Continuous Functions on Real and Complex Normed Linear Spaces

Noboru Endou Gifu National College of Technology

Summary. This article is an extension of [18].

 ${\rm MML} \ {\rm Identifier:} \ {\tt NCFCONT1}.$

The notation and terminology used here are introduced in the following papers: [25], [28], [29], [4], [30], [6], [14], [5], [2], [24], [10], [26], [27], [19], [15], [12], [13], [11], [31], [20], [3], [1], [16], [21], [17], [23], [7], [8], [22], [18], and [9].

For simplicity, we use the following convention: n denotes a natural number, r, s denote real numbers, z denotes a complex number, C_1 , C_2 , C_3 denote complex normed spaces, and R_1 denotes a real normed space.

Let C_4 be a complex linear space and let s_1 be a sequence of C_4 . The functor $-s_1$ yields a sequence of C_4 and is defined by:

(Def. 1) For every *n* holds $(-s_1)(n) = -s_1(n)$.

The following propositions are true:

- (1) For all sequences s_2 , s_3 of C_1 holds $s_2 s_3 = s_2 + -s_3$.
- (2) For every sequence s_1 of C_1 holds $-s_1 = (-1_{\mathbb{C}}) \cdot s_1$.

Let us consider C_2 , C_3 and let f be a partial function from C_2 to C_3 . The functor ||f|| yielding a partial function from the carrier of C_2 to \mathbb{R} is defined by:

(Def. 2) dom||f|| = dom f and for every point c of C_2 such that $c \in \text{dom} ||f||$ holds $||f||(c) = ||f_c||$.

Let us consider C_1 , R_1 and let f be a partial function from C_1 to R_1 . The functor ||f|| yielding a partial function from the carrier of C_1 to \mathbb{R} is defined as follows:

(Def. 3) dom||f|| = dom f and for every point c of C_1 such that $c \in \text{dom} ||f||$ holds $||f||(c) = ||f_c||$.

> C 2004 University of Białystok ISSN 1426-2630

Let us consider R_1 , C_1 and let f be a partial function from R_1 to C_1 . The functor ||f|| yielding a partial function from the carrier of R_1 to \mathbb{R} is defined by:

(Def. 4) dom||f|| = dom f and for every point c of R_1 such that $c \in \text{dom} ||f||$ holds $||f||(c) = ||f_c||$.

Let us consider C_1 and let x_0 be a point of C_1 . A subset of C_1 is called a neighbourhood of x_0 if:

(Def. 5) There exists a real number g such that 0 < g and $\{y; y \text{ ranges over points} of C_1: ||y - x_0|| < g\} \subseteq \text{it.}$

Next we state two propositions:

- (3) Let x_0 be a point of C_1 and g be a real number. If 0 < g, then $\{y; y \text{ ranges over points of } C_1: ||y x_0|| < g\}$ is a neighbourhood of x_0 .
- (4) For every point x_0 of C_1 and for every neighbourhood N of x_0 holds $x_0 \in N$.

Let us consider C_1 and let X be a subset of C_1 . We say that X is compact if and only if the condition (Def. 6) is satisfied.

(Def. 6) Let s_4 be a sequence of C_1 . Suppose $\operatorname{rng} s_4 \subseteq X$. Then there exists a sequence s_5 of C_1 such that s_5 is a subsequence of s_4 and convergent and $\lim s_5 \in X$.

Let us consider C_1 and let X be a subset of C_1 . We say that X is closed if and only if:

(Def. 7) For every sequence s_4 of C_1 such that $\operatorname{rng} s_4 \subseteq X$ and s_4 is convergent holds $\lim s_4 \in X$.

Let us consider C_1 and let X be a subset of C_1 . We say that X is open if and only if:

(Def. 8) X^{c} is closed.

Let us consider C_2 , C_3 , let f be a partial function from C_2 to C_3 , and let s_1 be a sequence of C_2 . Let us assume that $\operatorname{rng} s_1 \subseteq \operatorname{dom} f$. The functor $f \cdot s_1$ yields a sequence of C_3 and is defined by:

(Def. 9) $f \cdot s_1 = (f$ **qua** function) $\cdot (s_1)$.

Let us consider C_1 , R_1 , let f be a partial function from C_1 to R_1 , and let s_1 be a sequence of C_1 . Let us assume that $\operatorname{rng} s_1 \subseteq \operatorname{dom} f$. The functor $f \cdot s_1$ yielding a sequence of R_1 is defined by:

(Def. 10) $f \cdot s_1 = (f$ **qua** function) $\cdot (s_1)$.

Let us consider C_1 , R_1 , let f be a partial function from R_1 to C_1 , and let s_1 be a sequence of R_1 . Let us assume that $\operatorname{rng} s_1 \subseteq \operatorname{dom} f$. The functor $f \cdot s_1$ yields a sequence of C_1 and is defined by:

(Def. 11) $f \cdot s_1 = (f \operatorname{\mathbf{qua}} \operatorname{function}) \cdot (s_1).$

Let us consider C_1 , let f be a partial function from the carrier of C_1 to \mathbb{C} , and let s_1 be a sequence of C_1 . Let us assume that $\operatorname{rng} s_1 \subseteq \operatorname{dom} f$. The functor $f \cdot s_1$ yields a complex sequence and is defined as follows:

(Def. 12) $f \cdot s_1 = (f$ **qua** function) $\cdot (s_1)$.

Let us consider R_1 , let f be a partial function from the carrier of R_1 to \mathbb{C} , and let s_1 be a sequence of R_1 . Let us assume that $\operatorname{rng} s_1 \subseteq \operatorname{dom} f$. The functor $f \cdot s_1$ yielding a complex sequence is defined by:

(Def. 13) $f \cdot s_1 = (f \operatorname{\mathbf{qua}} \operatorname{function}) \cdot (s_1).$

Let us consider C_1 , let f be a partial function from the carrier of C_1 to \mathbb{R} , and let s_1 be a sequence of C_1 . Let us assume that $\operatorname{rng} s_1 \subseteq \operatorname{dom} f$. The functor $f \cdot s_1$ yielding a sequence of real numbers is defined as follows:

(Def. 14) $f \cdot s_1 = (f \text{ qua function}) \cdot (s_1).$

Let us consider C_2 , C_3 , let f be a partial function from C_2 to C_3 , and let x_0 be a point of C_2 . We say that f is continuous in x_0 if and only if the conditions (Def. 15) are satisfied.

(Def. 15)(i) $x_0 \in \text{dom } f$, and

(ii) for every sequence s_1 of C_2 such that $\operatorname{rng} s_1 \subseteq \operatorname{dom} f$ and s_1 is convergent and $\lim s_1 = x_0$ holds $f \cdot s_1$ is convergent and $f_{x_0} = \lim(f \cdot s_1)$.

Let us consider C_1 , R_1 , let f be a partial function from C_1 to R_1 , and let x_0 be a point of C_1 . We say that f is continuous in x_0 if and only if the conditions (Def. 16) are satisfied.

