Continuous Functions on Real and Complex Normed Linear Spaces

Noboru Endou
Gifu National College of Technology

Summary. This article is an extension of [18].

MML Identifier: NCFCONT1.

The notation and terminology used here are introduced in the following papers: [25], [28], [29], [4], [30], [6], [14], [5], [2], [24], [10], [26], [27], [19], [15], [12], [13], [11], [31], [20], [3], [1], [16], [21], [17], [23], [7], [8], [22], [18], and [9].

For simplicity, we use the following convention: n denotes a natural number, r, s denote real numbers, z denotes a complex number, C_{1}, C_{2}, C_{3} denote complex normed spaces, and R_{1} denotes a real normed space.

Let C_{4} be a complex linear space and let s_{1} be a sequence of C_{4}. The functor $-s_{1}$ yields a sequence of C_{4} and is defined by:
(Def. 1) For every n holds $\left(-s_{1}\right)(n)=-s_{1}(n)$.
The following propositions are true:
(1) For all sequences s_{2}, s_{3} of C_{1} holds $s_{2}-s_{3}=s_{2}+-s_{3}$.
(2) For every sequence s_{1} of C_{1} holds $-s_{1}=\left(-1_{\mathbb{C}}\right) \cdot s_{1}$.

Let us consider C_{2}, C_{3} and let f be a partial function from C_{2} to C_{3}. The functor $\|f\|$ yielding a partial function from the carrier of C_{2} to \mathbb{R} is defined by:
(Def. 2) $\operatorname{dom}\|f\|=\operatorname{dom} f$ and for every point c of C_{2} such that $c \in \operatorname{dom}\|f\|$ holds $\|f\|(c)=\left\|f_{c}\right\|$.
Let us consider C_{1}, R_{1} and let f be a partial function from C_{1} to R_{1}. The functor $\|f\|$ yielding a partial function from the carrier of C_{1} to \mathbb{R} is defined as follows:
(Def. 3) $\operatorname{dom}\|f\|=\operatorname{dom} f$ and for every point c of C_{1} such that $c \in \operatorname{dom}\|f\|$ holds $\|f\|(c)=\left\|f_{c}\right\|$.

Let us consider R_{1}, C_{1} and let f be a partial function from R_{1} to C_{1}. The functor $\|f\|$ yielding a partial function from the carrier of R_{1} to \mathbb{R} is defined by:
(Def. 4) $\operatorname{dom}\|f\|=\operatorname{dom} f$ and for every point c of R_{1} such that $c \in \operatorname{dom}\|f\|$ holds $\|f\|(c)=\left\|f_{c}\right\|$.
Let us consider C_{1} and let x_{0} be a point of C_{1}. A subset of C_{1} is called a neighbourhood of x_{0} if:
(Def. 5) There exists a real number g such that $0<g$ and $\{y ; y$ ranges over points of $\left.C_{1}:\left\|y-x_{0}\right\|<g\right\} \subseteq$ it.

Next we state two propositions:
(3) Let x_{0} be a point of C_{1} and g be a real number. If $0<g$, then $\{y ; y$ ranges over points of $\left.C_{1}:\left\|y-x_{0}\right\|<g\right\}$ is a neighbourhood of x_{0}.
(4) For every point x_{0} of C_{1} and for every neighbourhood N of x_{0} holds $x_{0} \in N$.
Let us consider C_{1} and let X be a subset of C_{1}. We say that X is compact if and only if the condition (Def. 6) is satisfied.
(Def. 6) Let s_{4} be a sequence of C_{1}. Suppose rng $s_{4} \subseteq X$. Then there exists a sequence s_{5} of C_{1} such that s_{5} is a subsequence of s_{4} and convergent and $\lim s_{5} \in X$.
Let us consider C_{1} and let X be a subset of C_{1}. We say that X is closed if and only if:
(Def. 7) For every sequence s_{4} of C_{1} such that rng $s_{4} \subseteq X$ and s_{4} is convergent holds $\lim s_{4} \in X$.
Let us consider C_{1} and let X be a subset of C_{1}. We say that X is open if and only if:
(Def. 8) $\quad X^{\mathrm{c}}$ is closed.
Let us consider C_{2}, C_{3}, let f be a partial function from C_{2} to C_{3}, and let s_{1} be a sequence of C_{2}. Let us assume that $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$. The functor $f \cdot s_{1}$ yields a sequence of C_{3} and is defined by:
(Def. 9) $f \cdot s_{1}=\left(f\right.$ qua function) $\cdot\left(s_{1}\right)$.
Let us consider C_{1}, R_{1}, let f be a partial function from C_{1} to R_{1}, and let s_{1} be a sequence of C_{1}. Let us assume that $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$. The functor $f \cdot s_{1}$ yielding a sequence of R_{1} is defined by:
(Def. 10) $\quad f \cdot s_{1}=\left(f\right.$ qua function) $\cdot\left(s_{1}\right)$.
Let us consider C_{1}, R_{1}, let f be a partial function from R_{1} to C_{1}, and let s_{1} be a sequence of R_{1}. Let us assume that $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$. The functor $f \cdot s_{1}$ yields a sequence of C_{1} and is defined by:
(Def. 11) $f \cdot s_{1}=\left(f\right.$ qua function) $\cdot\left(s_{1}\right)$.
Let us consider C_{1}, let f be a partial function from the carrier of C_{1} to \mathbb{C}, and let s_{1} be a sequence of C_{1}. Let us assume that $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$. The functor
$f \cdot s_{1}$ yields a complex sequence and is defined as follows:
(Def. 12) $f \cdot s_{1}=\left(f\right.$ qua function) $\cdot\left(s_{1}\right)$.
Let us consider R_{1}, let f be a partial function from the carrier of R_{1} to \mathbb{C}, and let s_{1} be a sequence of R_{1}. Let us assume that $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$. The functor $f \cdot s_{1}$ yielding a complex sequence is defined by:
(Def. 13) $f \cdot s_{1}=\left(f\right.$ qua function) $\cdot\left(s_{1}\right)$.
Let us consider C_{1}, let f be a partial function from the carrier of C_{1} to \mathbb{R}, and let s_{1} be a sequence of C_{1}. Let us assume that $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$. The functor $f \cdot s_{1}$ yielding a sequence of real numbers is defined as follows:
(Def. 14) $f \cdot s_{1}=\left(f\right.$ qua function) $\cdot\left(s_{1}\right)$.
Let us consider C_{2}, C_{3}, let f be a partial function from C_{2} to C_{3}, and let x_{0} be a point of C_{2}. We say that f is continuous in x_{0} if and only if the conditions (Def. 15) are satisfied.
(Def. 15)(i) $\quad x_{0} \in \operatorname{dom} f$, and
(ii) for every sequence s_{1} of C_{2} such that $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ and s_{1} is convergent and $\lim s_{1}=x_{0}$ holds $f \cdot s_{1}$ is convergent and $f_{x_{0}}=\lim \left(f \cdot s_{1}\right)$.
Let us consider C_{1}, R_{1}, let f be a partial function from C_{1} to R_{1}, and let x_{0} be a point of C_{1}. We say that f is continuous in x_{0} if and only if the conditions (Def. 16) are satisfied.
(Def. 16)(i) $\quad x_{0} \in \operatorname{dom} f$, and
(ii) for every sequence s_{1} of C_{1} such that $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ and s_{1} is convergent and $\lim s_{1}=x_{0}$ holds $f \cdot s_{1}$ is convergent and $f_{x_{0}}=\lim \left(f \cdot s_{1}\right)$.
Let us consider R_{1}, let us consider C_{1}, let f be a partial function from R_{1} to C_{1}, and let x_{0} be a point of R_{1}. We say that f is continuous in x_{0} if and only if the conditions (Def. 17) are satisfied.
(Def. 17)(i) $\quad x_{0} \in \operatorname{dom} f$, and
(ii) for every sequence s_{1} of R_{1} such that $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ and s_{1} is convergent and $\lim s_{1}=x_{0}$ holds $f \cdot s_{1}$ is convergent and $f_{x_{0}}=\lim \left(f \cdot s_{1}\right)$.
Let us consider C_{1}, let f be a partial function from the carrier of C_{1} to \mathbb{C}, and let x_{0} be a point of C_{1}. We say that f is continuous in x_{0} if and only if the conditions (Def. 18) are satisfied.
(Def. 18)(i) $\quad x_{0} \in \operatorname{dom} f$, and
(ii) for every sequence s_{1} of C_{1} such that $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ and s_{1} is convergent and $\lim s_{1}=x_{0}$ holds $f \cdot s_{1}$ is convergent and $f_{x_{0}}=\lim \left(f \cdot s_{1}\right)$.
Let us consider C_{1}, let f be a partial function from the carrier of C_{1} to \mathbb{R}, and let x_{0} be a point of C_{1}. We say that f is continuous in x_{0} if and only if the conditions (Def. 19) are satisfied.
(Def. 19)(i) $\quad x_{0} \in \operatorname{dom} f$, and
(ii) for every sequence s_{1} of C_{1} such that $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ and s_{1} is convergent and $\lim s_{1}=x_{0}$ holds $f \cdot s_{1}$ is convergent and $f_{x_{0}}=\lim \left(f \cdot s_{1}\right)$.

