The Differentiable Functions on Normed Linear Spaces

Hiroshi Imura
Shinshu University
Nagano
Morishige Kimura Yasunari Shidama
Shinshu University Shinshu University
Nagano
Nagano

[^0]MML Identifier: NDIFF_1.

The notation and terminology used in this paper are introduced in the following papers: [20], [23], [4], [24], [6], [5], [19], [3], [10], [1], [18], [7], [21], [22], [11], [8], [9], [25], [13], [15], [16], [17], [12], [14], and [2].

For simplicity, we adopt the following rules: n, k denote natural numbers, x, X, Z denote sets, g, r denote real numbers, S denotes a real normed space, r_{1} denotes a sequence of real numbers, s_{1}, s_{2} denote sequences of S, x_{0} denotes a point of S, and Y denotes a subset of S.

Next we state several propositions:
(1) For every point x_{0} of S and for all neighbourhoods N_{1}, N_{2} of x_{0} there exists a neighbourhood N of x_{0} such that $N \subseteq N_{1}$ and $N \subseteq N_{2}$.
(2) Let X be a subset of S. Suppose X is open. Let r be a point of S. If $r \in X$, then there exists a neighbourhood N of r such that $N \subseteq X$.
(3) Let X be a subset of S. Suppose X is open. Let r be a point of S. If $r \in X$, then there exists g such that $0<g$ and $\{y ; y$ ranges over points of $S:\|y-r\|<g\} \subseteq X$.
(4) Let X be a subset of S. Suppose that for every point r of S such that $r \in X$ there exists a neighbourhood N of r such that $N \subseteq X$. Then X is open.
(5) Let X be a subset of S. Then for every point r of S such that $r \in X$ there exists a neighbourhood N of r such that $N \subseteq X$ if and only if X is open.

Let S be a zero structure and let f be a sequence of S. We say that f is non-zero if and only if:
(Def. 1) $\quad \operatorname{rng} f \subseteq($ the carrier of $S) \backslash\left\{0_{S}\right\}$.
We introduce f is non-zero as a synonym of f is non-zero.
We now state two propositions:
(6) s_{1} is non-zero iff for every x such that $x \in \mathbb{N}$ holds $s_{1}(x) \neq 0_{S}$.
(7) s_{1} is non-zero iff for every n holds $s_{1}(n) \neq 0_{S}$.

Let R_{1} be a real linear space, let S be a sequence of R_{1}, and let a be a sequence of real numbers. The functor $a S$ yields a sequence of R_{1} and is defined as follows:
(Def. 2) For every n holds $(a S)(n)=a(n) \cdot S(n)$.
Let R_{1} be a real linear space, let z be a point of R_{1}, and let a be a sequence of real numbers. The functor $a \cdot z$ yields a sequence of R_{1} and is defined by:
(Def. 3) For every n holds $(a \cdot z)(n)=a(n) \cdot z$.
Next we state a number of propositions:
(8) For all sequences r_{2}, r_{3} of real numbers holds $\left(r_{2}+r_{3}\right) s_{1}=r_{2} s_{1}+r_{3} s_{1}$.
(9) For every sequence r_{1} of real numbers and for all sequences s_{2}, s_{3} of S holds $r_{1}\left(s_{2}+s_{3}\right)=r_{1} s_{2}+r_{1} s_{3}$.
(10) For every sequence r_{1} of real numbers holds $r \cdot\left(r_{1} s_{1}\right)=r_{1}\left(r \cdot s_{1}\right)$.
(11) For all sequences r_{2}, r_{3} of real numbers holds $\left(r_{2}-r_{3}\right) s_{1}=r_{2} s_{1}-r_{3} s_{1}$.
(12) For every sequence r_{1} of real numbers and for all sequences s_{2}, s_{3} of S holds $r_{1}\left(s_{2}-s_{3}\right)=r_{1} s_{2}-r_{1} s_{3}$.
(13) If r_{1} is convergent and s_{1} is convergent, then $r_{1} s_{1}$ is convergent.
(14) If r_{1} is convergent and s_{1} is convergent, then $\lim \left(r_{1} s_{1}\right)=\lim r_{1} \cdot \lim s_{1}$.
(15) $\left(s_{1}+s_{2}\right) \uparrow k=s_{1} \uparrow k+s_{2} \uparrow k$.
(16) $\left(s_{1}-s_{2}\right) \uparrow k=s_{1} \uparrow k-s_{2} \uparrow k$.
(17) If s_{1} is non-zero, then $s_{1} \uparrow k$ is non-zero.
(18) $s_{1} \uparrow k$ is a subsequence of s_{1}.
(19) If s_{1} is constant and s_{2} is a subsequence of s_{1}, then s_{2} is constant.
(20) If s_{1} is constant and s_{2} is a subsequence of s_{1}, then $s_{1}=s_{2}$.