(Def. 16)(i) $x_0 \in \text{dom } f$, and

(ii) for every sequence s_1 of C_1 such that $\operatorname{rng} s_1 \subseteq \operatorname{dom} f$ and s_1 is convergent and $\lim s_1 = x_0$ holds $f \cdot s_1$ is convergent and $f_{x_0} = \lim(f \cdot s_1)$.

Let us consider R_1 , let us consider C_1 , let f be a partial function from R_1 to C_1 , and let x_0 be a point of R_1 . We say that f is continuous in x_0 if and only if the conditions (Def. 17) are satisfied.

(Def. 17)(i) $x_0 \in \text{dom } f$, and

(ii) for every sequence s_1 of R_1 such that $\operatorname{rng} s_1 \subseteq \operatorname{dom} f$ and s_1 is convergent and $\lim s_1 = x_0$ holds $f \cdot s_1$ is convergent and $f_{x_0} = \lim(f \cdot s_1)$.

Let us consider C_1 , let f be a partial function from the carrier of C_1 to \mathbb{C} , and let x_0 be a point of C_1 . We say that f is continuous in x_0 if and only if the conditions (Def. 18) are satisfied.

(Def. 18)(i) $x_0 \in \text{dom } f$, and

(ii) for every sequence s_1 of C_1 such that $\operatorname{rng} s_1 \subseteq \operatorname{dom} f$ and s_1 is convergent and $\lim s_1 = x_0$ holds $f \cdot s_1$ is convergent and $f_{x_0} = \lim(f \cdot s_1)$.

Let us consider C_1 , let f be a partial function from the carrier of C_1 to \mathbb{R} , and let x_0 be a point of C_1 . We say that f is continuous in x_0 if and only if the conditions (Def. 19) are satisfied.

(Def. 19)(i) $x_0 \in \text{dom } f$, and

(ii) for every sequence s_1 of C_1 such that $\operatorname{rng} s_1 \subseteq \operatorname{dom} f$ and s_1 is convergent and $\lim s_1 = x_0$ holds $f \cdot s_1$ is convergent and $f_{x_0} = \lim(f \cdot s_1)$.

Let us consider R_1 , let f be a partial function from the carrier of R_1 to \mathbb{C} , and let x_0 be a point of R_1 . We say that f is continuous in x_0 if and only if the conditions (Def. 20) are satisfied.

(Def. 20)(i) $x_0 \in \text{dom } f$, and

(ii) for every sequence s_1 of R_1 such that $\operatorname{rng} s_1 \subseteq \operatorname{dom} f$ and s_1 is convergent and $\lim s_1 = x_0$ holds $f \cdot s_1$ is convergent and $f_{x_0} = \lim(f \cdot s_1)$.

The following propositions are true:

- (5) For every sequence s_1 of C_2 and for every partial function h from C_2 to C_3 such that $\operatorname{rng} s_1 \subseteq \operatorname{dom} h$ holds $s_1(n) \in \operatorname{dom} h$.
- (6) For every sequence s_1 of C_1 and for every partial function h from C_1 to R_1 such that $\operatorname{rng} s_1 \subseteq \operatorname{dom} h$ holds $s_1(n) \in \operatorname{dom} h$.
- (7) For every sequence s_1 of R_1 and for every partial function h from R_1 to C_1 such that $\operatorname{rng} s_1 \subseteq \operatorname{dom} h$ holds $s_1(n) \in \operatorname{dom} h$.
- (8) For every sequence s_1 of C_1 and for every set x holds $x \in \operatorname{rng} s_1$ iff there exists n such that $x = s_1(n)$.
- (9) For all sequences s_1 , s_2 of C_1 such that s_2 is a subsequence of s_1 holds $\operatorname{rng} s_2 \subseteq \operatorname{rng} s_1$.
- (10) Let f be a partial function from C_2 to C_3 and C_5 be a sequence of C_2 . If rng $C_5 \subseteq \text{dom } f$, then for every n holds $(f \cdot C_5)(n) = f_{C_5(n)}$.
- (11) Let f be a partial function from C_1 to R_1 and C_5 be a sequence of C_1 . If rng $C_5 \subseteq \text{dom } f$, then for every n holds $(f \cdot C_5)(n) = f_{C_5(n)}$.
- (12) Let f be a partial function from R_1 to C_1 and R_2 be a sequence of R_1 . If $\operatorname{rng} R_2 \subseteq \operatorname{dom} f$, then for every n holds $(f \cdot R_2)(n) = f_{R_2(n)}$.
- (13) Let f be a partial function from the carrier of C_1 to \mathbb{C} and C_5 be a sequence of C_1 . If $\operatorname{rng} C_5 \subseteq \operatorname{dom} f$, then for every n holds $(f \cdot C_5)(n) = f_{C_5(n)}$.
- (14) Let f be a partial function from the carrier of C_1 to \mathbb{R} and C_5 be a sequence of C_1 . If $\operatorname{rng} C_5 \subseteq \operatorname{dom} f$, then for every n holds $(f \cdot C_5)(n) = f_{C_5(n)}$.
- (15) Let f be a partial function from the carrier of R_1 to \mathbb{C} and R_2 be a sequence of R_1 . If $\operatorname{rng} R_2 \subseteq \operatorname{dom} f$, then for every n holds $(f \cdot R_2)(n) = f_{R_2(n)}$.
- (16) Let h be a partial function from C_2 to C_3 , C_5 be a sequence of C_2 , and N_1 be an increasing sequence of naturals. If rng $C_5 \subseteq \text{dom } h$, then $(h \cdot C_5) \cdot N_1 = h \cdot (C_5 \cdot N_1).$
- (17) Let *h* be a partial function from C_1 to R_1 , C_6 be a sequence of C_1 , and N_1 be an increasing sequence of naturals. If rng $C_6 \subseteq \text{dom } h$, then $(h \cdot C_6) \cdot N_1 = h \cdot (C_6 \cdot N_1)$.
- (18) Let h be a partial function from R_1 to C_1 , R_3 be a sequence of R_1 ,

and N_1 be an increasing sequence of naturals. If $\operatorname{rng} R_3 \subseteq \operatorname{dom} h$, then $(h \cdot R_3) \cdot N_1 = h \cdot (R_3 \cdot N_1)$.