Let us consider R_{1}, let f be a partial function from the carrier of R_{1} to \mathbb{C}, and let x_{0} be a point of R_{1}. We say that f is continuous in x_{0} if and only if the conditions (Def. 20) are satisfied.
(Def. 20)(i) $\quad x_{0} \in \operatorname{dom} f$, and
(ii) for every sequence s_{1} of R_{1} such that $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ and s_{1} is convergent and $\lim s_{1}=x_{0}$ holds $f \cdot s_{1}$ is convergent and $f_{x_{0}}=\lim \left(f \cdot s_{1}\right)$.
The following propositions are true:
(5) For every sequence s_{1} of C_{2} and for every partial function h from C_{2} to C_{3} such that rng $s_{1} \subseteq$ dom h holds $s_{1}(n) \in \operatorname{dom} h$.
(6) For every sequence s_{1} of C_{1} and for every partial function h from C_{1} to R_{1} such that rng $s_{1} \subseteq \operatorname{dom} h$ holds $s_{1}(n) \in \operatorname{dom} h$.
(7) For every sequence s_{1} of R_{1} and for every partial function h from R_{1} to C_{1} such that $\operatorname{rng} s_{1} \subseteq$ dom h holds $s_{1}(n) \in \operatorname{dom} h$.
(8) For every sequence s_{1} of C_{1} and for every set x holds $x \in \operatorname{rng} s_{1}$ iff there exists n such that $x=s_{1}(n)$.
(9) For all sequences s_{1}, s_{2} of C_{1} such that s_{2} is a subsequence of s_{1} holds $\operatorname{rng} s_{2} \subseteq \operatorname{rng} s_{1}$.
(10) Let f be a partial function from C_{2} to C_{3} and C_{5} be a sequence of C_{2}. If $\operatorname{rng} C_{5} \subseteq \operatorname{dom} f$, then for every n holds $\left(f \cdot C_{5}\right)(n)=f_{C_{5}(n)}$.
(11) Let f be a partial function from C_{1} to R_{1} and C_{5} be a sequence of C_{1}. If rng $C_{5} \subseteq \operatorname{dom} f$, then for every n holds $\left(f \cdot C_{5}\right)(n)=f_{C_{5}(n)}$.
(12) Let f be a partial function from R_{1} to C_{1} and R_{2} be a sequence of R_{1}. If $\operatorname{rng} R_{2} \subseteq \operatorname{dom} f$, then for every n holds $\left(f \cdot R_{2}\right)(n)=f_{R_{2}(n)}$.
(13) Let f be a partial function from the carrier of C_{1} to \mathbb{C} and C_{5} be a sequence of C_{1}. If $\operatorname{rng} C_{5} \subseteq \operatorname{dom} f$, then for every n holds $\left(f \cdot C_{5}\right)(n)=$ $f_{C_{5}(n)}$.
(14) Let f be a partial function from the carrier of C_{1} to \mathbb{R} and C_{5} be a sequence of C_{1}. If $\operatorname{rng} C_{5} \subseteq \operatorname{dom} f$, then for every n holds $\left(f \cdot C_{5}\right)(n)=$ $f_{C_{5}(n)}$.
(15) Let f be a partial function from the carrier of R_{1} to \mathbb{C} and R_{2} be a sequence of R_{1}. If $\operatorname{rng} R_{2} \subseteq \operatorname{dom} f$, then for every n holds $\left(f \cdot R_{2}\right)(n)=$ $f_{R_{2}(n)}$.
(16) Let h be a partial function from C_{2} to C_{3}, C_{5} be a sequence of C_{2}, and N_{1} be an increasing sequence of naturals. If $\operatorname{rng} C_{5} \subseteq \operatorname{dom} h$, then $\left(h \cdot C_{5}\right) \cdot N_{1}=h \cdot\left(C_{5} \cdot N_{1}\right)$.
(17) Let h be a partial function from C_{1} to R_{1}, C_{6} be a sequence of C_{1}, and N_{1} be an increasing sequence of naturals. If $\operatorname{rng} C_{6} \subseteq \operatorname{dom} h$, then $\left(h \cdot C_{6}\right) \cdot N_{1}=h \cdot\left(C_{6} \cdot N_{1}\right)$.
(18) Let h be a partial function from R_{1} to C_{1}, R_{3} be a sequence of R_{1},
and N_{1} be an increasing sequence of naturals. If $\operatorname{rng} R_{3} \subseteq \operatorname{dom} h$, then $\left(h \cdot R_{3}\right) \cdot N_{1}=h \cdot\left(R_{3} \cdot N_{1}\right)$.
(19) Let h be a partial function from the carrier of C_{1} to \mathbb{C}, C_{6} be a sequence of C_{1}, and N_{1} be an increasing sequence of naturals. If $\operatorname{rng} C_{6} \subseteq \operatorname{dom} h$, then $\left(h \cdot C_{6}\right) \cdot N_{1}=h \cdot\left(C_{6} \cdot N_{1}\right)$.
(20) Let h be a partial function from the carrier of C_{1} to \mathbb{R}, C_{6} be a sequence of C_{1}, and N_{1} be an increasing sequence of naturals. If $\operatorname{rng} C_{6} \subseteq \operatorname{dom} h$, then $\left(h \cdot C_{6}\right) \cdot N_{1}=h \cdot\left(C_{6} \cdot N_{1}\right)$.
(21) Let h be a partial function from the carrier of R_{1} to \mathbb{C}, R_{3} be a sequence of R_{1}, and N_{1} be an increasing sequence of naturals. If $\operatorname{rng} R_{3} \subseteq \operatorname{dom} h$, then $\left(h \cdot R_{3}\right) \cdot N_{1}=h \cdot\left(R_{3} \cdot N_{1}\right)$.
(22) Let h be a partial function from C_{2} to C_{3} and C_{7}, C_{8} be sequences of C_{2}. If $\operatorname{rng} C_{7} \subseteq \operatorname{dom} h$ and C_{8} is a subsequence of C_{7}, then $h \cdot C_{8}$ is a subsequence of $h \cdot C_{7}$.
(23) Let h be a partial function from C_{1} to R_{1} and C_{7}, C_{8} be sequences of C_{1}. If $\operatorname{rng} C_{7} \subseteq \operatorname{dom} h$ and C_{8} is a subsequence of C_{7}, then $h \cdot C_{8}$ is a subsequence of $h \cdot C_{7}$.
(24) Let h be a partial function from R_{1} to C_{1} and R_{4}, R_{5} be sequences of R_{1}. If $\operatorname{rng} R_{4} \subseteq \operatorname{dom} h$ and R_{5} is a subsequence of R_{4}, then $h \cdot R_{5}$ is a subsequence of $h \cdot R_{4}$.
(25) Let s_{1} be a complex sequence, n be a natural number, and N_{2} be an increasing sequence of naturals. Then $\left(s_{1} \cdot N_{2}\right)(n)=s_{1}\left(N_{2}(n)\right)$.
(26) Let h be a partial function from the carrier of C_{1} to \mathbb{C} and C_{7}, C_{8} be sequences of C_{1}. If $\operatorname{rng} C_{7} \subseteq \operatorname{dom} h$ and C_{8} is a subsequence of C_{7}, then $h \cdot C_{8}$ is a subsequence of $h \cdot C_{7}$.
(27) Let h be a partial function from the carrier of C_{1} to \mathbb{R} and C_{7}, C_{8} be sequences of C_{1}. If $\operatorname{rng} C_{7} \subseteq \operatorname{dom} h$ and C_{8} is a subsequence of C_{7}, then $h \cdot C_{8}$ is a subsequence of $h \cdot C_{7}$.
(28) Let h be a partial function from the carrier of R_{1} to \mathbb{C} and R_{4}, R_{5} be sequences of R_{1}. If rng $R_{4} \subseteq \operatorname{dom} h$ and R_{5} is a subsequence of R_{4}, then $h \cdot R_{5}$ is a subsequence of $h \cdot R_{4}$.
(29) Let f be a partial function from C_{2} to C_{3} and x_{0} be a point of C_{2}. Then f is continuous in x_{0} if and only if the following conditions are satisfied:
(i) $\quad x_{0} \in \operatorname{dom} f$, and
(ii) for every r such that $0<r$ there exists s such that $0<s$ and for every point x_{1} of C_{2} such that $x_{1} \in \operatorname{dom} f$ and $\left\|x_{1}-x_{0}\right\|<s$ holds $\left\|f_{x_{1}}-f_{x_{0}}\right\|<r$.
(30) Let f be a partial function from C_{1} to R_{1} and x_{0} be a point of C_{1}. Then f is continuous in x_{0} if and only if the following conditions are satisfied:
(i) $\quad x_{0} \in \operatorname{dom} f$, and
(ii) for every r such that $0<r$ there exists s such that $0<s$ and for every point x_{1} of C_{1} such that $x_{1} \in \operatorname{dom} f$ and $\left\|x_{1}-x_{0}\right\|<s$ holds $\left\|f_{x_{1}}-f_{x_{0}}\right\|<r$.
(31) Let f be a partial function from R_{1} to C_{1} and x_{0} be a point of R_{1}. Then f is continuous in x_{0} if and only if the following conditions are satisfied:
(i) $\quad x_{0} \in \operatorname{dom} f$, and
(ii) for every r such that $0<r$ there exists s such that $0<s$ and for every point x_{1} of R_{1} such that $x_{1} \in \operatorname{dom} f$ and $\left\|x_{1}-x_{0}\right\|<s$ holds $\left\|f_{x_{1}}-f_{x_{0}}\right\|<r$.
(32) Let f be a partial function from the carrier of C_{1} to \mathbb{R} and x_{0} be a point of C_{1}. Then f is continuous in x_{0} if and only if the following conditions are satisfied:
(i) $\quad x_{0} \in \operatorname{dom} f$, and
(ii) for every r such that $0<r$ there exists s such that $0<s$ and for every point x_{1} of C_{1} such that $x_{1} \in \operatorname{dom} f$ and $\left\|x_{1}-x_{0}\right\|<s$ holds $\left|f_{x_{1}}-f_{x_{0}}\right|<r$.
(33) Let f be a partial function from the carrier of C_{1} to \mathbb{C} and x_{0} be a point of C_{1}. Then f is continuous in x_{0} if and only if the following conditions are satisfied:
(i) $\quad x_{0} \in \operatorname{dom} f$, and
