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The articles [16], [19], [20], [2], [21], [4], [9], [3], [1], [11], [15], [5], [17], [18], [10],

[7], [8], [6], [13], [22], [12], and [14] provide the notation and terminology for this

paper.

We use the following convention: n is a natural number, x, X, X1 are sets,

and s, r, p are real numbers.

Let S, T be 1-sorted structures. A partial function from S to T is a partial

function from the carrier of S to the carrier of T .

For simplicity, we adopt the following rules: S, T denote real normed spaces,

f , f1, f2 denote partial functions from S to T , s1 denotes a sequence of S, x0,

x1, x2 denote points of S, and Y denotes a subset of S.

Let R1 be a real linear space and let S1 be a sequence of R1. The functor

−S1 yields a sequence of R1 and is defined as follows:

(Def. 1) For every n holds (−S1)(n) = −S1(n).

Next we state two propositions:

(1) For all sequences s2, s3 of S holds s2 − s3 = s2 +−s3.

(2) For every sequence s4 of S holds −s4 = (−1) · s4.

Let us consider S, T and let f be a partial function from S to T . The functor

‖f‖ yielding a partial function from the carrier of S to R is defined as follows:

(Def. 2) dom‖f‖ = dom f and for every point c of S such that c ∈ dom‖f‖ holds

‖f‖(c) = ‖fc‖.
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Let us consider S, x0. A subset of S is called a neighbourhood of x0 if:

(Def. 3) There exists a real number g such that 0 < g and {y; y ranges over points

of S: ‖y − x0‖ < g} ⊆ it.

The following two propositions are true:

(3) For every real number g such that 0 < g holds {y; y ranges over points

of S: ‖y − x0‖ < g} is a neighbourhood of x0.

(4) For every neighbourhood N of x0 holds x0 ∈ N.

Let us consider S and let X be a subset of S. We say that X is compact if

and only if the condition (Def. 4) is satisfied.

(Def. 4) Let s1 be a sequence of S. Suppose rng s1 ⊆ X. Then there exists a

sequence s5 of S such that s5 is a subsequence of s1 and convergent and

lim s5 ∈ X.

Let us consider S and let X be a subset of S. We say that X is closed if and

only if:

(Def. 5) For every sequence s1 of S such that rng s1 ⊆ X and s1 is convergent

holds lim s1 ∈ X.

Let us consider S and let X be a subset of S. We say that X is open if and

only if:

(Def. 6) Xc is closed.

Let us consider S, T , let us consider f , and let s4 be a sequence of S. Let

us assume that rng s4 ⊆ dom f. The functor f · s4 yields a sequence of T and is

defined as follows:

(Def. 7) f · s4 = (f qua function) ·(s4).

Let us consider S, let f be a partial function from the carrier of S to R, and

let s4 be a sequence of S. Let us assume that rng s4 ⊆ dom f. The functor f · s4

yields a sequence of real numbers and is defined as follows:

(Def. 8) f · s4 = (f qua function) ·(s4).

Let us consider S, T and let us consider f , x0. We say that f is continuous

in x0 if and only if:

(Def. 9) x0 ∈ dom f and for every s1 such that rng s1 ⊆ dom f and s1 is conver-

gent and lim s1 = x0 holds f · s1 is convergent and fx0
= lim(f · s1).

Let us consider S, let f be a partial function from the carrier of S to R, and

let us consider x0. We say that f is continuous in x0 if and only if:

(Def. 10) x0 ∈ dom f and for every s1 such that rng s1 ⊆ dom f and s1 is conver-

gent and lim s1 = x0 holds f · s1 is convergent and fx0
= lim(f · s1).

The scheme SeqPointNormSpChoice deals with a non empty normed struc-

ture A and a binary predicate P, and states that:

There exists a sequence s1 ofA such that for every natural number

n holds P[n, s1(n)]
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provided the following condition is met:

• For every natural number n there exists a point r of A such that

P[n, r].

The following propositions are true:

(5) For every sequence s4 of S and for every partial function h from S to T

such that rng s4 ⊆ domh holds s4(n) ∈ domh.

(6) For every sequence s4 of S and for every set x holds x ∈ rng s4 iff there

exists n such that x = s4(n).

(7) For all sequences s4, s2 of S such that s2 is a subsequence of s4 holds

rng s2 ⊆ rng s4.

(8) For all f , s1 such that rng s1 ⊆ dom f and for every n holds (f ·s1)(n) =

fs1(n).

(9) Let f be a partial function from the carrier of S to R and given s1. If

rng s1 ⊆ dom f, then for every n holds (f · s1)(n) = fs1(n).

(10) Let h be a partial function from S to T , s4 be a sequence of S, and N1 be

an increasing sequence of naturals. If rng s4 ⊆ domh, then (h · s4) ·N1 =

h · (s4 ·N1).

(11) Let h be a partial function from the carrier of S to R, s4 be a sequence of

S, and N1 be an increasing sequence of naturals. If rng s4 ⊆ domh, then

(h · s4) ·N1 = h · (s4 ·N1).

