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The notation and terminology used in this paper are introduced in the following

papers: [20], [23], [4], [24], [6], [5], [19], [3], [10], [1], [18], [7], [21], [22], [11], [8],

[9], [25], [13], [15], [16], [17], [12], [14], and [2].

For simplicity, we adopt the following rules: n, k denote natural numbers, x,

X, Z denote sets, g, r denote real numbers, S denotes a real normed space, r1

denotes a sequence of real numbers, s1, s2 denote sequences of S, x0 denotes a

point of S, and Y denotes a subset of S.

Next we state several propositions:

(1) For every point x0 of S and for all neighbourhoods N1, N2 of x0 there

exists a neighbourhood N of x0 such that N ⊆ N1 and N ⊆ N2.

(2) Let X be a subset of S. Suppose X is open. Let r be a point of S. If

r ∈ X, then there exists a neighbourhood N of r such that N ⊆ X.

(3) Let X be a subset of S. Suppose X is open. Let r be a point of S. If

r ∈ X, then there exists g such that 0 < g and {y; y ranges over points of

S: ‖y − r‖ < g} ⊆ X.

(4) Let X be a subset of S. Suppose that for every point r of S such that

r ∈ X there exists a neighbourhood N of r such that N ⊆ X. Then X is

open.

(5) Let X be a subset of S. Then for every point r of S such that r ∈ X

there exists a neighbourhood N of r such that N ⊆ X if and only if X is

open.
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Let S be a zero structure and let f be a sequence of S. We say that f is

non-zero if and only if:

(Def. 1) rng f ⊆ (the carrier of S) \ {0S}.

We introduce f is non-zero as a synonym of f is non-zero.

We now state two propositions:

(6) s1 is non-zero iff for every x such that x ∈ N holds s1(x) 6= 0S .

(7) s1 is non-zero iff for every n holds s1(n) 6= 0S .

Let R1 be a real linear space, let S be a sequence of R1, and let a be a

sequence of real numbers. The functor a S yields a sequence of R1 and is defined

as follows:

(Def. 2) For every n holds (a S)(n) = a(n) · S(n).

Let R1 be a real linear space, let z be a point of R1, and let a be a sequence

of real numbers. The functor a · z yields a sequence of R1 and is defined by:

(Def. 3) For every n holds (a · z)(n) = a(n) · z.

Next we state a number of propositions:

(8) For all sequences r2, r3 of real numbers holds (r2 + r3) s1 = r2 s1 + r3 s1.

(9) For every sequence r1 of real numbers and for all sequences s2, s3 of S

holds r1 (s2 + s3) = r1 s2 + r1 s3.

(10) For every sequence r1 of real numbers holds r · (r1 s1) = r1 (r · s1).

(11) For all sequences r2, r3 of real numbers holds (r2− r3) s1 = r2 s1− r3 s1.

(12) For every sequence r1 of real numbers and for all sequences s2, s3 of S

holds r1 (s2 − s3) = r1 s2 − r1 s3.

(13) If r1 is convergent and s1 is convergent, then r1 s1 is convergent.

(14) If r1 is convergent and s1 is convergent, then lim(r1 s1) = lim r1 · lim s1.

(15) (s1 + s2) ↑ k = s1 ↑ k + s2 ↑ k.

(16) (s1 − s2) ↑ k = s1 ↑ k − s2 ↑ k.

(17) If s1 is non-zero, then s1 ↑ k is non-zero.

(18) s1 ↑ k is a subsequence of s1.

(19) If s1 is constant and s2 is a subsequence of s1, then s2 is constant.

(20) If s1 is constant and s2 is a subsequence of s1, then s1 = s2.

Let us consider S and let I1 be a sequence of S. We say that I1 is convergent

to 0 if and only if:

(Def. 4) I1 is non-zero and convergent and lim I1 = 0S .

The following propositions are true:

(21) Let X be a real normed space and s1 be a sequence of X. Suppose s1

is constant. Then s1 is convergent and for every natural number k holds

lim s1 = s1(k).
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(22) For every real number r such that 0 < r and for every n holds s1(n) =
1

n+r
· x0 holds s1 is convergent.

(23) For every real number r such that 0 < r and for every n holds s1(n) =
1

n+r
· x0 holds lim s1 = 0S .

(24) Let a be a convergent to 0 sequence of real numbers and z be a point of

S. If z 6= 0S , then a · z is convergent to 0.

(25) For every point r of S holds r ∈ Y iff r ∈ the carrier of S iff Y = the

carrier of S.