(ii) for every r such that $0<r$ there exists s such that $0<s$ and for every point x_{1} of C_{1} such that $x_{1} \in \operatorname{dom} f$ and $\left\|x_{1}-x_{0}\right\|<s$ holds $\left|f_{x_{1}}-f_{x_{0}}\right|<r$.
(34) Let f be a partial function from the carrier of R_{1} to \mathbb{C} and x_{0} be a point of R_{1}. Then f is continuous in x_{0} if and only if the following conditions are satisfied:
(i) $\quad x_{0} \in \operatorname{dom} f$, and
(ii) for every r such that $0<r$ there exists s such that $0<s$ and for every point x_{1} of R_{1} such that $x_{1} \in \operatorname{dom} f$ and $\left\|x_{1}-x_{0}\right\|<s$ holds $\left|f_{x_{1}}-f_{x_{0}}\right|<r$.
(35) Let f be a partial function from C_{2} to C_{3} and x_{0} be a point of C_{2}. Then f is continuous in x_{0} if and only if the following conditions are satisfied:
(i) $\quad x_{0} \in \operatorname{dom} f$, and
(ii) for every neighbourhood N_{3} of $f_{x_{0}}$ there exists a neighbourhood N of x_{0} such that for every point x_{1} of C_{2} such that $x_{1} \in \operatorname{dom} f$ and $x_{1} \in N$ holds $f_{x_{1}} \in N_{3}$.
(36) Let f be a partial function from C_{1} to R_{1} and x_{0} be a point of C_{1}. Then f is continuous in x_{0} if and only if the following conditions are satisfied:
(i) $\quad x_{0} \in \operatorname{dom} f$, and
(ii) for every neighbourhood N_{3} of $f_{x_{0}}$ there exists a neighbourhood N of x_{0} such that for every point x_{1} of C_{1} such that $x_{1} \in \operatorname{dom} f$ and $x_{1} \in N$ holds $f_{x_{1}} \in N_{3}$.
(37) Let f be a partial function from R_{1} to C_{1} and x_{0} be a point of R_{1}. Then f is continuous in x_{0} if and only if the following conditions are satisfied:
(i) $\quad x_{0} \in \operatorname{dom} f$, and
(ii) for every neighbourhood N_{3} of $f_{x_{0}}$ there exists a neighbourhood N of x_{0} such that for every point x_{1} of R_{1} such that $x_{1} \in \operatorname{dom} f$ and $x_{1} \in N$ holds $f_{x_{1}} \in N_{3}$.
(38) Let f be a partial function from C_{2} to C_{3} and x_{0} be a point of C_{2}. Then f is continuous in x_{0} if and only if the following conditions are satisfied:
(i) $\quad x_{0} \in \operatorname{dom} f$, and
(ii) for every neighbourhood N_{3} of $f_{x_{0}}$ there exists a neighbourhood N of x_{0} such that $f^{\circ} N \subseteq N_{3}$.
(39) Let f be a partial function from C_{1} to R_{1} and x_{0} be a point of C_{1}. Then f is continuous in x_{0} if and only if the following conditions are satisfied:
(i) $\quad x_{0} \in \operatorname{dom} f$, and
(ii) for every neighbourhood N_{3} of $f_{x_{0}}$ there exists a neighbourhood N of x_{0} such that $f^{\circ} N \subseteq N_{3}$.
(40) Let f be a partial function from R_{1} to C_{1} and x_{0} be a point of R_{1}. Then f is continuous in x_{0} if and only if the following conditions are satisfied:
(i) $\quad x_{0} \in \operatorname{dom} f$, and
(ii) for every neighbourhood N_{3} of $f_{x_{0}}$ there exists a neighbourhood N of x_{0} such that $f^{\circ} N \subseteq N_{3}$.
(41) Let f be a partial function from C_{2} to C_{3} and x_{0} be a point of C_{2}. Suppose $x_{0} \in \operatorname{dom} f$ and there exists a neighbourhood N of x_{0} such that dom $f \cap N=\left\{x_{0}\right\}$. Then f is continuous in x_{0}.
(42) Let f be a partial function from C_{1} to R_{1} and x_{0} be a point of C_{1}. Suppose $x_{0} \in \operatorname{dom} f$ and there exists a neighbourhood N of x_{0} such that dom $f \cap N=\left\{x_{0}\right\}$. Then f is continuous in x_{0}.
(43) Let f be a partial function from R_{1} to C_{1} and x_{0} be a point of R_{1}. Suppose $x_{0} \in \operatorname{dom} f$ and there exists a neighbourhood N of x_{0} such that dom $f \cap N=\left\{x_{0}\right\}$. Then f is continuous in x_{0}.
(44) Let h_{1}, h_{2} be partial functions from C_{2} to C_{3} and s_{1} be a sequence of C_{2}. If rng $s_{1} \subseteq \operatorname{dom} h_{1} \cap \operatorname{dom} h_{2}$, then $\left(h_{1}+h_{2}\right) \cdot s_{1}=h_{1} \cdot s_{1}+h_{2} \cdot s_{1}$ and $\left(h_{1}-h_{2}\right) \cdot s_{1}=h_{1} \cdot s_{1}-h_{2} \cdot s_{1}$.
(45) Let h_{1}, h_{2} be partial functions from C_{1} to R_{1} and s_{1} be a sequence of C_{1}. If rng $s_{1} \subseteq \operatorname{dom} h_{1} \cap \operatorname{dom} h_{2}$, then $\left(h_{1}+h_{2}\right) \cdot s_{1}=h_{1} \cdot s_{1}+h_{2} \cdot s_{1}$ and $\left(h_{1}-h_{2}\right) \cdot s_{1}=h_{1} \cdot s_{1}-h_{2} \cdot s_{1}$.
(46) Let h_{1}, h_{2} be partial functions from R_{1} to C_{1} and s_{1} be a sequence of R_{1}. If rng $s_{1} \subseteq \operatorname{dom} h_{1} \cap \operatorname{dom} h_{2}$, then $\left(h_{1}+h_{2}\right) \cdot s_{1}=h_{1} \cdot s_{1}+h_{2} \cdot s_{1}$ and $\left(h_{1}-h_{2}\right) \cdot s_{1}=h_{1} \cdot s_{1}-h_{2} \cdot s_{1}$.
(47) Let h be a partial function from C_{2} to C_{3}, s_{1} be a sequence of C_{2}, and z be a complex number. If rng $s_{1} \subseteq \operatorname{dom} h$, then $(z h) \cdot s_{1}=z \cdot\left(h \cdot s_{1}\right)$.
(48) Let h be a partial function from C_{1} to R_{1}, s_{1} be a sequence of C_{1}, and r be a real number. If $\operatorname{rng} s_{1} \subseteq \operatorname{dom} h$, then $(r h) \cdot s_{1}=r \cdot\left(h \cdot s_{1}\right)$.
(49) Let h be a partial function from R_{1} to C_{1}, s_{1} be a sequence of R_{1}, and z be a complex number. If $\operatorname{rng} s_{1} \subseteq \operatorname{dom} h$, then $(z h) \cdot s_{1}=z \cdot\left(h \cdot s_{1}\right)$.
(50) Let h be a partial function from C_{2} to C_{3} and s_{1} be a sequence of C_{2}. If $\operatorname{rng} s_{1} \subseteq \operatorname{dom} h$, then $\left\|h \cdot s_{1}\right\|=\|h\| \cdot s_{1}$ and $-h \cdot s_{1}=(-h) \cdot s_{1}$.
(51) Let h be a partial function from C_{1} to R_{1} and s_{1} be a sequence of C_{1}. If $\operatorname{rng} s_{1} \subseteq \operatorname{dom} h$, then $\left\|h \cdot s_{1}\right\|=\|h\| \cdot s_{1}$ and $-h \cdot s_{1}=(-h) \cdot s_{1}$.
(52) Let h be a partial function from R_{1} to C_{1} and s_{1} be a sequence of R_{1}. If $\operatorname{rng} s_{1} \subseteq \operatorname{dom} h$, then $\left\|h \cdot s_{1}\right\|=\|h\| \cdot s_{1}$ and $-h \cdot s_{1}=(-h) \cdot s_{1}$.
(53) Let f_{1}, f_{2} be partial functions from C_{2} to C_{3} and x_{0} be a point of C_{2}. Suppose f_{1} is continuous in x_{0} and f_{2} is continuous in x_{0}. Then $f_{1}+f_{2}$ is continuous in x_{0} and $f_{1}-f_{2}$ is continuous in x_{0}.
(54) Let f_{1}, f_{2} be partial functions from C_{1} to R_{1} and x_{0} be a point of C_{1}. Suppose f_{1} is continuous in x_{0} and f_{2} is continuous in x_{0}. Then $f_{1}+f_{2}$ is continuous in x_{0} and $f_{1}-f_{2}$ is continuous in x_{0}.
(55) Let f_{1}, f_{2} be partial functions from R_{1} to C_{1} and x_{0} be a point of R_{1}. Suppose f_{1} is continuous in x_{0} and f_{2} is continuous in x_{0}. Then $f_{1}+f_{2}$ is continuous in x_{0} and $f_{1}-f_{2}$ is continuous in x_{0}.
(56) Let f be a partial function from C_{2} to C_{3}, x_{0} be a point of C_{2}, and z be a complex number. If f is continuous in x_{0}, then $z f$ is continuous in x_{0}.
(57) Let f be a partial function from C_{1} to R_{1}, x_{0} be a point of C_{1}, and r be a real number. If f is continuous in x_{0}, then $r f$ is continuous in x_{0}.
(58) Let f be a partial function from R_{1} to C_{1}, x_{0} be a point of R_{1}, and z be a complex number. If f is continuous in x_{0}, then $z f$ is continuous in x_{0}.
(59) Let f be a partial function from C_{2} to C_{3} and x_{0} be a point of C_{2}. If f is continuous in x_{0}, then $\|f\|$ is continuous in x_{0} and $-f$ is continuous in x_{0}.
(60) Let f be a partial function from C_{1} to R_{1} and x_{0} be a point of C_{1}. If f is continuous in x_{0}, then $\|f\|$ is continuous in x_{0} and $-f$ is continuous in x_{0}.
(61) Let f be a partial function from R_{1} to C_{1} and x_{0} be a point of R_{1}. If f is continuous in x_{0}, then $\|f\|$ is continuous in x_{0} and $-f$ is continuous in x_{0}.
Let C_{2}, C_{3} be complex normed spaces, let f be a partial function from C_{2} to C_{3}, and let X be a set. We say that f is continuous on X if and only if:
(Def. 21) $\quad X \subseteq \operatorname{dom} f$ and for every point x_{0} of C_{2} such that $x_{0} \in X$ holds $f \upharpoonright X$ is continuous in x_{0}.

