The Differentiable Functions on Normed Linear Spaces

Hiroshi Imura Shinshu University Nagano Morishige Kimura Shinshu University Nagano Yasunari Shidama Shinshu University Nagano

Summary. In this article, the basic properties of the differentiable functions on normed linear spaces are described.

 ${\rm MML} \ {\rm Identifier:} \ {\tt NDIFF_1}.$

The notation and terminology used in this paper are introduced in the following papers: [20], [23], [4], [24], [6], [5], [19], [3], [10], [1], [18], [7], [21], [22], [11], [8], [9], [25], [13], [15], [16], [17], [12], [14], and [2].

For simplicity, we adopt the following rules: n, k denote natural numbers, x, X, Z denote sets, g, r denote real numbers, S denotes a real normed space, r_1 denotes a sequence of real numbers, s_1, s_2 denote sequences of S, x_0 denotes a point of S, and Y denotes a subset of S.

Next we state several propositions:

- (1) For every point x_0 of S and for all neighbourhoods N_1 , N_2 of x_0 there exists a neighbourhood N of x_0 such that $N \subseteq N_1$ and $N \subseteq N_2$.
- (2) Let X be a subset of S. Suppose X is open. Let r be a point of S. If $r \in X$, then there exists a neighbourhood N of r such that $N \subseteq X$.
- (3) Let X be a subset of S. Suppose X is open. Let r be a point of S. If r ∈ X, then there exists g such that 0 < g and {y; y ranges over points of S: ||y r|| < g} ⊆ X.
- (4) Let X be a subset of S. Suppose that for every point r of S such that $r \in X$ there exists a neighbourhood N of r such that $N \subseteq X$. Then X is open.
- (5) Let X be a subset of S. Then for every point r of S such that $r \in X$ there exists a neighbourhood N of r such that $N \subseteq X$ if and only if X is open.

C 2004 University of Białystok ISSN 1426-2630 Let S be a zero structure and let f be a sequence of S. We say that f is non-zero if and only if:

(Def. 1) rng $f \subseteq$ (the carrier of S) \ {0_S}.

We introduce f is non-zero as a synonym of f is non-zero.

We now state two propositions:

- (6) s_1 is non-zero iff for every x such that $x \in \mathbb{N}$ holds $s_1(x) \neq 0_S$.
- (7) s_1 is non-zero iff for every n holds $s_1(n) \neq 0_S$.

Let R_1 be a real linear space, let S be a sequence of R_1 , and let a be a sequence of real numbers. The functor a S yields a sequence of R_1 and is defined as follows:

(Def. 2) For every *n* holds $(a S)(n) = a(n) \cdot S(n)$.

Let R_1 be a real linear space, let z be a point of R_1 , and let a be a sequence of real numbers. The functor $a \cdot z$ yields a sequence of R_1 and is defined by:

(Def. 3) For every *n* holds $(a \cdot z)(n) = a(n) \cdot z$.

Next we state a number of propositions:

- (8) For all sequences r_2 , r_3 of real numbers holds $(r_2 + r_3) s_1 = r_2 s_1 + r_3 s_1$.
- (9) For every sequence r_1 of real numbers and for all sequences s_2 , s_3 of S holds $r_1 (s_2 + s_3) = r_1 s_2 + r_1 s_3$.
- (10) For every sequence r_1 of real numbers holds $r \cdot (r_1 s_1) = r_1 (r \cdot s_1)$.
- (11) For all sequences r_2 , r_3 of real numbers holds $(r_2 r_3) s_1 = r_2 s_1 r_3 s_1$.
- (12) For every sequence r_1 of real numbers and for all sequences s_2 , s_3 of S holds $r_1 (s_2 s_3) = r_1 s_2 r_1 s_3$.
- (13) If r_1 is convergent and s_1 is convergent, then $r_1 s_1$ is convergent.
- (14) If r_1 is convergent and s_1 is convergent, then $\lim(r_1 s_1) = \lim r_1 \cdot \lim s_1$.
- $(15) \quad (s_1 + s_2) \uparrow k = s_1 \uparrow k + s_2 \uparrow k.$
- (16) $(s_1 s_2) \uparrow k = s_1 \uparrow k s_2 \uparrow k.$
- (17) If s_1 is non-zero, then $s_1 \uparrow k$ is non-zero.
- (18) $s_1 \uparrow k$ is a subsequence of s_1 .
- (19) If s_1 is constant and s_2 is a subsequence of s_1 , then s_2 is constant.
- (20) If s_1 is constant and s_2 is a subsequence of s_1 , then $s_1 = s_2$.