Let us consider S and let I_{1} be a sequence of S. We say that I_{1} is convergent to 0 if and only if:
(Def. 4) $\quad I_{1}$ is non-zero and convergent and $\lim I_{1}=0_{S}$.
The following propositions are true:
(21) Let X be a real normed space and s_{1} be a sequence of X. Suppose s_{1} is constant. Then s_{1} is convergent and for every natural number k holds $\lim s_{1}=s_{1}(k)$.
(22) For every real number r such that $0<r$ and for every n holds $s_{1}(n)=$ $\frac{1}{n+r} \cdot x_{0}$ holds s_{1} is convergent.
(23) For every real number r such that $0<r$ and for every n holds $s_{1}(n)=$ $\frac{1}{n+r} \cdot x_{0}$ holds $\lim s_{1}=0_{S}$.
(24) Let a be a convergent to 0 sequence of real numbers and z be a point of S. If $z \neq 0_{S}$, then $a \cdot z$ is convergent to 0 .
(25) For every point r of S holds $r \in Y$ iff $r \in$ the carrier of S iff $Y=$ the carrier of S.
For simplicity, we adopt the following rules: S, T denote non trivial real normed spaces, f, f_{1}, f_{2} denote partial functions from S to T, s_{4}, s_{1} denote sequences of S, and x_{0} denotes a point of S.

Let S be a non trivial real normed space. Note that there exists a sequence of S which is convergent to 0 .

Let us consider S. Note that there exists a sequence of S which is constant.
In the sequel h is a convergent to 0 sequence of S and c is a constant sequence of S.

Let us consider S, T and let I_{1} be a partial function from S to T. We say that I_{1} is rest-like if and only if:
(Def. 5) $\quad I_{1}$ is total and for every h holds $\|h\|^{-1}\left(I_{1} \cdot h\right)$ is convergent and $\lim \left(\|h\|^{-1}\left(I_{1} \cdot h\right)\right)=0_{T}$.
Let us consider S, T. Observe that there exists a partial function from S to T which is rest-like.

Let us consider S, T. A rest of S, T is a rest-like partial function from S to T.

We now state two propositions:
(26) Let R be a partial function from S to T. Suppose R is total. Then R is rest-like if and only if for every real number r such that $r>0$ there exists a real number d such that $d>0$ and for every point z of S such that $z \neq 0_{S}$ and $\|z\|<d$ holds $\|z\|^{-1} \cdot\left\|R_{z}\right\|<r$.
(27) For every rest R of S, T and for every convergent to 0 sequence s of S holds $R \cdot s$ is convergent and $\lim (R \cdot s)=0_{T}$.
In the sequel R, R_{2}, R_{3} are rests of S, T and L is a point of RNormSpaceOfBoundedLinearOperators (S, T).

Next we state several propositions:
(28) $\quad \operatorname{rng}\left(s_{1} \uparrow n\right) \subseteq \operatorname{rng} s_{1}$.
(29) For every partial function h from S to T and for every sequence s_{1} of S such that rng $s_{1} \subseteq \operatorname{dom} h$ holds $\left(h \cdot s_{1}\right) \uparrow n=h \cdot\left(s_{1} \uparrow n\right)$.
(30) Let h_{1}, h_{2} be partial functions from S to T and s_{1} be a sequence of S. If h_{1} is total and h_{2} is total, then $\left(h_{1}+h_{2}\right) \cdot s_{1}=h_{1} \cdot s_{1}+h_{2} \cdot s_{1}$ and $\left(h_{1}-h_{2}\right) \cdot s_{1}=h_{1} \cdot s_{1}-h_{2} \cdot s_{1}$.
(31) Let h be a partial function from S to T, s_{1} be a sequence of S, and r be a real number. If h is total, then $(r h) \cdot s_{1}=r \cdot\left(h \cdot s_{1}\right)$.
(32) f is continuous in x_{0} if and only if the following conditions are satisfied:
(i) $\quad x_{0} \in \operatorname{dom} f$, and
(ii) for every sequence s_{4} of S such that $\operatorname{rng} s_{4} \subseteq \operatorname{dom} f$ and s_{4} is convergent and $\lim s_{4}=x_{0}$ and for every n holds $s_{4}(n) \neq x_{0}$ holds $f \cdot s_{4}$ is convergent and $f_{x_{0}}=\lim \left(f \cdot s_{4}\right)$.
(33) For all R_{2}, R_{3} holds $R_{2}+R_{3}$ is a rest of S, T and $R_{2}-R_{3}$ is a rest of S, T.
(34) For all r, R holds $r R$ is a rest of S, T.