Let C_{1} be a complex normed space, let R_{1} be a real normed space, let f be a
partial function from C_{1} to R_{1}, and let X be a set. We say that f is continuous on X if and only if:
(Def. 22) $\quad X \subseteq \operatorname{dom} f$ and for every point x_{0} of C_{1} such that $x_{0} \in X$ holds $f \upharpoonright X$ is continuous in x_{0}.
Let R_{1} be a real normed space, let C_{1} be a complex normed space, let g be a partial function from R_{1} to C_{1}, and let X be a set. We say that g is continuous on X if and only if:
(Def. 23) $X \subseteq \operatorname{dom} g$ and for every point x_{0} of R_{1} such that $x_{0} \in X$ holds $g \upharpoonright X$ is continuous in x_{0}.
Let C_{1} be a complex normed space, let f be a partial function from the carrier of C_{1} to \mathbb{C}, and let X be a set. We say that f is continuous on X if and only if:
(Def. 24) $X \subseteq \operatorname{dom} f$ and for every point x_{0} of C_{1} such that $x_{0} \in X$ holds $f \upharpoonright X$ is continuous in x_{0}.
Let C_{1} be a complex normed space, let f be a partial function from the carrier of C_{1} to \mathbb{R}, and let X be a set. We say that f is continuous on X if and only if:
(Def. 25) $X \subseteq \operatorname{dom} f$ and for every point x_{0} of C_{1} such that $x_{0} \in X$ holds $f \upharpoonright X$ is continuous in x_{0}.
Let R_{1} be a real normed space, let f be a partial function from the carrier of R_{1} to \mathbb{C}, and let X be a set. We say that f is continuous on X if and only if:
(Def. 26) $\quad X \subseteq \operatorname{dom} f$ and for every point x_{0} of R_{1} such that $x_{0} \in X$ holds $f \upharpoonright X$ is continuous in x_{0}.
In the sequel X, X_{1} denote sets.
The following propositions are true:
(62) Let f be a partial function from C_{2} to C_{3}. Then f is continuous on X if and only if the following conditions are satisfied:
(i) $X \subseteq \operatorname{dom} f$, and
(ii) for every sequence s_{4} of C_{2} such that $\operatorname{rng} s_{4} \subseteq X$ and s_{4} is convergent and $\lim s_{4} \in X$ holds $f \cdot s_{4}$ is convergent and $f_{\lim s_{4}}=\lim \left(f \cdot s_{4}\right)$.
(63) Let f be a partial function from C_{1} to R_{1}. Then f is continuous on X if and only if the following conditions are satisfied:
(i) $X \subseteq \operatorname{dom} f$, and
(ii) for every sequence s_{4} of C_{1} such that $\operatorname{rng} s_{4} \subseteq X$ and s_{4} is convergent and $\lim s_{4} \in X$ holds $f \cdot s_{4}$ is convergent and $f_{\lim s_{4}}=\lim \left(f \cdot s_{4}\right)$.
(64) Let f be a partial function from R_{1} to C_{1}. Then f is continuous on X if and only if the following conditions are satisfied:
(i) $X \subseteq \operatorname{dom} f$, and
(ii) for every sequence s_{4} of R_{1} such that $\operatorname{rng} s_{4} \subseteq X$ and s_{4} is convergent and $\lim s_{4} \in X$ holds $f \cdot s_{4}$ is convergent and $f_{\lim s_{4}}=\lim \left(f \cdot s_{4}\right)$.
(65) Let f be a partial function from C_{2} to C_{3}. Then f is continuous on X if and only if the following conditions are satisfied:
(i) $\quad X \subseteq \operatorname{dom} f$, and
(ii) for every point x_{0} of C_{2} and for every r such that $x_{0} \in X$ and $0<r$ there exists s such that $0<s$ and for every point x_{1} of C_{2} such that $x_{1} \in X$ and $\left\|x_{1}-x_{0}\right\|<s$ holds $\left\|f_{x_{1}}-f_{x_{0}}\right\|<r$.
(66) Let f be a partial function from C_{1} to R_{1}. Then f is continuous on X if and only if the following conditions are satisfied:
(i) $\quad X \subseteq \operatorname{dom} f$, and
(ii) for every point x_{0} of C_{1} and for every r such that $x_{0} \in X$ and $0<r$ there exists s such that $0<s$ and for every point x_{1} of C_{1} such that $x_{1} \in X$ and $\left\|x_{1}-x_{0}\right\|<s$ holds $\left\|f_{x_{1}}-f_{x_{0}}\right\|<r$.
(67) Let f be a partial function from R_{1} to C_{1}. Then f is continuous on X if and only if the following conditions are satisfied:
(i) $X \subseteq \operatorname{dom} f$, and
(ii) for every point x_{0} of R_{1} and for every r such that $x_{0} \in X$ and $0<r$ there exists s such that $0<s$ and for every point x_{1} of R_{1} such that $x_{1} \in X$ and $\left\|x_{1}-x_{0}\right\|<s$ holds $\left\|f_{x_{1}}-f_{x_{0}}\right\|<r$.
(68) Let f be a partial function from the carrier of C_{1} to \mathbb{C}. Then f is continuous on X if and only if the following conditions are satisfied:
(i) $X \subseteq \operatorname{dom} f$, and
(ii) for every point x_{0} of C_{1} and for every r such that $x_{0} \in X$ and $0<r$ there exists s such that $0<s$ and for every point x_{1} of C_{1} such that $x_{1} \in X$ and $\left\|x_{1}-x_{0}\right\|<s$ holds $\left|f_{x_{1}}-f_{x_{0}}\right|<r$.
(69) Let f be a partial function from the carrier of C_{1} to \mathbb{R}. Then f is continuous on X if and only if the following conditions are satisfied:
(i) $\quad X \subseteq \operatorname{dom} f$, and
(ii) for every point x_{0} of C_{1} and for every r such that $x_{0} \in X$ and $0<r$ there exists s such that $0<s$ and for every point x_{1} of C_{1} such that $x_{1} \in X$ and $\left\|x_{1}-x_{0}\right\|<s$ holds $\left|f_{x_{1}}-f_{x_{0}}\right|<r$.
(70) Let f be a partial function from the carrier of R_{1} to \mathbb{C}. Then f is continuous on X if and only if the following conditions are satisfied:
(i) $\quad X \subseteq \operatorname{dom} f$, and
(ii) for every point x_{0} of R_{1} and for every r such that $x_{0} \in X$ and $0<r$ there exists s such that $0<s$ and for every point x_{1} of R_{1} such that $x_{1} \in X$ and $\left\|x_{1}-x_{0}\right\|<s$ holds $\left|f_{x_{1}}-f_{x_{0}}\right|<r$.
(71) For every partial function f from C_{2} to C_{3} holds f is continuous on X iff $f\lceil X$ is continuous on X.
(72) For every partial function f from C_{1} to R_{1} holds f is continuous on X iff $f\lceil X$ is continuous on X.
(73) For every partial function f from R_{1} to C_{1} holds f is continuous on X iff $f \upharpoonright X$ is continuous on X.
(74) Let f be a partial function from the carrier of C_{1} to \mathbb{C}. Then f is continuous on X if and only if $f \upharpoonright X$ is continuous on X.
(75) Let f be a partial function from the carrier of C_{1} to \mathbb{R}. Then f is continuous on X if and only if $f \upharpoonright X$ is continuous on X.
(76) Let f be a partial function from the carrier of R_{1} to \mathbb{C}. Then f is continuous on X if and only if $f\lceil X$ is continuous on X.
(77) For every partial function f from C_{2} to C_{3} such that f is continuous on X and $X_{1} \subseteq X$ holds f is continuous on X_{1}.
(78) For every partial function f from C_{1} to R_{1} such that f is continuous on X and $X_{1} \subseteq X$ holds f is continuous on X_{1}.
(79) For every partial function f from R_{1} to C_{1} such that f is continuous on X and $X_{1} \subseteq X$ holds f is continuous on X_{1}.
(80) For every partial function f from C_{2} to C_{3} and for every point x_{0} of C_{2} such that $x_{0} \in \operatorname{dom} f$ holds f is continuous on $\left\{x_{0}\right\}$.
(81) For every partial function f from C_{1} to R_{1} and for every point x_{0} of C_{1} such that $x_{0} \in \operatorname{dom} f$ holds f is continuous on $\left\{x_{0}\right\}$.
(82) For every partial function f from R_{1} to C_{1} and for every point x_{0} of R_{1} such that $x_{0} \in \operatorname{dom} f$ holds f is continuous on $\left\{x_{0}\right\}$.
(83) Let f_{1}, f_{2} be partial functions from C_{2} to C_{3}. Suppose f_{1} is continuous on X and f_{2} is continuous on X. Then $f_{1}+f_{2}$ is continuous on X and $f_{1}-f_{2}$ is continuous on X.
(84) Let f_{1}, f_{2} be partial functions from C_{1} to R_{1}. Suppose f_{1} is continuous on X and f_{2} is continuous on X. Then $f_{1}+f_{2}$ is continuous on X and $f_{1}-f_{2}$ is continuous on X.
(85) Let f_{1}, f_{2} be partial functions from R_{1} to C_{1}. Suppose f_{1} is continuous on X and f_{2} is continuous on X. Then $f_{1}+f_{2}$ is continuous on X and $f_{1}-f_{2}$ is continuous on X.
(86) Let f_{1}, f_{2} be partial functions from C_{2} to C_{3}. Suppose f_{1} is continuous on X and f_{2} is continuous on X_{1}. Then $f_{1}+f_{2}$ is continuous on $X \cap X_{1}$ and $f_{1}-f_{2}$ is continuous on $X \cap X_{1}$.
(87) Let f_{1}, f_{2} be partial functions from C_{1} to R_{1}. Suppose f_{1} is continuous on X and f_{2} is continuous on X_{1}. Then $f_{1}+f_{2}$ is continuous on $X \cap X_{1}$ and $f_{1}-f_{2}$ is continuous on $X \cap X_{1}$.
(88) Let f_{1}, f_{2} be partial functions from R_{1} to C_{1}. Suppose f_{1} is continuous on X and f_{2} is continuous on X_{1}. Then $f_{1}+f_{2}$ is continuous on $X \cap X_{1}$ and $f_{1}-f_{2}$ is continuous on $X \cap X_{1}$.
(89) For every partial function f from C_{2} to C_{3} such that f is continuous on
X holds $z f$ is continuous on X.
(90) For every partial function f from C_{1} to R_{1} such that f is continuous on X holds $r f$ is continuous on X.
(91) For every partial function f from R_{1} to C_{1} such that f is continuous on X holds $z f$ is continuous on X.
(92) Let f be a partial function from C_{2} to C_{3}. If f is continuous on X, then $\|f\|$ is continuous on X and $-f$ is continuous on X.
(93) Let f be a partial function from C_{1} to R_{1}. If f is continuous on X, then $\|f\|$ is continuous on X and $-f$ is continuous on X.
(94) Let f be a partial function from R_{1} to C_{1}. If f is continuous on X, then $\|f\|$ is continuous on X and $-f$ is continuous on X.
(95) Let f be a partial function from C_{2} to C_{3}. Suppose f is total and for all points x_{1}, x_{2} of C_{2} holds $f_{x_{1}+x_{2}}=f_{x_{1}}+f_{x_{2}}$ and there exists a point x_{0} of C_{2} such that f is continuous in x_{0}. Then f is continuous on the carrier of C_{2}.
(96) Let f be a partial function from C_{1} to R_{1}. Suppose f is total and for all points x_{1}, x_{2} of C_{1} holds $f_{x_{1}+x_{2}}=f_{x_{1}}+f_{x_{2}}$ and there exists a point x_{0} of C_{1} such that f is continuous in x_{0}. Then f is continuous on the carrier of C_{1}.
(97) Let f be a partial function from R_{1} to C_{1}. Suppose f is total and for all points x_{1}, x_{2} of R_{1} holds $f_{x_{1}+x_{2}}=f_{x_{1}}+f_{x_{2}}$ and there exists a point x_{0} of R_{1} such that f is continuous in x_{0}. Then f is continuous on the carrier of R_{1}.
(98) For every partial function f from C_{2} to C_{3} such that $\operatorname{dom} f$ is compact and f is continuous on $\operatorname{dom} f$ holds $\operatorname{rng} f$ is compact.
(99) For every partial function f from C_{1} to R_{1} such that $\operatorname{dom} f$ is compact and f is continuous on $\operatorname{dom} f$ holds $\operatorname{rng} f$ is compact.
(100) For every partial function f from R_{1} to C_{1} such that $\operatorname{dom} f$ is compact and f is continuous on $\operatorname{dom} f$ holds $\operatorname{rng} f$ is compact.
(101) Let f be a partial function from the carrier of C_{1} to \mathbb{C}. If $\operatorname{dom} f$ is compact and f is continuous on $\operatorname{dom} f$, then $\operatorname{rng} f$ is compact.
(102) Let f be a partial function from the carrier of C_{1} to \mathbb{R}. If $\operatorname{dom} f$ is compact and f is continuous on $\operatorname{dom} f$, then $\operatorname{rng} f$ is compact.
(103) Let f be a partial function from the carrier of R_{1} to \mathbb{C}. If $\operatorname{dom} f$ is compact and f is continuous on $\operatorname{dom} f$, then $\operatorname{rng} f$ is compact.
(104) Let Y be a subset of C_{2} and f be a partial function from C_{2} to C_{3}. If $Y \subseteq \operatorname{dom} f$ and Y is compact and f is continuous on Y, then $f^{\circ} Y$ is compact.
(105) Let Y be a subset of C_{1} and f be a partial function from C_{1} to R_{1}.

