(58) For every partial function f from S to S such that $Y \subseteq \operatorname{dom} f$ and $f \upharpoonright Y=\operatorname{id}_{Y}$ holds f is continuous on Y.
(59) Let f be a partial function from S to S, r be a real number, and p be a point of S. Suppose $X \subseteq \operatorname{dom} f$ and for every x_{0} such that $x_{0} \in X$ holds $f_{x_{0}}=r \cdot x_{0}+p$. Then f is continuous on X.
(60) Let f be a partial function from the carrier of S to \mathbb{R}. If for every x_{0} such that $x_{0} \in \operatorname{dom} f$ holds $f_{x_{0}}=\left\|x_{0}\right\|$, then f is continuous on $\operatorname{dom} f$.
(61) Let f be a partial function from the carrier of S to \mathbb{R}. If $X \subseteq \operatorname{dom} f$ and for every x_{0} such that $x_{0} \in X$ holds $f_{x_{0}}=\left\|x_{0}\right\|$, then f is continuous on X.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,
[4] $\begin{aligned} & \text { 1990. } \\ & \text { Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, } \\ & 1990\end{aligned}$
[5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[6] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[7] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[8] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[9] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[10] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[11] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[12] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[13] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[14] Yasunari Shidama. The series on Banach algebra. Formalized Mathematics, 12(2):131138, 2004.
[15] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[17] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[18] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[21] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[22] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992.

Received April 6, 2004