Let us consider S and let I_1 be a sequence of S. We say that I_1 is convergent to 0 if and only if:

(Def. 4) I_1 is non-zero and convergent and $\lim I_1 = 0_S$.

The following propositions are true:

(21) Let X be a real normed space and s_1 be a sequence of X. Suppose s_1 is constant. Then s_1 is convergent and for every natural number k holds $\lim s_1 = s_1(k)$.

- (22) For every real number r such that 0 < r and for every n holds $s_1(n) = \frac{1}{n+r} \cdot x_0$ holds s_1 is convergent.
- (23) For every real number r such that 0 < r and for every n holds $s_1(n) = \frac{1}{n+r} \cdot x_0$ holds $\lim s_1 = 0_S$.
- (24) Let a be a convergent to 0 sequence of real numbers and z be a point of S. If $z \neq 0_S$, then $a \cdot z$ is convergent to 0.
- (25) For every point r of S holds $r \in Y$ iff $r \in$ the carrier of S iff Y = the carrier of S.

For simplicity, we adopt the following rules: S, T denote non trivial real normed spaces, f, f_1 , f_2 denote partial functions from S to T, s_4 , s_1 denote sequences of S, and x_0 denotes a point of S.

Let S be a non trivial real normed space. Note that there exists a sequence of S which is convergent to 0.

Let us consider S. Note that there exists a sequence of S which is constant.

In the sequel h is a convergent to 0 sequence of S and c is a constant sequence of S.

Let us consider S, T and let I_1 be a partial function from S to T. We say that I_1 is rest-like if and only if:

(Def. 5) I_1 is total and for every h holds $||h||^{-1}(I_1 \cdot h)$ is convergent and $\lim(||h||^{-1}(I_1 \cdot h)) = 0_T$.

Let us consider S, T. Observe that there exists a partial function from S to T which is rest-like.

Let us consider S, T. A rest of S, T is a rest-like partial function from S to T.

We now state two propositions:

- (26) Let R be a partial function from S to T. Suppose R is total. Then R is rest-like if and only if for every real number r such that r > 0 there exists a real number d such that d > 0 and for every point z of S such that $z \neq 0_S$ and ||z|| < d holds $||z||^{-1} \cdot ||R_z|| < r$.
- (27) For every rest R of S, T and for every convergent to 0 sequence s of S holds $R \cdot s$ is convergent and $\lim(R \cdot s) = 0_T$.

In the sequel R, R_2 , R_3 are rests of S, T and L is a point of RNormSpaceOfBoundedLinearOperators(S, T).

Next we state several propositions:

- (28) $\operatorname{rng}(s_1 \uparrow n) \subseteq \operatorname{rng} s_1.$
- (29) For every partial function h from S to T and for every sequence s_1 of S such that rng $s_1 \subseteq \text{dom } h$ holds $(h \cdot s_1) \uparrow n = h \cdot (s_1 \uparrow n)$.
- (30) Let h_1 , h_2 be partial functions from S to T and s_1 be a sequence of S. If h_1 is total and h_2 is total, then $(h_1 + h_2) \cdot s_1 = h_1 \cdot s_1 + h_2 \cdot s_1$ and $(h_1 - h_2) \cdot s_1 = h_1 \cdot s_1 - h_2 \cdot s_1$.

HIROSHI IMURA et al.

- (31) Let h be a partial function from S to T, s_1 be a sequence of S, and r be a real number. If h is total, then $(rh) \cdot s_1 = r \cdot (h \cdot s_1)$.
- (32) f is continuous in x_0 if and only if the following conditions are satisfied:
 - (i) $x_0 \in \operatorname{dom} f$, and
 - (ii) for every sequence s_4 of S such that $\operatorname{rng} s_4 \subseteq \operatorname{dom} f$ and s_4 is convergent and $\lim s_4 = x_0$ and for every n holds $s_4(n) \neq x_0$ holds $f \cdot s_4$ is convergent and $f_{x_0} = \lim(f \cdot s_4)$.
- (33) For all R_2 , R_3 holds $R_2 + R_3$ is a rest of S, T and $R_2 R_3$ is a rest of S, T.
- (34) For all r, R holds rR is a rest of S, T.