If $Y \subseteq \operatorname{dom} f$ and Y is compact and f is continuous on Y, then $f^{\circ} Y$ is compact.
(106) Let Y be a subset of R_{1} and f be a partial function from R_{1} to C_{1}. If $Y \subseteq \operatorname{dom} f$ and Y is compact and f is continuous on Y, then $f^{\circ} Y$ is compact.
(107) Let f be a partial function from the carrier of C_{1} to \mathbb{R}. Suppose $\operatorname{dom} f \neq$ \emptyset and $\operatorname{dom} f$ is compact and f is continuous on $\operatorname{dom} f$. Then there exist points x_{1}, x_{2} of C_{1} such that $x_{1} \in \operatorname{dom} f$ and $x_{2} \in \operatorname{dom} f$ and $f_{x_{1}}=$ $\sup \operatorname{rng} f$ and $f_{x_{2}}=\inf \operatorname{rng} f$.
(108) Let f be a partial function from C_{2} to C_{3}. Suppose $\operatorname{dom} f \neq \emptyset$ and $\operatorname{dom} f$ is compact and f is continuous on dom f. Then there exist points x_{1}, x_{2} of C_{2} such that $x_{1} \in \operatorname{dom} f$ and $x_{2} \in \operatorname{dom} f$ and $\|f\|_{x_{1}}=\sup r n g\|f\|$ and $\|f\|_{x_{2}}=\inf \operatorname{rng}\|f\|$.
(109) Let f be a partial function from C_{1} to R_{1}. Suppose $\operatorname{dom} f \neq \emptyset$ and $\operatorname{dom} f$ is compact and f is continuous on dom f. Then there exist points x_{1}, x_{2} of C_{1} such that $x_{1} \in \operatorname{dom} f$ and $x_{2} \in \operatorname{dom} f$ and $\|f\|_{x_{1}}=\sup \operatorname{rng}\|f\|$ and $\|f\|_{x_{2}}=\inf \operatorname{rng}\|f\|$.
(110) Let f be a partial function from R_{1} to C_{1}. Suppose $\operatorname{dom} f \neq \emptyset$ and $\operatorname{dom} f$ is compact and f is continuous on $\operatorname{dom} f$. Then there exist points x_{1}, x_{2} of R_{1} such that $x_{1} \in \operatorname{dom} f$ and $x_{2} \in \operatorname{dom} f$ and $\|f\|_{x_{1}}=\sup \operatorname{rng}\|f\|$ and $\|f\|_{x_{2}}=\inf \operatorname{rng}\|f\|$.
(111) For every partial function f from C_{2} to C_{3} holds $\|f\| \upharpoonright X=\|f \upharpoonright X\|$.
(112) For every partial function f from C_{1} to R_{1} holds $\|f\| \upharpoonright X=\|f \upharpoonright X\|$.
(113) For every partial function f from R_{1} to C_{1} holds $\|f\| \upharpoonright X=\|f \upharpoonright X\|$.
(114) Let f be a partial function from C_{2} to C_{3} and Y be a subset of C_{2}. Suppose $Y \neq \emptyset$ and $Y \subseteq \operatorname{dom} f$ and Y is compact and f is continuous on Y. Then there exist points x_{1}, x_{2} of C_{2} such that $x_{1} \in Y$ and $x_{2} \in Y$ and $\|f\|_{x_{1}}=\sup \left(\|f\|^{\circ} Y\right)$ and $\|f\|_{x_{2}}=\inf \left(\|f\|^{\circ} Y\right)$.
(115) Let f be a partial function from C_{1} to R_{1} and Y be a subset of C_{1}. Suppose $Y \neq \emptyset$ and $Y \subseteq \operatorname{dom} f$ and Y is compact and f is continuous on Y. Then there exist points x_{1}, x_{2} of C_{1} such that $x_{1} \in Y$ and $x_{2} \in Y$ and $\|f\|_{x_{1}}=\sup \left(\|f\|^{\circ} Y\right)$ and $\|f\|_{x_{2}}=\inf \left(\|f\|^{\circ} Y\right)$.
(116) Let f be a partial function from R_{1} to C_{1} and Y be a subset of R_{1}. Suppose $Y \neq \emptyset$ and $Y \subseteq \operatorname{dom} f$ and Y is compact and f is continuous on Y. Then there exist points x_{1}, x_{2} of R_{1} such that $x_{1} \in Y$ and $x_{2} \in Y$ and $\|f\|_{x_{1}}=\sup \left(\|f\|^{\circ} Y\right)$ and $\|f\|_{x_{2}}=\inf \left(\|f\|^{\circ} Y\right)$.
(117) Let f be a partial function from the carrier of C_{1} to \mathbb{R} and Y be a subset of C_{1}. Suppose $Y \neq \emptyset$ and $Y \subseteq \operatorname{dom} f$ and Y is compact and f is continuous on Y. Then there exist points x_{1}, x_{2} of C_{1} such that $x_{1} \in Y$ and $x_{2} \in Y$ and $f_{x_{1}}=\sup \left(f^{\circ} Y\right)$ and $f_{x_{2}}=\inf \left(f^{\circ} Y\right)$.