- (19) Let h be a partial function from the carrier of C_1 to \mathbb{C} , C_6 be a sequence of C_1 , and N_1 be an increasing sequence of naturals. If $\operatorname{rng} C_6 \subseteq \operatorname{dom} h$, then $(h \cdot C_6) \cdot N_1 = h \cdot (C_6 \cdot N_1)$.
- (20) Let h be a partial function from the carrier of C_1 to \mathbb{R} , C_6 be a sequence of C_1 , and N_1 be an increasing sequence of naturals. If $\operatorname{rng} C_6 \subseteq \operatorname{dom} h$, then $(h \cdot C_6) \cdot N_1 = h \cdot (C_6 \cdot N_1)$.
- (21) Let h be a partial function from the carrier of R_1 to \mathbb{C} , R_3 be a sequence of R_1 , and N_1 be an increasing sequence of naturals. If $\operatorname{rng} R_3 \subseteq \operatorname{dom} h$, then $(h \cdot R_3) \cdot N_1 = h \cdot (R_3 \cdot N_1)$.
- (22) Let h be a partial function from C_2 to C_3 and C_7 , C_8 be sequences of C_2 . If rng $C_7 \subseteq \text{dom } h$ and C_8 is a subsequence of C_7 , then $h \cdot C_8$ is a subsequence of $h \cdot C_7$.
- (23) Let h be a partial function from C_1 to R_1 and C_7 , C_8 be sequences of C_1 . If rng $C_7 \subseteq \text{dom } h$ and C_8 is a subsequence of C_7 , then $h \cdot C_8$ is a subsequence of $h \cdot C_7$.
- (24) Let h be a partial function from R_1 to C_1 and R_4 , R_5 be sequences of R_1 . If rng $R_4 \subseteq \text{dom } h$ and R_5 is a subsequence of R_4 , then $h \cdot R_5$ is a subsequence of $h \cdot R_4$.
- (25) Let s_1 be a complex sequence, n be a natural number, and N_2 be an increasing sequence of naturals. Then $(s_1 \cdot N_2)(n) = s_1(N_2(n))$.
- (26) Let h be a partial function from the carrier of C_1 to \mathbb{C} and C_7 , C_8 be sequences of C_1 . If rng $C_7 \subseteq \text{dom } h$ and C_8 is a subsequence of C_7 , then $h \cdot C_8$ is a subsequence of $h \cdot C_7$.
- (27) Let h be a partial function from the carrier of C_1 to \mathbb{R} and C_7 , C_8 be sequences of C_1 . If rng $C_7 \subseteq \text{dom } h$ and C_8 is a subsequence of C_7 , then $h \cdot C_8$ is a subsequence of $h \cdot C_7$.
- (28) Let h be a partial function from the carrier of R_1 to \mathbb{C} and R_4 , R_5 be sequences of R_1 . If rng $R_4 \subseteq \text{dom } h$ and R_5 is a subsequence of R_4 , then $h \cdot R_5$ is a subsequence of $h \cdot R_4$.
- (29) Let f be a partial function from C_2 to C_3 and x_0 be a point of C_2 . Then f is continuous in x_0 if and only if the following conditions are satisfied:
 - (i) $x_0 \in \text{dom } f$, and
- (ii) for every r such that 0 < r there exists s such that 0 < s and for every point x_1 of C_2 such that $x_1 \in \text{dom } f$ and $||x_1 x_0|| < s$ holds $||f_{x_1} f_{x_0}|| < r$.
- (30) Let f be a partial function from C_1 to R_1 and x_0 be a point of C_1 . Then f is continuous in x_0 if and only if the following conditions are satisfied:
 - (i) $x_0 \in \operatorname{dom} f$, and

- (ii) for every r such that 0 < r there exists s such that 0 < s and for every point x_1 of C_1 such that $x_1 \in \text{dom } f$ and $||x_1 x_0|| < s$ holds $||f_{x_1} f_{x_0}|| < r$.
- (31) Let f be a partial function from R_1 to C_1 and x_0 be a point of R_1 . Then f is continuous in x_0 if and only if the following conditions are satisfied:
 - (i) $x_0 \in \operatorname{dom} f$, and
- (ii) for every r such that 0 < r there exists s such that 0 < s and for every point x_1 of R_1 such that $x_1 \in \text{dom } f$ and $||x_1 x_0|| < s$ holds $||f_{x_1} f_{x_0}|| < r$.
- (32) Let f be a partial function from the carrier of C_1 to \mathbb{R} and x_0 be a point of C_1 . Then f is continuous in x_0 if and only if the following conditions are satisfied:
 - (i) $x_0 \in \text{dom } f$, and
 - (ii) for every r such that 0 < r there exists s such that 0 < s and for every point x_1 of C_1 such that $x_1 \in \text{dom } f$ and $||x_1 x_0|| < s$ holds $|f_{x_1} f_{x_0}| < r$.
- (33) Let f be a partial function from the carrier of C_1 to \mathbb{C} and x_0 be a point of C_1 . Then f is continuous in x_0 if and only if the following conditions are satisfied:
 - (i) $x_0 \in \text{dom } f$, and
 - (ii) for every r such that 0 < r there exists s such that 0 < s and for every point x_1 of C_1 such that $x_1 \in \text{dom } f$ and $||x_1 x_0|| < s$ holds $|f_{x_1} f_{x_0}| < r$.
- (34) Let f be a partial function from the carrier of R_1 to \mathbb{C} and x_0 be a point of R_1 . Then f is continuous in x_0 if and only if the following conditions are satisfied:
 - (i) $x_0 \in \text{dom } f$, and
- (ii) for every r such that 0 < r there exists s such that 0 < s and for every point x_1 of R_1 such that $x_1 \in \text{dom } f$ and $||x_1 x_0|| < s$ holds $|f_{x_1} f_{x_0}| < r$.
- (35) Let f be a partial function from C_2 to C_3 and x_0 be a point of C_2 . Then f is continuous in x_0 if and only if the following conditions are satisfied:
 - (i) $x_0 \in \text{dom } f$, and
 - (ii) for every neighbourhood N_3 of f_{x_0} there exists a neighbourhood N of x_0 such that for every point x_1 of C_2 such that $x_1 \in \text{dom } f$ and $x_1 \in N$ holds $f_{x_1} \in N_3$.
- (36) Let f be a partial function from C_1 to R_1 and x_0 be a point of C_1 . Then f is continuous in x_0 if and only if the following conditions are satisfied:
 - (i) $x_0 \in \text{dom } f$, and
 - (ii) for every neighbourhood N_3 of f_{x_0} there exists a neighbourhood N of x_0 such that for every point x_1 of C_1 such that $x_1 \in \text{dom } f$ and $x_1 \in N$ holds $f_{x_1} \in N_3$.
- (37) Let f be a partial function from R_1 to C_1 and x_0 be a point of R_1 . Then f is continuous in x_0 if and only if the following conditions are satisfied:

408

(i) $x_0 \in \operatorname{dom} f$, and

- (ii) for every neighbourhood N_3 of f_{x_0} there exists a neighbourhood N of x_0 such that for every point x_1 of R_1 such that $x_1 \in \text{dom } f$ and $x_1 \in N$ holds $f_{x_1} \in N_3$.
- (38) Let f be a partial function from C_2 to C_3 and x_0 be a point of C_2 . Then f is continuous in x_0 if and only if the following conditions are satisfied:
 - (i) $x_0 \in \text{dom } f$, and
- (ii) for every neighbourhood N_3 of f_{x_0} there exists a neighbourhood N of x_0 such that $f^{\circ}N \subseteq N_3$.
- (39) Let f be a partial function from C_1 to R_1 and x_0 be a point of C_1 . Then f is continuous in x_0 if and only if the following conditions are satisfied:
 - (i) $x_0 \in \text{dom } f$, and
 - (ii) for every neighbourhood N_3 of f_{x_0} there exists a neighbourhood N of x_0 such that $f^{\circ}N \subseteq N_3$.
- (40) Let f be a partial function from R_1 to C_1 and x_0 be a point of R_1 . Then f is continuous in x_0 if and only if the following conditions are satisfied:
 - (i) $x_0 \in \text{dom } f$, and
- (ii) for every neighbourhood N_3 of f_{x_0} there exists a neighbourhood N of x_0 such that $f^{\circ}N \subseteq N_3$.
- (41) Let f be a partial function from C_2 to C_3 and x_0 be a point of C_2 . Suppose $x_0 \in \text{dom } f$ and there exists a neighbourhood N of x_0 such that $\text{dom } f \cap N = \{x_0\}$. Then f is continuous in x_0 .
- (42) Let f be a partial function from C_1 to R_1 and x_0 be a point of C_1 . Suppose $x_0 \in \text{dom } f$ and there exists a neighbourhood N of x_0 such that $\text{dom } f \cap N = \{x_0\}$. Then f is continuous in x_0 .
- (43) Let f be a partial function from R_1 to C_1 and x_0 be a point of R_1 . Suppose $x_0 \in \text{dom } f$ and there exists a neighbourhood N of x_0 such that $\text{dom } f \cap N = \{x_0\}$. Then f is continuous in x_0 .
- (44) Let h_1 , h_2 be partial functions from C_2 to C_3 and s_1 be a sequence of C_2 . If rng $s_1 \subseteq \text{dom } h_1 \cap \text{dom } h_2$, then $(h_1 + h_2) \cdot s_1 = h_1 \cdot s_1 + h_2 \cdot s_1$ and $(h_1 h_2) \cdot s_1 = h_1 \cdot s_1 h_2 \cdot s_1$.
- (45) Let h_1 , h_2 be partial functions from C_1 to R_1 and s_1 be a sequence of C_1 . If $\operatorname{rng} s_1 \subseteq \operatorname{dom} h_1 \cap \operatorname{dom} h_2$, then $(h_1 + h_2) \cdot s_1 = h_1 \cdot s_1 + h_2 \cdot s_1$ and $(h_1 h_2) \cdot s_1 = h_1 \cdot s_1 h_2 \cdot s_1$.
- (46) Let h_1 , h_2 be partial functions from R_1 to C_1 and s_1 be a sequence of R_1 . If rng $s_1 \subseteq \text{dom } h_1 \cap \text{dom } h_2$, then $(h_1 + h_2) \cdot s_1 = h_1 \cdot s_1 + h_2 \cdot s_1$ and $(h_1 h_2) \cdot s_1 = h_1 \cdot s_1 h_2 \cdot s_1$.
- (47) Let h be a partial function from C_2 to C_3 , s_1 be a sequence of C_2 , and z be a complex number. If $\operatorname{rng} s_1 \subseteq \operatorname{dom} h$, then $(zh) \cdot s_1 = z \cdot (h \cdot s_1)$.

- (48) Let h be a partial function from C_1 to R_1 , s_1 be a sequence of C_1 , and r be a real number. If $\operatorname{rng} s_1 \subseteq \operatorname{dom} h$, then $(r h) \cdot s_1 = r \cdot (h \cdot s_1)$.
- (49) Let h be a partial function from R_1 to C_1 , s_1 be a sequence of R_1 , and z be a complex number. If $\operatorname{rng} s_1 \subseteq \operatorname{dom} h$, then $(z h) \cdot s_1 = z \cdot (h \cdot s_1)$.
- (50) Let h be a partial function from C_2 to C_3 and s_1 be a sequence of C_2 . If $\operatorname{rng} s_1 \subseteq \operatorname{dom} h$, then $||h \cdot s_1|| = ||h|| \cdot s_1$ and $-h \cdot s_1 = (-h) \cdot s_1$.
- (51) Let h be a partial function from C_1 to R_1 and s_1 be a sequence of C_1 . If $\operatorname{rng} s_1 \subseteq \operatorname{dom} h$, then $\|h \cdot s_1\| = \|h\| \cdot s_1$ and $-h \cdot s_1 = (-h) \cdot s_1$.
- (52) Let h be a partial function from R_1 to C_1 and s_1 be a sequence of R_1 . If $\operatorname{rng} s_1 \subseteq \operatorname{dom} h$, then $||h \cdot s_1|| = ||h|| \cdot s_1$ and $-h \cdot s_1 = (-h) \cdot s_1$.
- (53) Let f_1 , f_2 be partial functions from C_2 to C_3 and x_0 be a point of C_2 . Suppose f_1 is continuous in x_0 and f_2 is continuous in x_0 . Then $f_1 + f_2$ is continuous in x_0 and $f_1 - f_2$ is continuous in x_0 .
- (54) Let f_1 , f_2 be partial functions from C_1 to R_1 and x_0 be a point of C_1 . Suppose f_1 is continuous in x_0 and f_2 is continuous in x_0 . Then $f_1 + f_2$ is continuous in x_0 and $f_1 - f_2$ is continuous in x_0 .
- (55) Let f_1 , f_2 be partial functions from R_1 to C_1 and x_0 be a point of R_1 . Suppose f_1 is continuous in x_0 and f_2 is continuous in x_0 . Then $f_1 + f_2$ is continuous in x_0 and $f_1 - f_2$ is continuous in x_0 .
- (56) Let f be a partial function from C_2 to C_3 , x_0 be a point of C_2 , and z be a complex number. If f is continuous in x_0 , then z f is continuous in x_0 .
- (57) Let f be a partial function from C_1 to R_1 , x_0 be a point of C_1 , and r be a real number. If f is continuous in x_0 , then r f is continuous in x_0 .
- (58) Let f be a partial function from R_1 to C_1 , x_0 be a point of R_1 , and z be a complex number. If f is continuous in x_0 , then z f is continuous in x_0 .
- (59) Let f be a partial function from C_2 to C_3 and x_0 be a point of C_2 . If f is continuous in x_0 , then ||f|| is continuous in x_0 and -f is continuous in x_0 .
- (60) Let f be a partial function from C_1 to R_1 and x_0 be a point of C_1 . If f is continuous in x_0 , then ||f|| is continuous in x_0 and -f is continuous in x_0 .
- (61) Let f be a partial function from R_1 to C_1 and x_0 be a point of R_1 . If f is continuous in x_0 , then ||f|| is continuous in x_0 and -f is continuous in x_0 .

Let C_2 , C_3 be complex normed spaces, let f be a partial function from C_2 to C_3 , and let X be a set. We say that f is continuous on X if and only if:

(Def. 21) $X \subseteq \text{dom } f$ and for every point x_0 of C_2 such that $x_0 \in X$ holds $f \upharpoonright X$ is continuous in x_0 .