Let us consider S, T, let f be a partial function from S to T, and let x_0 be a point of S. We say that f is differentiable in x_0 if and only if the condition (Def. 6) is satisfied.

(Def. 6) There exists a neighbourhood N of x_0 such that $N \subseteq \text{dom } f$ and there exist L, R such that for every point x of S such that $x \in N$ holds $f_x - f_{x_0} = L(x - x_0) + R_{x - x_0}$.

Let us consider S, T, let f be a partial function from S to T, and let x_0 be a point of S. Let us assume that f is differentiable in x_0 . The functor $f'(x_0)$ yielding a point of RNormSpaceOfBoundedLinearOperators(S, T) is defined by the condition (Def. 7).

(Def. 7) There exists a neighbourhood N of x_0 such that $N \subseteq \text{dom } f$ and there exists R such that for every point x of S such that $x \in N$ holds $f_x - f_{x_0} = f'(x_0)(x - x_0) + R_{x-x_0}$.

Let us consider X, let us consider S, T, and let f be a partial function from S to T. We say that f is differentiable on X if and only if:

(Def. 8) $X \subseteq \text{dom } f$ and for every point x of S such that $x \in X$ holds $f \upharpoonright X$ is differentiable in x.

Next we state three propositions:

- (35) Let f be a partial function from S to T. If f is differentiable on X, then X is a subset of the carrier of S.
- (36) Let f be a partial function from S to T and Z be a subset of S. Suppose Z is open. Then f is differentiable on Z if and only if the following conditions are satisfied:
 - (i) $Z \subseteq \operatorname{dom} f$, and
 - (ii) for every point x of S such that $x \in Z$ holds f is differentiable in x.
- (37) Let f be a partial function from S to T and Y be a subset of S. If f is differentiable on Y, then Y is open.

Let us consider S, T, let f be a partial function from S to T, and let X be a set. Let us assume that f is differentiable on X. The functor $f'_{\uparrow X}$ yielding

324

a partial function from S to RNormSpaceOfBoundedLinearOperators(S, T) is defined by:

(Def. 9) dom $(f'_{\uparrow X}) = X$ and for every point x of S such that $x \in X$ holds $(f'_{\uparrow X})_x = f'(x)$.

One can prove the following proposition

(38) Let f be a partial function from S to T and Z be a subset of S. Suppose Z is open and $Z \subseteq \text{dom } f$ and there exists a point r of T such that $\text{rng } f = \{r\}$. Then f is differentiable on Z and for every point x of S such that $x \in Z$ holds $(f'_{|Z})_x = 0_{\text{RNormSpaceOfBoundedLinearOperators}(S,T)$.

Let us consider S and let us consider h, n. Observe that $h \uparrow n$ is convergent to 0.

Let us consider S and let us consider c, n. Observe that $c \uparrow n$ is constant. The following propositions are true:

- (39) Let x_0 be a point of S and N be a neighbourhood of x_0 . Suppose f is differentiable in x_0 and $N \subseteq \text{dom } f$. Let h be a convergent to 0 sequence of S and given c. If $\text{rng } c = \{x_0\}$ and $\text{rng}(h+c) \subseteq N$, then $f \cdot (h+c) f \cdot c$ is convergent and $\lim_{t \to \infty} (f \cdot (h+c) f \cdot c) = 0_T$.
- (40) Let given f_1 , f_2 , x_0 . Suppose f_1 is differentiable in x_0 and f_2 is differentiable in x_0 . Then $f_1 + f_2$ is differentiable in x_0 and $(f_1 + f_2)'(x_0) = f_1'(x_0) + f_2'(x_0)$.
- (41) Let given f_1 , f_2 , x_0 . Suppose f_1 is differentiable in x_0 and f_2 is differentiable in x_0 . Then $f_1 f_2$ is differentiable in x_0 and $(f_1 f_2)'(x_0) = f_1'(x_0) f_2'(x_0)$.
- (42) For all r, f, x_0 such that f is differentiable in x_0 holds r f is differentiable in x_0 and $(r f)'(x_0) = r \cdot f'(x_0)$.
- (43) Let f be a partial function from S to S and Z be a subset of S. Suppose Z is open and $Z \subseteq \text{dom } f$ and $f \upharpoonright Z = \text{id}_Z$. Then f is differentiable on Z and for every point x of S such that $x \in Z$ holds $(f'_{|Z})_x = \text{id}_{\text{the carrier of } S}$.
- (44) Let Z be a subset of S. Suppose Z is open. Let given f_1 , f_2 . Suppose $Z \subseteq \text{dom}(f_1 + f_2)$ and f_1 is differentiable on Z and f_2 is differentiable on Z. Then $f_1 + f_2$ is differentiable on Z and for every point x of S such that $x \in Z$ holds $((f_1 + f_2)'_{|Z})_x = f_1'(x) + f_2'(x)$.
- (45) Let Z be a subset of S. Suppose Z is open. Let given f_1 , f_2 . Suppose $Z \subseteq \text{dom}(f_1 f_2)$ and f_1 is differentiable on Z and f_2 is differentiable on Z. Then $f_1 f_2$ is differentiable on Z and for every point x of S such that $x \in Z$ holds $((f_1 f_2)'_{|Z})_x = f_1'(x) f_2'(x)$.
- (46) Let Z be a subset of S. Suppose Z is open. Let given r, f. Suppose $Z \subseteq \operatorname{dom}(r f)$ and f is differentiable on Z. Then r f is differentiable on Z and for every point x of S such that $x \in Z$ holds $((r f)'_{\uparrow Z})_x = r \cdot f'(x)$.
- (47) Let Z be a subset of S. Suppose Z is open. Suppose $Z \subseteq \text{dom } f$ and f

HIROSHI IMURA et al.

is a constant on Z. Then f is differentiable on Z and for every point x of S such that $x \in Z$ holds $(f'_{\uparrow Z})_x = 0_{\text{RNormSpaceOfBoundedLinearOperators}(S,T)$.

- (48) Let f be a partial function from S to S, r be a real number, p be a point of S, and Z be a subset of S. Suppose Z is open. Suppose $Z \subseteq \text{dom } f$ and for every point x of S such that $x \in Z$ holds $f_x = r \cdot x + p$. Then fis differentiable on Z and for every point x of S such that $x \in Z$ holds $(f'_{|Z})_x = r \cdot \text{FuncUnit}(S)$.
- (49) For every point x_0 of S such that f is differentiable in x_0 holds f is continuous in x_0 .
- (50) If f is differentiable on X, then f is continuous on X.
- (51) For every subset Z of S such that Z is open holds if f is differentiable on X and $Z \subseteq X$, then f is differentiable on Z.
- (52) Suppose f is differentiable in x_0 . Then there exists a neighbourhood N of x_0 such that
 - (i) $N \subseteq \text{dom } f$, and
 - (ii) there exists R such that $R_{0_S} = 0_T$ and R is continuous in 0_S and for every point x of S such that $x \in N$ holds $f_x - f_{x_0} = f'(x_0)(x - x_0) + R_{x - x_0}$.

References

- [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [2] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433–439, 1990.
- [3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(1):153–164, 1990.
- [6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [8] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
- [9] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
- [10] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697–702, 1990.
- Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
- [12] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. *Formalized Mathematics*, 12(3):269–275, 2004.
- [13] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
- [14] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797–801, 1990.
- [15] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39–48, 2003.
- [16] Yasunari Shidama. The Banach algebra of bounded linear operators. Formalized Mathematics, 12(2):103–108, 2004.
- [17] Yasunari Shidama. The series on Banach algebra. Formalized Mathematics, 12(2):131– 138, 2004.
- [18] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.

- [19] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
- 1990.
 [21] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,
- [22] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296,
- 1990.
 [23] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [24] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.
 [25] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Ma-
- [25] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171–175, 1992.

Received May 24, 2004