Let C_{2}, C_{3} be complex normed spaces, let X be a set, and let f be a partial function from C_{2} to C_{3}. We say that f is Lipschitzian on X if and only if:
(Def. 27) $X \subseteq \operatorname{dom} f$ and there exists r such that $0<r$ and for all points x_{1}, x_{2} of C_{2} such that $x_{1} \in X$ and $x_{2} \in X$ holds $\left\|f_{x_{1}}-f_{x_{2}}\right\| \leqslant r \cdot\left\|x_{1}-x_{2}\right\|$.
Let C_{1} be a complex normed space, let R_{1} be a real normed space, let X be a set, and let f be a partial function from C_{1} to R_{1}. We say that f is Lipschitzian on X if and only if:
(Def. 28) $\quad X \subseteq \operatorname{dom} f$ and there exists r such that $0<r$ and for all points x_{1}, x_{2} of C_{1} such that $x_{1} \in X$ and $x_{2} \in X$ holds $\left\|f_{x_{1}}-f_{x_{2}}\right\| \leqslant r \cdot\left\|x_{1}-x_{2}\right\|$.
Let R_{1} be a real normed space, let C_{1} be a complex normed space, let X be a set, and let f be a partial function from R_{1} to C_{1}. We say that f is Lipschitzian on X if and only if:
(Def. 29) $\quad X \subseteq \operatorname{dom} f$ and there exists r such that $0<r$ and for all points x_{1}, x_{2} of R_{1} such that $x_{1} \in X$ and $x_{2} \in X$ holds $\left\|f_{x_{1}}-f_{x_{2}}\right\| \leqslant r \cdot\left\|x_{1}-x_{2}\right\|$.
Let C_{1} be a complex normed space, let X be a set, and let f be a partial function from the carrier of C_{1} to \mathbb{C}. We say that f is Lipschitzian on X if and only if:
(Def. 30) $\quad X \subseteq \operatorname{dom} f$ and there exists r such that $0<r$ and for all points x_{1}, x_{2} of C_{1} such that $x_{1} \in X$ and $x_{2} \in X$ holds $\left|f_{x_{1}}-f_{x_{2}}\right| \leqslant r \cdot\left\|x_{1}-x_{2}\right\|$.
Let C_{1} be a complex normed space, let X be a set, and let f be a partial function from the carrier of C_{1} to \mathbb{R}. We say that f is Lipschitzian on X if and only if:
(Def. 31) $X \subseteq \operatorname{dom} f$ and there exists r such that $0<r$ and for all points x_{1}, x_{2} of C_{1} such that $x_{1} \in X$ and $x_{2} \in X$ holds $\left|f_{x_{1}}-f_{x_{2}}\right| \leqslant r \cdot\left\|x_{1}-x_{2}\right\|$.
Let R_{1} be a real normed space, let X be a set, and let f be a partial function from the carrier of R_{1} to \mathbb{C}. We say that f is Lipschitzian on X if and only if:
(Def. 32) $\quad X \subseteq \operatorname{dom} f$ and there exists r such that $0<r$ and for all points x_{1}, x_{2} of R_{1} such that $x_{1} \in X$ and $x_{2} \in X$ holds $\left|f_{x_{1}}-f_{x_{2}}\right| \leqslant r \cdot\left\|x_{1}-x_{2}\right\|$.
Next we state a number of propositions:
(118) For every partial function f from C_{2} to C_{3} such that f is Lipschitzian on X and $X_{1} \subseteq X$ holds f is Lipschitzian on X_{1}.
(119) For every partial function f from C_{1} to R_{1} such that f is Lipschitzian on X and $X_{1} \subseteq X$ holds f is Lipschitzian on X_{1}.
(120) For every partial function f from R_{1} to C_{1} such that f is Lipschitzian on X and $X_{1} \subseteq X$ holds f is Lipschitzian on X_{1}.
(121) Let f_{1}, f_{2} be partial functions from C_{2} to C_{3}. Suppose f_{1} is Lipschitzian on X and f_{2} is Lipschitzian on X_{1}. Then $f_{1}+f_{2}$ is Lipschitzian on $X \cap X_{1}$.
(122) Let f_{1}, f_{2} be partial functions from C_{1} to R_{1}. Suppose f_{1} is Lipschitzian on X and f_{2} is Lipschitzian on X_{1}. Then $f_{1}+f_{2}$ is Lipschitzian on $X \cap X_{1}$.
(123) Let f_{1}, f_{2} be partial functions from R_{1} to C_{1}. Suppose f_{1} is Lipschitzian on X and f_{2} is Lipschitzian on X_{1}. Then $f_{1}+f_{2}$ is Lipschitzian on $X \cap X_{1}$.
(124) Let f_{1}, f_{2} be partial functions from C_{2} to C_{3}. Suppose f_{1} is Lipschitzian on X and f_{2} is Lipschitzian on X_{1}. Then $f_{1}-f_{2}$ is Lipschitzian on $X \cap X_{1}$.
(125) Let f_{1}, f_{2} be partial functions from C_{1} to R_{1}. Suppose f_{1} is Lipschitzian on X and f_{2} is Lipschitzian on X_{1}. Then $f_{1}-f_{2}$ is Lipschitzian on $X \cap X_{1}$.
(126) Let f_{1}, f_{2} be partial functions from R_{1} to C_{1}. Suppose f_{1} is Lipschitzian on X and f_{2} is Lipschitzian on X_{1}. Then $f_{1}-f_{2}$ is Lipschitzian on $X \cap X_{1}$.
(127) For every partial function f from C_{2} to C_{3} such that f is Lipschitzian on X holds $z f$ is Lipschitzian on X.
(128) For every partial function f from C_{1} to R_{1} such that f is Lipschitzian on X holds $r f$ is Lipschitzian on X.
(129) For every partial function f from R_{1} to C_{1} such that f is Lipschitzian on X holds $z f$ is Lipschitzian on X.
(130) Let f be a partial function from C_{2} to C_{3}. Suppose f is Lipschitzian on X. Then $-f$ is Lipschitzian on X and $\|f\|$ is Lipschitzian on X.
(131) Let f be a partial function from C_{1} to R_{1}. Suppose f is Lipschitzian on X. Then $-f$ is Lipschitzian on X and $\|f\|$ is Lipschitzian on X.
(132) Let f be a partial function from R_{1} to C_{1}. Suppose f is Lipschitzian on X. Then $-f$ is Lipschitzian on X and $\|f\|$ is Lipschitzian on X.
(133) Let X be a set and f be a partial function from C_{2} to C_{3}. If $X \subseteq \operatorname{dom} f$ and f is a constant on X, then f is Lipschitzian on X.
(134) Let X be a set and f be a partial function from C_{1} to R_{1}. If $X \subseteq \operatorname{dom} f$ and f is a constant on X, then f is Lipschitzian on X.
(135) Let X be a set and f be a partial function from R_{1} to C_{1}. If $X \subseteq \operatorname{dom} f$ and f is a constant on X, then f is Lipschitzian on X.