(12) Let h be a partial function from S to T and s2, s3 be sequences of S. If

rng s2 ⊆ domh and s3 is a subsequence of s2, then h · s3 is a subsequence

of h · s2.

(13) Let h be a partial function from the carrier of S to R and s2, s3 be

sequences of S. If rng s2 ⊆ domh and s3 is a subsequence of s2, then h · s3

is a subsequence of h · s2.

(14) f is continuous in x0 if and only if the following conditions are satisfied:

(i) x0 ∈ dom f, and

(ii) for every r such that 0 < r there exists s such that 0 < s and for every

x1 such that x1 ∈ dom f and ‖x1 − x0‖ < s holds ‖fx1
− fx0

‖ < r.

(15) Let f be a partial function from the carrier of S to R. Then f is conti-

nuous in x0 if and only if the following conditions are satisfied:

(i) x0 ∈ dom f, and

(ii) for every r such that 0 < r there exists s such that 0 < s and for every

x1 such that x1 ∈ dom f and ‖x1 − x0‖ < s holds |fx1
− fx0

| < r.

(16) Let given f , x0. Then f is continuous in x0 if and only if the following

conditions are satisfied:

(i) x0 ∈ dom f, and

(ii) for every neighbourhoodN2 of fx0
there exists a neighbourhood N of x0

such that for every x1 such that x1 ∈ dom f and x1 ∈ N holds fx1
∈ N2.
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(17) Let given f , x0. Then f is continuous in x0 if and only if the following

conditions are satisfied:

(i) x0 ∈ dom f, and

(ii) for every neighbourhood N2 of fx0
there exists a neighbourhood N of

x0 such that f◦N ⊆ N2.

(18) If x0 ∈ dom f and there exists a neighbourhood N of x0 such that

dom f ∩N = {x0}, then f is continuous in x0.

(19) Let h1, h2 be partial functions from S to T and s4 be a sequence of S.

If rng s4 ⊆ domh1 ∩ domh2, then (h1 + h2) · s4 = h1 · s4 + h2 · s4 and

(h1 − h2) · s4 = h1 · s4 − h2 · s4.

(20) Let h be a partial function from S to T , s4 be a sequence of S, and r be

a real number. If rng s4 ⊆ domh, then (r h) · s4 = r · (h · s4).

(21) Let h be a partial function from S to T and s4 be a sequence of S. If

rng s4 ⊆ domh, then ‖h · s4‖ = ‖h‖ · s4 and −h · s4 = (−h) · s4.

(22) If f1 is continuous in x0 and f2 is continuous in x0, then f1 + f2 is

continuous in x0 and f1 − f2 is continuous in x0.

(23) If f is continuous in x0, then r f is continuous in x0.

(24) If f is continuous in x0, then ‖f‖ is continuous in x0 and−f is continuous

in x0.

Let us consider S, T and let us consider f , X. We say that f is continuous

on X if and only if:

(Def. 11) X ⊆ dom f and for every x0 such that x0 ∈ X holds f↾X is continuous

in x0.

Let us consider S, let f be a partial function from the carrier of S to R, and

let us consider X. We say that f is continuous on X if and only if:

(Def. 12) X ⊆ dom f and for every x0 such that x0 ∈ X holds f↾X is continuous

in x0.

One can prove the following propositions:

(25) Let given X, f . Then f is continuous on X if and only if the following

conditions are satisfied:

(i) X ⊆ dom f, and

(ii) for every s1 such that rng s1 ⊆ X and s1 is convergent and lim s1 ∈ X

holds f · s1 is convergent and flim s1
= lim(f · s1).

(26) f is continuous on X if and only if the following conditions are satisfied:

(i) X ⊆ dom f, and

(ii) for all x0, r such that x0 ∈ X and 0 < r there exists s such that 0 < s

and for every x1 such that x1 ∈ X and ‖x1−x0‖ < s holds ‖fx1
−fx0
‖ < r.

(27) Let f be a partial function from the carrier of S to R. Then f is conti-

nuous on X if and only if the following conditions are satisfied:

(i) X ⊆ dom f, and



the continuous functions on normed linear . . . 273

(ii) for all x0, r such that x0 ∈ X and 0 < r there exists s such that 0 < s

and for every x1 such that x1 ∈ X and ‖x1−x0‖ < s holds |fx1
−fx0

| < r.

(28) f is continuous on X iff f↾X is continuous on X.

(29) Let f be a partial function from the carrier of S to R. Then f is conti-

nuous on X if and only if f↾X is continuous on X.

(30) If f is continuous on X and X1 ⊆ X, then f is continuous on X1.

(31) If x0 ∈ dom f, then f is continuous on {x0}.

(32) For all X, f1, f2 such that f1 is continuous on X and f2 is continuous

on X holds f1 + f2 is continuous on X and f1 − f2 is continuous on X.

