Differentiable Functions on Normed Linear Spaces. Part II

Hiroshi Imura
Shinshu University
Nagano

Shinshu University
Nagano

Yuji Sakai Yasunari Shidama

Shinshu University
Nagano

Abstract

Summary. A continuation of [7], the basic properties of the differentiable functions on normed linear spaces are described.

MML Identifier: NDIFF_2.

The terminology and notation used in this paper have been introduced in the following articles: [16], [3], [19], [5], [4], [1], [15], [6], [17], [18], [9], [8], [2], [20], [12], [14], [10], [13], [7], and [11].

For simplicity, we adopt the following rules: S, T denote non trivial real normed spaces, x_{0} denotes a point of S, f denotes a partial function from S to T, h denotes a convergent to 0 sequence of S, and c denotes a constant sequence of S.

Let X, Y, Z be real normed spaces, let f be an element of $\operatorname{BdLinOps}(X, Y)$, and let g be an element of $\operatorname{BdLinOps}(Y, Z)$. The functor $g \cdot f$ yielding an element of $\mathrm{BdLinOps}(X, Z)$ is defined by:
(Def. 1) $\quad g \cdot f=\operatorname{modetrans}(g, Y, Z) \cdot \operatorname{modetrans}(f, X, Y)$.
Let X, Y, Z be real normed spaces, let f be a point of RNormSpaceOfBoundedLinearOperators (X, Y), and let g be a point of RNormSpaceOfBoundedLinearOperators (Y, Z). The functor $g \cdot f$ yields a point of RNormSpaceOfBoundedLinearOperators (X, Z) and is defined by:
(Def. 2) $\quad g \cdot f=\operatorname{modetrans}(g, Y, Z) \cdot \operatorname{modetrans}(f, X, Y)$.
Next we state three propositions:
(1) Let x_{0} be a point of S. Suppose f is differentiable in x_{0}. Then there exists a neighbourhood N of x_{0} such that
(i) $\quad N \subseteq \operatorname{dom} f$, and
(ii) for every point z of S and for every convergent to 0 sequence h of real numbers and for every c such that $\operatorname{rng} c=\left\{x_{0}\right\}$ and $\operatorname{rng}(h \cdot z+c) \subseteq N$ holds $h^{-1}(f \cdot(h \cdot z+c)-f \cdot c)$ is convergent and $f^{\prime}\left(x_{0}\right)(z)=\lim \left(h^{-1}(f\right.$. $(h \cdot z+c)-f \cdot c))$.
(2) Let x_{0} be a point of S. Suppose f is differentiable in x_{0}. Let z be a point of S, h be a convergent to 0 sequence of real numbers, and given c. Suppose $\operatorname{rng} c=\left\{x_{0}\right\}$ and $\operatorname{rng}(h \cdot z+c) \subseteq \operatorname{dom} f$. Then $h^{-1}(f \cdot(h \cdot z+c)-f \cdot c)$ is convergent and $f^{\prime}\left(x_{0}\right)(z)=\lim \left(h^{-1}(f \cdot(h \cdot z+c)-f \cdot c)\right)$.
(3) Let x_{0} be a point of S and N be a neighbourhood of x_{0}. Suppose $N \subseteq$ dom f. Let z be a point of S and d_{1} be a point of T. Then the following statements are equivalent
(i) for every convergent to 0 sequence h of real numbers and for every c such that $\operatorname{rng} c=\left\{x_{0}\right\}$ and $\operatorname{rng}(h \cdot z+c) \subseteq N$ holds $h^{-1}(f \cdot(h \cdot z+c)-f \cdot c)$ is convergent and $d_{1}=\lim \left(h^{-1}(f \cdot(h \cdot z+c)-f \cdot c)\right)$,
(ii) for every real number e such that $e>0$ there exists a real number d such that $d>0$ and for every real number h such that $|h|<d$ and $h \neq 0$ and $h \cdot z+x_{0} \in N$ holds $\left\|h^{-1} \cdot\left(f_{h \cdot z+x_{0}}-f_{x_{0}}\right)-d_{1}\right\|<e$.
Let us consider S, T, let us consider f, let x_{0} be a point of S, and let z be a point of S. We say that f is Gateaux differentiable in x_{0}, z if and only if the condition (Def. 3) is satisfied.
(Def. 3) There exists a neighbourhood N of x_{0} such that
(i) $\quad N \subseteq \operatorname{dom} f$, and
(ii) there exists a point d_{1} of T such that for every real number e such that $e>0$ there exists a real number d such that $d>0$ and for every real number h such that $|h|<d$ and $h \neq 0$ and $h \cdot z+x_{0} \in N$ holds $\left\|h^{-1} \cdot\left(f_{h \cdot z+x_{0}}-f_{x_{0}}\right)-d_{1}\right\|<e$.
One can prove the following proposition
(4) For every real normed space X and for all points x, y of X holds $\|x-y\|>$ 0 iff $x \neq y$ and for every real normed space X and for all points x, y of X holds $\|x-y\|=\|y-x\|$ and for every real normed space X and for all points x, y of X holds $\|x-y\|=0$ iff $x=y$ and for every real normed space X and for all points x, y of X holds $\|x-y\| \neq 0$ iff $x \neq y$ and for every real normed space X and for all points x, y, z of X and for every real number e such that $e>0$ holds if $\|x-z\|<\frac{e}{2}$ and $\|z-y\|<\frac{e}{2}$, then $\|x-y\|<e$ and for every real normed space X and for all points x, y, z of X and for every real number e such that $e>0$ holds if $\|x-z\|<\frac{e}{2}$ and $\|y-z\|<\frac{e}{2}$, then $\|x-y\|<e$ and for every real normed space X and for every point x of X such that for every real number e such that $e>0$ holds $\|x\|<e$ holds $x=0_{X}$ and for every real normed space X and for all points x, y of X such that for every real number e such that $e>0$ holds $\|x-y\|<e$ holds $x=y$.