Let C_1 be a complex normed space, let R_1 be a real normed space, let f be a

partial function from C_1 to R_1 , and let X be a set. We say that f is continuous on X if and only if:

(Def. 22) $X \subseteq \text{dom } f$ and for every point x_0 of C_1 such that $x_0 \in X$ holds $f \upharpoonright X$ is continuous in x_0 .

Let R_1 be a real normed space, let C_1 be a complex normed space, let g be a partial function from R_1 to C_1 , and let X be a set. We say that g is continuous on X if and only if:

(Def. 23) $X \subseteq \text{dom } g$ and for every point x_0 of R_1 such that $x_0 \in X$ holds $g \upharpoonright X$ is continuous in x_0 .

Let C_1 be a complex normed space, let f be a partial function from the carrier of C_1 to \mathbb{C} , and let X be a set. We say that f is continuous on X if and only if:

(Def. 24) $X \subseteq \text{dom } f$ and for every point x_0 of C_1 such that $x_0 \in X$ holds $f \upharpoonright X$ is continuous in x_0 .

Let C_1 be a complex normed space, let f be a partial function from the carrier of C_1 to \mathbb{R} , and let X be a set. We say that f is continuous on X if and only if:

(Def. 25) $X \subseteq \text{dom } f$ and for every point x_0 of C_1 such that $x_0 \in X$ holds $f \upharpoonright X$ is continuous in x_0 .

Let R_1 be a real normed space, let f be a partial function from the carrier of R_1 to \mathbb{C} , and let X be a set. We say that f is continuous on X if and only if:

(Def. 26) $X \subseteq \text{dom } f$ and for every point x_0 of R_1 such that $x_0 \in X$ holds $f \upharpoonright X$ is continuous in x_0 .

In the sequel X, X_1 denote sets.

The following propositions are true:

- (62) Let f be a partial function from C_2 to C_3 . Then f is continuous on X if and only if the following conditions are satisfied:
 - (i) $X \subseteq \operatorname{dom} f$, and
- (ii) for every sequence s_4 of C_2 such that $\operatorname{rng} s_4 \subseteq X$ and s_4 is convergent and $\lim s_4 \in X$ holds $f \cdot s_4$ is convergent and $f_{\lim s_4} = \lim(f \cdot s_4)$.
- (63) Let f be a partial function from C_1 to R_1 . Then f is continuous on X if and only if the following conditions are satisfied:
 - (i) $X \subseteq \text{dom } f$, and
- (ii) for every sequence s_4 of C_1 such that $\operatorname{rng} s_4 \subseteq X$ and s_4 is convergent and $\lim s_4 \in X$ holds $f \cdot s_4$ is convergent and $f_{\lim s_4} = \lim(f \cdot s_4)$.
- (64) Let f be a partial function from R_1 to C_1 . Then f is continuous on X if and only if the following conditions are satisfied:
 - (i) $X \subseteq \text{dom } f$, and
 - (ii) for every sequence s_4 of R_1 such that $\operatorname{rng} s_4 \subseteq X$ and s_4 is convergent and $\lim s_4 \in X$ holds $f \cdot s_4$ is convergent and $f_{\lim s_4} = \lim(f \cdot s_4)$.

- (65) Let f be a partial function from C_2 to C_3 . Then f is continuous on X if and only if the following conditions are satisfied:
 - (i) $X \subseteq \text{dom } f$, and
 - (ii) for every point x_0 of C_2 and for every r such that $x_0 \in X$ and 0 < rthere exists s such that 0 < s and for every point x_1 of C_2 such that $x_1 \in X$ and $||x_1 - x_0|| < s$ holds $||f_{x_1} - f_{x_0}|| < r$.
- (66) Let f be a partial function from C_1 to R_1 . Then f is continuous on X if and only if the following conditions are satisfied:
 - (i) $X \subseteq \text{dom } f$, and
 - (ii) for every point x_0 of C_1 and for every r such that $x_0 \in X$ and 0 < rthere exists s such that 0 < s and for every point x_1 of C_1 such that $x_1 \in X$ and $||x_1 - x_0|| < s$ holds $||f_{x_1} - f_{x_0}|| < r$.
- (67) Let f be a partial function from R_1 to C_1 . Then f is continuous on X if and only if the following conditions are satisfied:
 - (i) $X \subseteq \operatorname{dom} f$, and
 - (ii) for every point x_0 of R_1 and for every r such that $x_0 \in X$ and 0 < rthere exists s such that 0 < s and for every point x_1 of R_1 such that $x_1 \in X$ and $||x_1 - x_0|| < s$ holds $||f_{x_1} - f_{x_0}|| < r$.
- (68) Let f be a partial function from the carrier of C_1 to \mathbb{C} . Then f is continuous on X if and only if the following conditions are satisfied:
 - (i) $X \subseteq \operatorname{dom} f$, and
- (ii) for every point x_0 of C_1 and for every r such that $x_0 \in X$ and 0 < rthere exists s such that 0 < s and for every point x_1 of C_1 such that $x_1 \in X$ and $||x_1 - x_0|| < s$ holds $|f_{x_1} - f_{x_0}| < r$.
- (69) Let f be a partial function from the carrier of C_1 to \mathbb{R} . Then f is continuous on X if and only if the following conditions are satisfied:
 - (i) $X \subseteq \operatorname{dom} f$, and
 - (ii) for every point x_0 of C_1 and for every r such that $x_0 \in X$ and 0 < rthere exists s such that 0 < s and for every point x_1 of C_1 such that $x_1 \in X$ and $||x_1 - x_0|| < s$ holds $|f_{x_1} - f_{x_0}| < r$.
- (70) Let f be a partial function from the carrier of R_1 to \mathbb{C} . Then f is continuous on X if and only if the following conditions are satisfied:
 - (i) $X \subseteq \operatorname{dom} f$, and
 - (ii) for every point x_0 of R_1 and for every r such that $x_0 \in X$ and 0 < rthere exists s such that 0 < s and for every point x_1 of R_1 such that $x_1 \in X$ and $||x_1 - x_0|| < s$ holds $|f_{x_1} - f_{x_0}| < r$.
- (71) For every partial function f from C_2 to C_3 holds f is continuous on X iff $f \upharpoonright X$ is continuous on X.
- (72) For every partial function f from C_1 to R_1 holds f is continuous on X iff $f \upharpoonright X$ is continuous on X.