Let us consider S, T, let f be a partial function from S to T, and let x_{0} be a point of S. We say that f is differentiable in x_{0} if and only if the condition (Def. 6) is satisfied.
(Def. 6) There exists a neighbourhood N of x_{0} such that $N \subseteq \operatorname{dom} f$ and there exist L, R such that for every point x of S such that $x \in N$ holds $f_{x}-f_{x_{0}}=$ $L\left(x-x_{0}\right)+R_{x-x_{0}}$.
Let us consider S, T, let f be a partial function from S to T, and let x_{0} be a point of S. Let us assume that f is differentiable in x_{0}. The functor $f^{\prime}\left(x_{0}\right)$ yielding a point of RNormSpaceOfBoundedLinearOperators (S, T) is defined by the condition (Def. 7).
(Def. 7) There exists a neighbourhood N of x_{0} such that $N \subseteq \operatorname{dom} f$ and there exists R such that for every point x of S such that $x \in N$ holds $f_{x}-f_{x_{0}}=$ $f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+R_{x-x_{0}}$.
Let us consider X, let us consider S, T, and let f be a partial function from S to T. We say that f is differentiable on X if and only if:
(Def. 8) $\quad X \subseteq \operatorname{dom} f$ and for every point x of S such that $x \in X$ holds $f \upharpoonright X$ is differentiable in x.
Next we state three propositions:
(35) Let f be a partial function from S to T. If f is differentiable on X, then X is a subset of the carrier of S.
(36) Let f be a partial function from S to T and Z be a subset of S. Suppose Z is open. Then f is differentiable on Z if and only if the following conditions are satisfied:
(i) $Z \subseteq \operatorname{dom} f$, and
(ii) for every point x of S such that $x \in Z$ holds f is differentiable in x.
(37) Let f be a partial function from S to T and Y be a subset of S. If f is differentiable on Y, then Y is open.
Let us consider S, T, let f be a partial function from S to T, and let X be a set. Let us assume that f is differentiable on X. The functor $f_{\Gamma X}^{\prime}$ yielding
a partial function from S to RNormSpaceOfBoundedLinearOperators (S, T) is defined by:
(Def. 9) $\quad \operatorname{dom}\left(f_{\uparrow}^{\prime}\right)=X$ and for every point x of S such that $x \in X$ holds $\left(f_{\mid X}^{\prime}\right)_{x}=$ $f^{\prime}(x)$.
One can prove the following proposition
(38) Let f be a partial function from S to T and Z be a subset of S. Suppose Z is open and $Z \subseteq \operatorname{dom} f$ and there exists a point r of T such that $\operatorname{rng} f=\{r\}$. Then f is differentiable on Z and for every point x of S such that $x \in Z$ holds $\left(f_{\lceil Z}^{\prime}\right)_{x}=0_{\text {RNormSpaceOfBoundedLinearOperators }(S, T)}$.
Let us consider S and let us consider h, n. Observe that $h \uparrow n$ is convergent to 0 .