For simplicity, we adopt the following rules: S, T denote non trivial real

normed spaces, f , f1, f2 denote partial functions from S to T , s4, s1 denote

sequences of S, and x0 denotes a point of S.

Let S be a non trivial real normed space. Note that there exists a sequence

of S which is convergent to 0.

Let us consider S. Note that there exists a sequence of S which is constant.

In the sequel h is a convergent to 0 sequence of S and c is a constant sequence

of S.

Let us consider S, T and let I1 be a partial function from S to T . We say

that I1 is rest-like if and only if:

(Def. 5) I1 is total and for every h holds ‖h‖−1 (I1 · h) is convergent and

lim(‖h‖−1 (I1 · h)) = 0T .

Let us consider S, T . Observe that there exists a partial function from S to

T which is rest-like.

Let us consider S, T . A rest of S, T is a rest-like partial function from S to

T .

We now state two propositions:

(26) Let R be a partial function from S to T . Suppose R is total. Then R

is rest-like if and only if for every real number r such that r > 0 there

exists a real number d such that d > 0 and for every point z of S such

that z 6= 0S and ‖z‖ < d holds ‖z‖−1 · ‖Rz‖ < r.

(27) For every rest R of S, T and for every convergent to 0 sequence s of S

holds R · s is convergent and lim(R · s) = 0T .

In the sequel R, R2, R3 are rests of S, T and L is a point of

RNormSpaceOfBoundedLinearOperators(S, T ).

Next we state several propositions:

(28) rng(s1 ↑ n) ⊆ rng s1.

(29) For every partial function h from S to T and for every sequence s1 of S

such that rng s1 ⊆ domh holds (h · s1) ↑ n = h · (s1 ↑ n).

(30) Let h1, h2 be partial functions from S to T and s1 be a sequence of S.

If h1 is total and h2 is total, then (h1 + h2) · s1 = h1 · s1 + h2 · s1 and

(h1 − h2) · s1 = h1 · s1 − h2 · s1.
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(31) Let h be a partial function from S to T , s1 be a sequence of S, and r be

a real number. If h is total, then (r h) · s1 = r · (h · s1).

(32) f is continuous in x0 if and only if the following conditions are satisfied:

(i) x0 ∈ dom f, and

(ii) for every sequence s4 of S such that rng s4 ⊆ dom f and s4 is convergent

and lim s4 = x0 and for every n holds s4(n) 6= x0 holds f · s4 is convergent

and fx0
= lim(f · s4).

(33) For all R2, R3 holds R2 + R3 is a rest of S, T and R2 − R3 is a rest of

S, T .

(34) For all r, R holds r R is a rest of S, T .

Let us consider S, T , let f be a partial function from S to T , and let x0 be

a point of S. We say that f is differentiable in x0 if and only if the condition

(Def. 6) is satisfied.

(Def. 6) There exists a neighbourhood N of x0 such that N ⊆ dom f and there

exist L, R such that for every point x of S such that x ∈ N holds fx−fx0
=

L(x− x0) + Rx−x0
.

Let us consider S, T , let f be a partial function from S to T , and let x0 be

a point of S. Let us assume that f is differentiable in x0. The functor f ′(x0)

yielding a point of RNormSpaceOfBoundedLinearOperators(S, T ) is defined by

the condition (Def. 7).

(Def. 7) There exists a neighbourhood N of x0 such that N ⊆ dom f and there

exists R such that for every point x of S such that x ∈ N holds fx−fx0
=

f ′(x0)(x− x0) + Rx−x0
.

Let us consider X, let us consider S, T , and let f be a partial function from

S to T . We say that f is differentiable on X if and only if:

(Def. 8) X ⊆ dom f and for every point x of S such that x ∈ X holds f↾X is

differentiable in x.

Next we state three propositions:

(35) Let f be a partial function from S to T . If f is differentiable on X, then

X is a subset of the carrier of S.

(36) Let f be a partial function from S to T and Z be a subset of S. Suppose Z

is open. Then f is differentiable on Z if and only if the following conditions

are satisfied:

(i) Z ⊆ dom f, and

(ii) for every point x of S such that x ∈ Z holds f is differentiable in x.

(37) Let f be a partial function from S to T and Y be a subset of S. If f is

differentiable on Y , then Y is open.