412

- (73) For every partial function f from R_1 to C_1 holds f is continuous on X iff $f \upharpoonright X$ is continuous on X.
- (74) Let f be a partial function from the carrier of C_1 to \mathbb{C} . Then f is continuous on X if and only if $f \upharpoonright X$ is continuous on X.
- (75) Let f be a partial function from the carrier of C_1 to \mathbb{R} . Then f is continuous on X if and only if $f \upharpoonright X$ is continuous on X.
- (76) Let f be a partial function from the carrier of R_1 to \mathbb{C} . Then f is continuous on X if and only if $f \upharpoonright X$ is continuous on X.
- (77) For every partial function f from C_2 to C_3 such that f is continuous on X and $X_1 \subseteq X$ holds f is continuous on X_1 .
- (78) For every partial function f from C_1 to R_1 such that f is continuous on X and $X_1 \subseteq X$ holds f is continuous on X_1 .
- (79) For every partial function f from R_1 to C_1 such that f is continuous on X and $X_1 \subseteq X$ holds f is continuous on X_1 .
- (80) For every partial function f from C_2 to C_3 and for every point x_0 of C_2 such that $x_0 \in \text{dom } f$ holds f is continuous on $\{x_0\}$.
- (81) For every partial function f from C_1 to R_1 and for every point x_0 of C_1 such that $x_0 \in \text{dom } f$ holds f is continuous on $\{x_0\}$.
- (82) For every partial function f from R_1 to C_1 and for every point x_0 of R_1 such that $x_0 \in \text{dom } f$ holds f is continuous on $\{x_0\}$.
- (83) Let f_1 , f_2 be partial functions from C_2 to C_3 . Suppose f_1 is continuous on X and f_2 is continuous on X. Then $f_1 + f_2$ is continuous on X and $f_1 - f_2$ is continuous on X.
- (84) Let f_1 , f_2 be partial functions from C_1 to R_1 . Suppose f_1 is continuous on X and f_2 is continuous on X. Then $f_1 + f_2$ is continuous on X and $f_1 - f_2$ is continuous on X.
- (85) Let f_1 , f_2 be partial functions from R_1 to C_1 . Suppose f_1 is continuous on X and f_2 is continuous on X. Then $f_1 + f_2$ is continuous on X and $f_1 - f_2$ is continuous on X.
- (86) Let f_1 , f_2 be partial functions from C_2 to C_3 . Suppose f_1 is continuous on X and f_2 is continuous on X_1 . Then $f_1 + f_2$ is continuous on $X \cap X_1$ and $f_1 - f_2$ is continuous on $X \cap X_1$.
- (87) Let f_1 , f_2 be partial functions from C_1 to R_1 . Suppose f_1 is continuous on X and f_2 is continuous on X_1 . Then $f_1 + f_2$ is continuous on $X \cap X_1$ and $f_1 - f_2$ is continuous on $X \cap X_1$.
- (88) Let f_1 , f_2 be partial functions from R_1 to C_1 . Suppose f_1 is continuous on X and f_2 is continuous on X_1 . Then $f_1 + f_2$ is continuous on $X \cap X_1$ and $f_1 - f_2$ is continuous on $X \cap X_1$.
- (89) For every partial function f from C_2 to C_3 such that f is continuous on

X holds z f is continuous on X.

- (90) For every partial function f from C_1 to R_1 such that f is continuous on X holds r f is continuous on X.
- (91) For every partial function f from R_1 to C_1 such that f is continuous on X holds z f is continuous on X.
- (92) Let f be a partial function from C_2 to C_3 . If f is continuous on X, then ||f|| is continuous on X and -f is continuous on X.
- (93) Let f be a partial function from C_1 to R_1 . If f is continuous on X, then ||f|| is continuous on X and -f is continuous on X.
- (94) Let f be a partial function from R_1 to C_1 . If f is continuous on X, then ||f|| is continuous on X and -f is continuous on X.
- (95) Let f be a partial function from C_2 to C_3 . Suppose f is total and for all points x_1 , x_2 of C_2 holds $f_{x_1+x_2} = f_{x_1} + f_{x_2}$ and there exists a point x_0 of C_2 such that f is continuous in x_0 . Then f is continuous on the carrier of C_2 .
- (96) Let f be a partial function from C_1 to R_1 . Suppose f is total and for all points x_1, x_2 of C_1 holds $f_{x_1+x_2} = f_{x_1} + f_{x_2}$ and there exists a point x_0 of C_1 such that f is continuous in x_0 . Then f is continuous on the carrier of C_1 .
- (97) Let f be a partial function from R_1 to C_1 . Suppose f is total and for all points x_1, x_2 of R_1 holds $f_{x_1+x_2} = f_{x_1} + f_{x_2}$ and there exists a point x_0 of R_1 such that f is continuous in x_0 . Then f is continuous on the carrier of R_1 .
- (98) For every partial function f from C_2 to C_3 such that dom f is compact and f is continuous on dom f holds rng f is compact.
- (99) For every partial function f from C_1 to R_1 such that dom f is compact and f is continuous on dom f holds rng f is compact.
- (100) For every partial function f from R_1 to C_1 such that dom f is compact and f is continuous on dom f holds rng f is compact.
- (101) Let f be a partial function from the carrier of C_1 to \mathbb{C} . If dom f is compact and f is continuous on dom f, then rng f is compact.
- (102) Let f be a partial function from the carrier of C_1 to \mathbb{R} . If dom f is compact and f is continuous on dom f, then rng f is compact.
- (103) Let f be a partial function from the carrier of R_1 to \mathbb{C} . If dom f is compact and f is continuous on dom f, then rng f is compact.
- (104) Let Y be a subset of C_2 and f be a partial function from C_2 to C_3 . If $Y \subseteq \text{dom } f$ and Y is compact and f is continuous on Y, then $f^{\circ}Y$ is compact.
- (105) Let Y be a subset of C_1 and f be a partial function from C_1 to R_1 .

If $Y \subseteq \text{dom } f$ and Y is compact and f is continuous on Y, then $f^{\circ}Y$ is compact.