(137) For every partial function f from C_{2} to C_{3} such that f is Lipschitzian on X holds f is continuous on X.
(138) For every partial function f from C_{1} to R_{1} such that f is Lipschitzian on X holds f is continuous on X.
(139) For every partial function f from R_{1} to C_{1} such that f is Lipschitzian on X holds f is continuous on X.
(140) Let f be a partial function from the carrier of C_{1} to \mathbb{C}. If f is Lipschitzian on X, then f is continuous on X.
(141) Let f be a partial function from the carrier of C_{1} to \mathbb{R}. If f is Lipschitzian on X, then f is continuous on X.
(142) Let f be a partial function from the carrier of R_{1} to \mathbb{C}. If f is Lipschitzian on X, then f is continuous on X.
(143) For every partial function f from C_{2} to C_{3} such that there exists a point r of C_{3} such that rng $f=\{r\}$ holds f is continuous on $\operatorname{dom} f$.
(144) For every partial function f from C_{1} to R_{1} such that there exists a point r of R_{1} such that rng $f=\{r\}$ holds f is continuous on $\operatorname{dom} f$.
(145) For every partial function f from R_{1} to C_{1} such that there exists a point r of C_{1} such that $\operatorname{rng} f=\{r\}$ holds f is continuous on $\operatorname{dom} f$.
(146) For every partial function f from C_{2} to C_{3} such that $X \subseteq \operatorname{dom} f$ and f is a constant on X holds f is continuous on X.
(147) For every partial function f from C_{1} to R_{1} such that $X \subseteq \operatorname{dom} f$ and f is a constant on X holds f is continuous on X.
(148) For every partial function f from R_{1} to C_{1} such that $X \subseteq \operatorname{dom} f$ and f is a constant on X holds f is continuous on X.
(149) Let f be a partial function from C_{1} to C_{1}. Suppose that for every point x_{0} of C_{1} such that $x_{0} \in \operatorname{dom} f$ holds $f_{x_{0}}=x_{0}$. Then f is continuous on $\operatorname{dom} f$.
(150) For every partial function f from C_{1} to C_{1} such that $f=\operatorname{id}_{\operatorname{dom} f}$ holds f is continuous on $\operatorname{dom} f$.
(151) Let f be a partial function from C_{1} to C_{1} and Y be a subset of C_{1}. If $Y \subseteq \operatorname{dom} f$ and $f \upharpoonright Y=\operatorname{id}_{Y}$, then f is continuous on Y.
(152) Let f be a partial function from C_{1} to C_{1}, z be a complex number, and p be a point of C_{1}. Suppose $X \subseteq \operatorname{dom} f$ and for every point x_{0} of C_{1} such that $x_{0} \in X$ holds $f_{x_{0}}=z \cdot x_{0}+p$. Then f is continuous on X.
(153) Let f be a partial function from the carrier of C_{1} to \mathbb{R}. Suppose that for every point x_{0} of C_{1} such that $x_{0} \in \operatorname{dom} f$ holds $f_{x_{0}}=\left\|x_{0}\right\|$. Then f is continuous on $\operatorname{dom} f$.
(154) Let f be a partial function from the carrier of C_{1} to \mathbb{R}. Suppose $X \subseteq$ $\operatorname{dom} f$ and for every point x_{0} of C_{1} such that $x_{0} \in X$ holds $f_{x_{0}}=\left\|x_{0}\right\|$. Then f is continuous on X.