Let us consider S, T, let us consider f, let x_{0} be a point of S, and let z be a point of S. Let us assume that f is Gateaux differentiable in x_{0}, z. The functor GateauxDiff $_{z}\left(f, x_{0}\right)$ yields a point of T and is defined by the condition (Def. 4).
(Def. 4) There exists a neighbourhood N of x_{0} such that
(i) $\quad N \subseteq \operatorname{dom} f$, and
(ii) for every real number e such that $e>0$ there exists a real number d such that $d>0$ and for every real number h such that $|h|<d$ and $h \neq 0$ and $h \cdot z+x_{0} \in N$ holds $\left\|h^{-1} \cdot\left(f_{h \cdot z+x_{0}}-f_{x_{0}}\right)-\operatorname{GateauxDiff}_{z}\left(f, x_{0}\right)\right\|<e$.
We now state two propositions:
(5) Let x_{0} be a point of S and z be a point of S. Then f is Gateaux differentiable in x_{0}, z if and only if there exists a neighbourhood N of x_{0} such that $N \subseteq \operatorname{dom} f$ and there exists a point d_{1} of T such that for every convergent to 0 sequence h of real numbers and for every c such that $\operatorname{rng} c=\left\{x_{0}\right\}$ and $\operatorname{rng}(h \cdot z+c) \subseteq N$ holds $h^{-1}(f \cdot(h \cdot z+c)-f \cdot c)$ is convergent and $d_{1}=\lim \left(h^{-1}(f \cdot(h \cdot z+c)-f \cdot c)\right)$.
(6) Let x_{0} be a point of S. Suppose f is differentiable in x_{0}. Let z be a point of S. Then
(i) $\quad f$ is Gateaux differentiable in x_{0}, z,
(ii) GateauxDiff $\left(f, x_{0}\right)=f^{\prime}\left(x_{0}\right)(z)$, and
(iii) there exists a neighbourhood N of x_{0} such that $N \subseteq \operatorname{dom} f$ and for every convergent to 0 sequence h of real numbers and for every c such that $\operatorname{rng} c=\left\{x_{0}\right\}$ and $\operatorname{rng}(h \cdot z+c) \subseteq N$ holds $h^{-1}(f \cdot(h \cdot z+c)-f \cdot c)$ is convergent and GateauxDiff ${ }_{z}\left(f, x_{0}\right)=\lim \left(h^{-1}(f \cdot(h \cdot z+c)-f \cdot c)\right)$.
In the sequel U is a non trivial real normed space.
Next we state several propositions:
(7) Let R be a rest of S, T. Suppose $R_{0_{S}}=0_{T}$. Let e be a real number. Suppose $e>0$. Then there exists a real number d such that $d>0$ and for every point h of S such that $\|h\|<d$ holds $\left\|R_{h}\right\| \leqslant e \cdot\|h\|$.
(8) Let R be a rest of T, U. Suppose $R_{0_{T}}=0_{U}$. Let L be a bounded linear operator from S into T. Then $R \cdot L$ is a rest of S, U.
(9) For every rest R of S, T and for every bounded linear operator L from T into U holds $L \cdot R$ is a rest of S, U.
(10) Let R_{1} be a rest of S, T. Suppose $\left(R_{1}\right)_{0_{S}}=0_{T}$. Let R_{2} be a rest of T, U. If $\left(R_{2}\right)_{0_{T}}=0_{U}$, then $R_{2} \cdot R_{1}$ is a rest of S, U.
(11) Let R_{1} be a rest of S, T. Suppose $\left(R_{1}\right)_{0_{S}}=0_{T}$. Let R_{2} be a rest of T, U. Suppose $\left(R_{2}\right)_{0_{T}}=0_{U}$. Let L be a bounded linear operator from S into T. Then $R_{2} \cdot\left(L+R_{1}\right)$ is a rest of S, U.
(12) Let R_{1} be a rest of S, T. Suppose $\left(R_{1}\right)_{0_{S}}=0_{T}$. Let R_{2} be a rest of T, U. Suppose $\left(R_{2}\right)_{0_{T}}=0_{U}$. Let L_{1} be a bounded linear operator from S into T and L_{2} be a bounded linear operator from T into U. Then
$L_{2} \cdot R_{1}+R_{2} \cdot\left(L_{1}+R_{1}\right)$ is a rest of S, U.
(13) Let f_{1} be a partial function from S to T. Suppose f_{1} is differentiable in x_{0}. Let f_{2} be a partial function from T to U. Suppose f_{2} is differentiable in $\left(f_{1}\right)_{x_{0}}$. Then $f_{2} \cdot f_{1}$ is differentiable in x_{0} and $\left(f_{2} \cdot f_{1}\right)^{\prime}\left(x_{0}\right)=f_{2}{ }^{\prime}\left(\left(f_{1}\right)_{x_{0}}\right)$. $f_{1}{ }^{\prime}\left(x_{0}\right)$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[7] Hiroshi Imura, Morishige Kimura, and Yasunari Shidama. The differentiable functions on normed linear spaces. Formalized Mathematics, 12(3):321-327, 2004.
[8] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, $1(3): 471-475,1990$.
[9] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[10] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. Formalized Mathematics, 12(3):269-275, 2004.
[11] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[12] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[13] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[14] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2003.
[15] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[17] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[18] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[19] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[20] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992.

Received June 4, 2004