Let us consider S and let us consider c, n. Observe that $c \uparrow n$ is constant.
The following propositions are true:
(39) Let x_{0} be a point of S and N be a neighbourhood of x_{0}. Suppose f is differentiable in x_{0} and $N \subseteq \operatorname{dom} f$. Let h be a convergent to 0 sequence of S and given c. If $\mathrm{rng} c=\left\{x_{0}\right\}$ and $\operatorname{rng}(h+c) \subseteq N$, then $f \cdot(h+c)-f \cdot c$ is convergent and $\lim (f \cdot(h+c)-f \cdot c)=0_{T}$.
(40) Let given f_{1}, f_{2}, x_{0}. Suppose f_{1} is differentiable in x_{0} and f_{2} is differentiable in x_{0}. Then $f_{1}+f_{2}$ is differentiable in x_{0} and $\left(f_{1}+f_{2}\right)^{\prime}\left(x_{0}\right)=$ $f_{1}{ }^{\prime}\left(x_{0}\right)+f_{2}{ }^{\prime}\left(x_{0}\right)$.
(41) Let given f_{1}, f_{2}, x_{0}. Suppose f_{1} is differentiable in x_{0} and f_{2} is differentiable in x_{0}. Then $f_{1}-f_{2}$ is differentiable in x_{0} and $\left(f_{1}-f_{2}\right)^{\prime}\left(x_{0}\right)=$ $f_{1}^{\prime}\left(x_{0}\right)-f_{2}^{\prime}\left(x_{0}\right)$.
(42) For all r, f, x_{0} such that f is differentiable in x_{0} holds $r f$ is differentiable in x_{0} and $(r f)^{\prime}\left(x_{0}\right)=r \cdot f^{\prime}\left(x_{0}\right)$.
(43) Let f be a partial function from S to S and Z be a subset of S. Suppose Z is open and $Z \subseteq \operatorname{dom} f$ and $f \upharpoonright Z=\operatorname{id}_{Z}$. Then f is differentiable on Z and for every point x of S such that $x \in Z$ holds $\left(f_{\mid Z}^{\prime}\right)_{x}=\operatorname{id}_{\text {the carrier of } S}$.
(44) Let Z be a subset of S. Suppose Z is open. Let given f_{1}, f_{2}. Suppose $Z \subseteq \operatorname{dom}\left(f_{1}+f_{2}\right)$ and f_{1} is differentiable on Z and f_{2} is differentiable on Z. Then $f_{1}+f_{2}$ is differentiable on Z and for every point x of S such that $x \in Z$ holds $\left(\left(f_{1}+f_{2}\right)^{\prime}{ }_{Z Z}\right)_{x}=f_{1}^{\prime}(x)+f_{2}^{\prime}(x)$.
(45) Let Z be a subset of S. Suppose Z is open. Let given f_{1}, f_{2}. Suppose $Z \subseteq \operatorname{dom}\left(f_{1}-f_{2}\right)$ and f_{1} is differentiable on Z and f_{2} is differentiable on Z. Then $f_{1}-f_{2}$ is differentiable on Z and for every point x of S such that $x \in Z$ holds $\left(\left(f_{1}-f_{2}\right)_{Y Z}^{\prime}\right)_{x}=f_{1}{ }^{\prime}(x)-f_{2}{ }^{\prime}(x)$.
(46) Let Z be a subset of S. Suppose Z is open. Let given r, f. Suppose $Z \subseteq \operatorname{dom}(r f)$ and f is differentiable on Z. Then $r f$ is differentiable on Z and for every point x of S such that $x \in Z$ holds $\left((r f)^{\prime}{ }_{Y}\right)_{x}=r \cdot f^{\prime}(x)$.
(47) Let Z be a subset of S. Suppose Z is open. Suppose $Z \subseteq \operatorname{dom} f$ and f
is a constant on Z. Then f is differentiable on Z and for every point x of S such that $x \in Z$ holds $\left(f_{\mid Z}^{\prime}\right)_{x}=0_{\text {RNormSpaceOfBoundedLinearOperators }(S, T)}$.
(48) Let f be a partial function from S to S, r be a real number, p be a point of S, and Z be a subset of S. Suppose Z is open. Suppose $Z \subseteq \operatorname{dom} f$ and for every point x of S such that $x \in Z$ holds $f_{x}=r \cdot x+p$. Then f is differentiable on Z and for every point x of S such that $x \in Z$ holds $\left(f_{\mid Z}^{\prime}\right)_{x}=r \cdot \operatorname{FuncUnit}(S)$.
(49) For every point x_{0} of S such that f is differentiable in x_{0} holds f is continuous in x_{0}.
(50) If f is differentiable on X, then f is continuous on X.
(51) For every subset Z of S such that Z is open holds if f is differentiable on X and $Z \subseteq X$, then f is differentiable on Z.
(52) Suppose f is differentiable in x_{0}. Then there exists a neighbourhood N of x_{0} such that
(i) $\quad N \subseteq \operatorname{dom} f$, and
(ii) there exists R such that $R_{0_{S}}=0_{T}$ and R is continuous in 0_{S} and for every point x of S such that $x \in N$ holds $f_{x}-f_{x_{0}}=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+R_{x-x_{0}}$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[8] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[9] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[10] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[11] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[12] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. Formalized Mathematics, 12(3):269-275, 2004.
[13] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[14] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[15] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2003.
[16] Yasunari Shidama. The Banach algebra of bounded linear operators. Formalized Mathematics, 12(2):103-108, 2004.
[17] Yasunari Shidama. The series on Banach algebra. Formalized Mathematics, 12(2):131138, 2004.
[18] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[19] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[21] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[22] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296,
[23] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[24] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[25] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992.

Received May 24, 2004

[^0]: Summary. In this article, the basic properties of the differentiable functions on normed linear spaces are described.