References

[1] Agnieszka Banachowicz and Anna Winnicka. Complex sequences. Formalized Mathematics, 4(1):121-124, 1993.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[4] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[7] Noboru Endou. Algebra of complex vector valued functions. Formalized Mathematics, 12(3):397-401, 2004.
[8] Noboru Endou. Complex linear space and complex normed space. Formalized Mathematics, 12(2):93-102, 2004.
[9] Noboru Endou. Series on complex Banach algebra. Formalized Mathematics, 12(3):281288, 2004.
[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[11] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[12] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[13] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[14] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[15] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[16] Takashi Mitsuishi, Katsumi Wasaki, and Yasunari Shidama. Property of complex sequence and continuity of complex function. Formalized Mathematics, 9(1):185-190, 2001.
[17] Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences. Formalized Mathematics, 6(2):265-268, 1997.
[18] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. Formalized Mathematics, 12(3):269-275, 2004.
[19] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[20] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[21] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[22] Yasunari Shidama. The series on Banach algebra. Formalized Mathematics, 12(2):131138, 2004.
[23] Yasunari Shidama and Artur Korniłowicz. Convergence and the limit of complex sequences. Series. Formalized Mathematics, 6(3):403-410, 1997.
[24] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[25] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[26] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[27] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[28] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[29] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[30] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[31] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992.

Received August 20, 2004