- (106) Let Y be a subset of R_1 and f be a partial function from R_1 to C_1 . If $Y \subseteq \text{dom } f$ and Y is compact and f is continuous on Y, then $f^{\circ}Y$ is compact.
- (107) Let f be a partial function from the carrier of C_1 to \mathbb{R} . Suppose dom $f \neq \emptyset$ and dom f is compact and f is continuous on dom f. Then there exist points x_1, x_2 of C_1 such that $x_1 \in \text{dom } f$ and $x_2 \in \text{dom } f$ and $f_{x_1} = \sup \text{rng } f$ and $f_{x_2} = \inf \text{rng } f$.
- (108) Let f be a partial function from C_2 to C_3 . Suppose dom $f \neq \emptyset$ and dom f is compact and f is continuous on dom f. Then there exist points x_1, x_2 of C_2 such that $x_1 \in \text{dom } f$ and $x_2 \in \text{dom } f$ and $||f||_{x_1} = \text{sup rng}||f||$ and $||f||_{x_2} = \inf \text{rng}||f||$.
- (109) Let f be a partial function from C_1 to R_1 . Suppose dom $f \neq \emptyset$ and dom f is compact and f is continuous on dom f. Then there exist points x_1, x_2 of C_1 such that $x_1 \in \text{dom } f$ and $x_2 \in \text{dom } f$ and $||f||_{x_1} = \sup \text{rng} ||f||$ and $||f||_{x_2} = \inf \text{rng} ||f||$.
- (110) Let f be a partial function from R_1 to C_1 . Suppose dom $f \neq \emptyset$ and dom f is compact and f is continuous on dom f. Then there exist points x_1, x_2 of R_1 such that $x_1 \in \text{dom } f$ and $x_2 \in \text{dom } f$ and $||f||_{x_1} = \text{sup rng}||f||$ and $||f||_{x_2} = \inf \text{rng}||f||$.
- (111) For every partial function f from C_2 to C_3 holds $||f|| \upharpoonright X = ||f \upharpoonright X||$.
- (112) For every partial function f from C_1 to R_1 holds $||f|| \upharpoonright X = ||f \upharpoonright X||$.
- (113) For every partial function f from R_1 to C_1 holds $||f|| \upharpoonright X = ||f| \upharpoonright X||$.
- (114) Let f be a partial function from C_2 to C_3 and Y be a subset of C_2 . Suppose $Y \neq \emptyset$ and $Y \subseteq \text{dom } f$ and Y is compact and f is continuous on Y. Then there exist points x_1, x_2 of C_2 such that $x_1 \in Y$ and $x_2 \in Y$ and $||f||_{x_1} = \sup(||f||^\circ Y)$ and $||f||_{x_2} = \inf(||f||^\circ Y)$.
- (115) Let f be a partial function from C_1 to R_1 and Y be a subset of C_1 . Suppose $Y \neq \emptyset$ and $Y \subseteq \text{dom } f$ and Y is compact and f is continuous on Y. Then there exist points x_1, x_2 of C_1 such that $x_1 \in Y$ and $x_2 \in Y$ and $||f||_{x_1} = \sup(||f||^\circ Y)$ and $||f||_{x_2} = \inf(||f||^\circ Y)$.
- (116) Let f be a partial function from R_1 to C_1 and Y be a subset of R_1 . Suppose $Y \neq \emptyset$ and $Y \subseteq \text{dom } f$ and Y is compact and f is continuous on Y. Then there exist points x_1, x_2 of R_1 such that $x_1 \in Y$ and $x_2 \in Y$ and $||f||_{x_1} = \sup(||f||^\circ Y)$ and $||f||_{x_2} = \inf(||f||^\circ Y)$.
- (117) Let f be a partial function from the carrier of C_1 to \mathbb{R} and Y be a subset of C_1 . Suppose $Y \neq \emptyset$ and $Y \subseteq \text{dom } f$ and Y is compact and f is continuous on Y. Then there exist points x_1, x_2 of C_1 such that $x_1 \in Y$ and $x_2 \in Y$ and $f_{x_1} = \sup(f^{\circ}Y)$ and $f_{x_2} = \inf(f^{\circ}Y)$.

Let C_2 , C_3 be complex normed spaces, let X be a set, and let f be a partial function from C_2 to C_3 . We say that f is Lipschitzian on X if and only if:

(Def. 27) $X \subseteq \text{dom } f$ and there exists r such that 0 < r and for all points x_1, x_2 of C_2 such that $x_1 \in X$ and $x_2 \in X$ holds $||f_{x_1} - f_{x_2}|| \leq r \cdot ||x_1 - x_2||$.

Let C_1 be a complex normed space, let R_1 be a real normed space, let X be a set, and let f be a partial function from C_1 to R_1 . We say that f is Lipschitzian on X if and only if:

(Def. 28) $X \subseteq \text{dom } f$ and there exists r such that 0 < r and for all points x_1, x_2 of C_1 such that $x_1 \in X$ and $x_2 \in X$ holds $||f_{x_1} - f_{x_2}|| \leq r \cdot ||x_1 - x_2||$.

Let R_1 be a real normed space, let C_1 be a complex normed space, let X be a set, and let f be a partial function from R_1 to C_1 . We say that f is Lipschitzian on X if and only if:

(Def. 29) $X \subseteq \text{dom } f$ and there exists r such that 0 < r and for all points x_1, x_2 of R_1 such that $x_1 \in X$ and $x_2 \in X$ holds $||f_{x_1} - f_{x_2}|| \leq r \cdot ||x_1 - x_2||$.

Let C_1 be a complex normed space, let X be a set, and let f be a partial function from the carrier of C_1 to \mathbb{C} . We say that f is Lipschitzian on X if and only if:

(Def. 30) $X \subseteq \text{dom } f$ and there exists r such that 0 < r and for all points x_1, x_2 of C_1 such that $x_1 \in X$ and $x_2 \in X$ holds $|f_{x_1} - f_{x_2}| \leq r \cdot ||x_1 - x_2||$.

Let C_1 be a complex normed space, let X be a set, and let f be a partial function from the carrier of C_1 to \mathbb{R} . We say that f is Lipschitzian on X if and only if:

(Def. 31) $X \subseteq \text{dom } f$ and there exists r such that 0 < r and for all points x_1, x_2 of C_1 such that $x_1 \in X$ and $x_2 \in X$ holds $|f_{x_1} - f_{x_2}| \leq r \cdot ||x_1 - x_2||$.

Let R_1 be a real normed space, let X be a set, and let f be a partial function from the carrier of R_1 to \mathbb{C} . We say that f is Lipschitzian on X if and only if:

- (Def. 32) $X \subseteq \text{dom } f$ and there exists r such that 0 < r and for all points x_1, x_2 of R_1 such that $x_1 \in X$ and $x_2 \in X$ holds $|f_{x_1} - f_{x_2}| \leq r \cdot ||x_1 - x_2||$. Next we state a number of propositions:
 - (118) For every partial function f from C_2 to C_3 such that f is Lipschitzian on X and $X_1 \subseteq X$ holds f is Lipschitzian on X_1 .
 - (119) For every partial function f from C_1 to R_1 such that f is Lipschitzian on X and $X_1 \subseteq X$ holds f is Lipschitzian on X_1 .
 - (120) For every partial function f from R_1 to C_1 such that f is Lipschitzian on X and $X_1 \subseteq X$ holds f is Lipschitzian on X_1 .
 - (121) Let f_1 , f_2 be partial functions from C_2 to C_3 . Suppose f_1 is Lipschitzian on X and f_2 is Lipschitzian on X_1 . Then $f_1 + f_2$ is Lipschitzian on $X \cap X_1$.
 - (122) Let f_1 , f_2 be partial functions from C_1 to R_1 . Suppose f_1 is Lipschitzian on X and f_2 is Lipschitzian on X_1 . Then $f_1 + f_2$ is Lipschitzian on $X \cap X_1$.