(33) Let given X, X1, f1, f2. Suppose f1 is continuous on X and f2 is continu-

ous on X1. Then f1 +f2 is continuous on X ∩X1 and f1−f2 is continuous

on X ∩X1.

(34) For all r, X, f such that f is continuous on X holds r f is continuous

on X.

(35) If f is continuous on X, then ‖f‖ is continuous on X and −f is conti-

nuous on X.

(36) Suppose f is total and for all x1, x2 holds fx1+x2
= fx1

+ fx2
and there

exists x0 such that f is continuous in x0. Then f is continuous on the

carrier of S.

(37) For every f such that dom f is compact and f is continuous on dom f

holds rng f is compact.

(38) Let f be a partial function from the carrier of S to R. If dom f is compact

and f is continuous on dom f, then rng f is compact.

(39) If Y ⊆ dom f and Y is compact and f is continuous on Y , then f◦Y is

compact.

(40) Let f be a partial function from the carrier of S to R. Suppose dom f 6= ∅

and dom f is compact and f is continuous on dom f. Then there exist

x1, x2 such that x1 ∈ dom f and x2 ∈ dom f and fx1
= sup rng f and

fx2
= inf rng f.

(41) Let given f . Suppose dom f 6= ∅ and dom f is compact and f is con-

tinuous on dom f. Then there exist x1, x2 such that x1 ∈ dom f and

x2 ∈ dom f and ‖f‖x1
= sup rng‖f‖ and ‖f‖x2

= inf rng‖f‖.

(42) ‖f‖↾X = ‖f↾X‖.

(43) Let given f , Y . Suppose Y 6= ∅ and Y ⊆ dom f and Y is compact and f

is continuous on Y . Then there exist x1, x2 such that x1 ∈ Y and x2 ∈ Y

and ‖f‖x1
= sup(‖f‖◦Y ) and ‖f‖x2

= inf(‖f‖◦Y ).

(44) Let f be a partial function from the carrier of S to R and given Y .

Suppose Y 6= ∅ and Y ⊆ dom f and Y is compact and f is continuous on Y .

Then there exist x1, x2 such that x1 ∈ Y and x2 ∈ Y and fx1
= sup(f◦Y )
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and fx2
= inf(f◦Y ).

Let us consider S, T and let us consider X, f . We say that f is Lipschitzian

on X if and only if:

(Def. 13) X ⊆ dom f and there exists r such that 0 < r and for all x1, x2 such

that x1 ∈ X and x2 ∈ X holds ‖fx1
− fx2

‖ ¬ r · ‖x1 − x2‖.

Let us consider S, let us consider X, and let f be a partial function from

the carrier of S to R. We say that f is Lipschitzian on X if and only if:

(Def. 14) X ⊆ dom f and there exists r such that 0 < r and for all x1, x2 such

that x1 ∈ X and x2 ∈ X holds |fx1
− fx2

| ¬ r · ‖x1 − x2‖.

The following propositions are true:

(45) If f is Lipschitzian on X and X1 ⊆ X, then f is Lipschitzian on X1.

(46) If f1 is Lipschitzian on X and f2 is Lipschitzian on X1, then f1 + f2 is

Lipschitzian on X ∩X1.

(47) If f1 is Lipschitzian on X and f2 is Lipschitzian on X1, then f1 − f2 is

Lipschitzian on X ∩X1.

(48) If f is Lipschitzian on X, then p f is Lipschitzian on X.

(49) If f is Lipschitzian on X, then −f is Lipschitzian on X and ‖f‖ is

Lipschitzian on X.

(50) If X ⊆ dom f and f is a constant on X, then f is Lipschitzian on X.

(51) idY is Lipschitzian on Y .

(52) If f is Lipschitzian on X, then f is continuous on X.

(53) Let f be a partial function from the carrier of S to R. If f is Lipschitzian

on X, then f is continuous on X.

(54) For every f such that there exists a point r of T such that rng f = {r}

holds f is continuous on dom f.

(55) If X ⊆ dom f and f is a constant on X, then f is continuous on X.

(56) For every partial function f from S to S such that for every x0 such that

x0 ∈ dom f holds fx0
= x0 holds f is continuous on dom f.

(57) For every partial function f from S to S such that f = iddom f holds f

is continuous on dom f.

(58) For every partial function f from S to S such that Y ⊆ dom f and

f↾Y = idY holds f is continuous on Y .

(59) Let f be a partial function from S to S, r be a real number, and p be a

point of S. Suppose X ⊆ dom f and for every x0 such that x0 ∈ X holds

fx0
= r · x0 + p. Then f is continuous on X.

(60) Let f be a partial function from the carrier of S to R. If for every x0

such that x0 ∈ dom f holds fx0
= ‖x0‖, then f is continuous on dom f.

(61) Let f be a partial function from the carrier of S to R. If X ⊆ dom f and

for every x0 such that x0 ∈ X holds fx0
= ‖x0‖, then f is continuous onX.
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