Let us consider S, T , let f be a partial function from S to T , and let X

be a set. Let us assume that f is differentiable on X. The functor f ′↾X yielding
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a partial function from S to RNormSpaceOfBoundedLinearOperators(S, T ) is

defined by:

(Def. 9) dom(f ′↾X) = X and for every point x of S such that x ∈ X holds (f ′↾X)x =

f ′(x).

One can prove the following proposition

(38) Let f be a partial function from S to T and Z be a subset of S. Suppose

Z is open and Z ⊆ dom f and there exists a point r of T such that

rng f = {r}. Then f is differentiable on Z and for every point x of S such

that x ∈ Z holds (f ′↾Z)x = 0RNormSpaceOfBoundedLinearOperators(S,T ).

Let us consider S and let us consider h, n. Observe that h ↑ n is convergent

to 0.

Let us consider S and let us consider c, n. Observe that c ↑ n is constant.

The following propositions are true:

(39) Let x0 be a point of S and N be a neighbourhood of x0. Suppose f is

differentiable in x0 and N ⊆ dom f. Let h be a convergent to 0 sequence

of S and given c. If rng c = {x0} and rng(h+ c) ⊆ N, then f · (h+ c)−f · c

is convergent and lim(f · (h + c)− f · c) = 0T .

(40) Let given f1, f2, x0. Suppose f1 is differentiable in x0 and f2 is diffe-

rentiable in x0. Then f1 + f2 is differentiable in x0 and (f1 + f2)
′(x0) =

f1
′(x0) + f2

′(x0).

(41) Let given f1, f2, x0. Suppose f1 is differentiable in x0 and f2 is diffe-

rentiable in x0. Then f1 − f2 is differentiable in x0 and (f1 − f2)
′(x0) =

f1
′(x0)− f2

′(x0).

(42) For all r, f , x0 such that f is differentiable in x0 holds r f is differentiable

in x0 and (r f)′(x0) = r · f ′(x0).

(43) Let f be a partial function from S to S and Z be a subset of S. Suppose

Z is open and Z ⊆ dom f and f↾Z = idZ . Then f is differentiable on Z

and for every point x of S such that x ∈ Z holds (f ′↾Z)x = idthe carrier of S .

(44) Let Z be a subset of S. Suppose Z is open. Let given f1, f2. Suppose

Z ⊆ dom(f1 + f2) and f1 is differentiable on Z and f2 is differentiable on

Z. Then f1 + f2 is differentiable on Z and for every point x of S such that

x ∈ Z holds ((f1 + f2)
′

↾Z)x = f1
′(x) + f2

′(x).

(45) Let Z be a subset of S. Suppose Z is open. Let given f1, f2. Suppose

Z ⊆ dom(f1 − f2) and f1 is differentiable on Z and f2 is differentiable on

Z. Then f1− f2 is differentiable on Z and for every point x of S such that

x ∈ Z holds ((f1 − f2)
′

↾Z)x = f1
′(x)− f2

′(x).

(46) Let Z be a subset of S. Suppose Z is open. Let given r, f . Suppose

Z ⊆ dom(r f) and f is differentiable on Z. Then r f is differentiable on Z

and for every point x of S such that x ∈ Z holds ((r f)′↾Z)x = r · f ′(x).

(47) Let Z be a subset of S. Suppose Z is open. Suppose Z ⊆ dom f and f
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is a constant on Z. Then f is differentiable on Z and for every point x of

S such that x ∈ Z holds (f ′↾Z)x = 0RNormSpaceOfBoundedLinearOperators(S,T ).

(48) Let f be a partial function from S to S, r be a real number, p be a point

of S, and Z be a subset of S. Suppose Z is open. Suppose Z ⊆ dom f

and for every point x of S such that x ∈ Z holds fx = r · x + p. Then f

is differentiable on Z and for every point x of S such that x ∈ Z holds

(f ′↾Z)x = r · FuncUnit(S).

(49) For every point x0 of S such that f is differentiable in x0 holds f is

continuous in x0.

(50) If f is differentiable on X, then f is continuous on X.

(51) For every subset Z of S such that Z is open holds if f is differentiable

on X and Z ⊆ X, then f is differentiable on Z.

(52) Suppose f is differentiable in x0. Then there exists a neighbourhood N

of x0 such that

(i) N ⊆ dom f, and

(ii) there exists R such that R0S
= 0T and R is continuous in 0S and for

every point x of S such that x ∈ N holds fx−fx0
= f ′(x0)(x−x0)+Rx−x0

.
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