- (123) Let f_1 , f_2 be partial functions from R_1 to C_1 . Suppose f_1 is Lipschitzian on X and f_2 is Lipschitzian on X_1 . Then $f_1 + f_2$ is Lipschitzian on $X \cap X_1$.
- (124) Let f_1 , f_2 be partial functions from C_2 to C_3 . Suppose f_1 is Lipschitzian on X and f_2 is Lipschitzian on X_1 . Then $f_1 - f_2$ is Lipschitzian on $X \cap X_1$.
- (125) Let f_1 , f_2 be partial functions from C_1 to R_1 . Suppose f_1 is Lipschitzian on X and f_2 is Lipschitzian on X_1 . Then $f_1 - f_2$ is Lipschitzian on $X \cap X_1$.
- (126) Let f_1 , f_2 be partial functions from R_1 to C_1 . Suppose f_1 is Lipschitzian on X and f_2 is Lipschitzian on X_1 . Then $f_1 - f_2$ is Lipschitzian on $X \cap X_1$.
- (127) For every partial function f from C_2 to C_3 such that f is Lipschitzian on X holds z f is Lipschitzian on X.
- (128) For every partial function f from C_1 to R_1 such that f is Lipschitzian on X holds r f is Lipschitzian on X.
- (129) For every partial function f from R_1 to C_1 such that f is Lipschitzian on X holds z f is Lipschitzian on X.
- (130) Let f be a partial function from C_2 to C_3 . Suppose f is Lipschitzian on X. Then -f is Lipschitzian on X and ||f|| is Lipschitzian on X.
- (131) Let f be a partial function from C_1 to R_1 . Suppose f is Lipschitzian on X. Then -f is Lipschitzian on X and ||f|| is Lipschitzian on X.
- (132) Let f be a partial function from R_1 to C_1 . Suppose f is Lipschitzian on X. Then -f is Lipschitzian on X and ||f|| is Lipschitzian on X.
- (133) Let X be a set and f be a partial function from C_2 to C_3 . If $X \subseteq \text{dom } f$ and f is a constant on X, then f is Lipschitzian on X.
- (134) Let X be a set and f be a partial function from C_1 to R_1 . If $X \subseteq \text{dom } f$ and f is a constant on X, then f is Lipschitzian on X.
- (135) Let X be a set and f be a partial function from R_1 to C_1 . If $X \subseteq \text{dom } f$ and f is a constant on X, then f is Lipschitzian on X.
- (136) For every subset Y of C_1 holds id_Y is Lipschitzian on Y.
- (137) For every partial function f from C_2 to C_3 such that f is Lipschitzian on X holds f is continuous on X.
- (138) For every partial function f from C_1 to R_1 such that f is Lipschitzian on X holds f is continuous on X.
- (139) For every partial function f from R_1 to C_1 such that f is Lipschitzian on X holds f is continuous on X.
- (140) Let f be a partial function from the carrier of C_1 to \mathbb{C} . If f is Lipschitzian on X, then f is continuous on X.
- (141) Let f be a partial function from the carrier of C_1 to \mathbb{R} . If f is Lipschitzian on X, then f is continuous on X.
- (142) Let f be a partial function from the carrier of R_1 to \mathbb{C} . If f is Lipschitzian on X, then f is continuous on X.

- (143) For every partial function f from C_2 to C_3 such that there exists a point r of C_3 such that rng $f = \{r\}$ holds f is continuous on dom f.
- (144) For every partial function f from C_1 to R_1 such that there exists a point r of R_1 such that rng $f = \{r\}$ holds f is continuous on dom f.
- (145) For every partial function f from R_1 to C_1 such that there exists a point r of C_1 such that rng $f = \{r\}$ holds f is continuous on dom f.
- (146) For every partial function f from C_2 to C_3 such that $X \subseteq \text{dom } f$ and f is a constant on X holds f is continuous on X.
- (147) For every partial function f from C_1 to R_1 such that $X \subseteq \text{dom } f$ and f is a constant on X holds f is continuous on X.
- (148) For every partial function f from R_1 to C_1 such that $X \subseteq \text{dom } f$ and f is a constant on X holds f is continuous on X.
- (149) Let f be a partial function from C_1 to C_1 . Suppose that for every point x_0 of C_1 such that $x_0 \in \text{dom } f$ holds $f_{x_0} = x_0$. Then f is continuous on dom f.
- (150) For every partial function f from C_1 to C_1 such that $f = \operatorname{id}_{\operatorname{dom} f}$ holds f is continuous on dom f.
- (151) Let f be a partial function from C_1 to C_1 and Y be a subset of C_1 . If $Y \subseteq \text{dom } f$ and $f \upharpoonright Y = \text{id}_Y$, then f is continuous on Y.
- (152) Let f be a partial function from C_1 to C_1 , z be a complex number, and p be a point of C_1 . Suppose $X \subseteq \text{dom } f$ and for every point x_0 of C_1 such that $x_0 \in X$ holds $f_{x_0} = z \cdot x_0 + p$. Then f is continuous on X.
- (153) Let f be a partial function from the carrier of C_1 to \mathbb{R} . Suppose that for every point x_0 of C_1 such that $x_0 \in \text{dom } f$ holds $f_{x_0} = ||x_0||$. Then f is continuous on dom f.
- (154) Let f be a partial function from the carrier of C_1 to \mathbb{R} . Suppose $X \subseteq$ dom f and for every point x_0 of C_1 such that $x_0 \in X$ holds $f_{x_0} = ||x_0||$. Then f is continuous on X.

References

- Agnieszka Banachowicz and Anna Winnicka. Complex sequences. Formalized Mathematics, 4(1):121–124, 1993.
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
- 65, 1990.
 [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [7] Noboru Endou. Algebra of complex vector valued functions. Formalized Mathematics, 12(3):397-401, 2004.
- [8] Noboru Endou. Complex linear space and complex normed space. Formalized Mathematics, 12(2):93–102, 2004.

418

- [9] Noboru Endou. Series on complex Banach algebra. Formalized Mathematics, 12(3):281– 288, 2004.
- [10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [11] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
- [12] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
- [13] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
- [14] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697–702, 1990.
- [15] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
- [16] Takashi Mitsuishi, Katsumi Wasaki, and Yasunari Shidama. Property of complex sequence and continuity of complex function. *Formalized Mathematics*, 9(1):185–190, 2001.
- [17] Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences. Formalized Mathematics, 6(2):265–268, 1997.
- [18] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. *Formalized Mathematics*, 12(3):269–275, 2004.
- [19] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.
- [20] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111–115, 1991.
- [21] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [22] Yasunari Shidama. The series on Banach algebra. Formalized Mathematics, 12(2):131– 138, 2004.
- [23] Yasunari Shidama and Artur Korniłowicz. Convergence and the limit of complex sequences. Series. Formalized Mathematics, 6(3):403–410, 1997.
- [24] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [25] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
 [26] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,
- [26] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [27] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
 [28] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [28] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [29] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
 [20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [30] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.
 [21] Hingeli Venergeli and Venergeli Shidanga Alashar of carton functions. Formalized Mathematical Mathematical Science (Science) (Scie
- [31] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171–175, 1992.

Received August 20, 2004