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The notation and terminology used here are introduced in the following papers:

[25], [28], [29], [4], [30], [6], [14], [5], [2], [24], [10], [26], [27], [19], [15], [12], [13],

[11], [31], [20], [3], [1], [16], [21], [17], [23], [7], [8], [22], [18], and [9].

For simplicity, we use the following convention: n denotes a natural number,

r, s denote real numbers, z denotes a complex number, C1, C2, C3 denote

complex normed spaces, and R1 denotes a real normed space.

Let C4 be a complex linear space and let s1 be a sequence of C4. The functor

−s1 yields a sequence of C4 and is defined by:

(Def. 1) For every n holds (−s1)(n) = −s1(n).

The following propositions are true:

(1) For all sequences s2, s3 of C1 holds s2 − s3 = s2 +−s3.

(2) For every sequence s1 of C1 holds −s1 = (−1C) · s1.

Let us consider C2, C3 and let f be a partial function from C2 to C3. The

functor ‖f‖ yielding a partial function from the carrier of C2 to R is defined by:

(Def. 2) dom‖f‖ = dom f and for every point c of C2 such that c ∈ dom‖f‖

holds ‖f‖(c) = ‖fc‖.

Let us consider C1, R1 and let f be a partial function from C1 to R1. The

functor ‖f‖ yielding a partial function from the carrier of C1 to R is defined as

follows:

(Def. 3) dom‖f‖ = dom f and for every point c of C1 such that c ∈ dom‖f‖

holds ‖f‖(c) = ‖fc‖.
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Let us consider R1, C1 and let f be a partial function from R1 to C1. The

functor ‖f‖ yielding a partial function from the carrier of R1 to R is defined by:

(Def. 4) dom‖f‖ = dom f and for every point c of R1 such that c ∈ dom‖f‖

holds ‖f‖(c) = ‖fc‖.

Let us consider C1 and let x0 be a point of C1. A subset of C1 is called a

neighbourhood of x0 if:

(Def. 5) There exists a real number g such that 0 < g and {y; y ranges over points

of C1: ‖y − x0‖ < g} ⊆ it.

Next we state two propositions:

(3) Let x0 be a point of C1 and g be a real number. If 0 < g, then {y; y

ranges over points of C1: ‖y − x0‖ < g} is a neighbourhood of x0.

(4) For every point x0 of C1 and for every neighbourhood N of x0 holds

x0 ∈ N.

Let us consider C1 and let X be a subset of C1. We say that X is compact

if and only if the condition (Def. 6) is satisfied.

(Def. 6) Let s4 be a sequence of C1. Suppose rng s4 ⊆ X. Then there exists a

sequence s5 of C1 such that s5 is a subsequence of s4 and convergent and

lim s5 ∈ X.

Let us consider C1 and let X be a subset of C1. We say that X is closed if

and only if:

(Def. 7) For every sequence s4 of C1 such that rng s4 ⊆ X and s4 is convergent

holds lim s4 ∈ X.

Let us consider C1 and let X be a subset of C1. We say that X is open if

and only if:

(Def. 8) Xc is closed.

Let us consider C2, C3, let f be a partial function from C2 to C3, and let

s1 be a sequence of C2. Let us assume that rng s1 ⊆ dom f. The functor f · s1

yields a sequence of C3 and is defined by:

(Def. 9) f · s1 = (f qua function) ·(s1).

Let us consider C1, R1, let f be a partial function from C1 to R1, and let

s1 be a sequence of C1. Let us assume that rng s1 ⊆ dom f. The functor f · s1

yielding a sequence of R1 is defined by:

(Def. 10) f · s1 = (f qua function) ·(s1).

Let us consider C1, R1, let f be a partial function from R1 to C1, and let

s1 be a sequence of R1. Let us assume that rng s1 ⊆ dom f. The functor f · s1

yields a sequence of C1 and is defined by:

(Def. 11) f · s1 = (f qua function) ·(s1).

Let us consider C1, let f be a partial function from the carrier of C1 to C,

and let s1 be a sequence of C1. Let us assume that rng s1 ⊆ dom f. The functor
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f · s1 yields a complex sequence and is defined as follows:

(Def. 12) f · s1 = (f qua function) ·(s1).

Let us consider R1, let f be a partial function from the carrier of R1 to C,

and let s1 be a sequence of R1. Let us assume that rng s1 ⊆ dom f. The functor

f · s1 yielding a complex sequence is defined by:

(Def. 13) f · s1 = (f qua function) ·(s1).

Let us consider C1, let f be a partial function from the carrier of C1 to R,

and let s1 be a sequence of C1. Let us assume that rng s1 ⊆ dom f. The functor

f · s1 yielding a sequence of real numbers is defined as follows:

(Def. 14) f · s1 = (f qua function) ·(s1).

Let us consider C2, C3, let f be a partial function from C2 to C3, and let x0

be a point of C2. We say that f is continuous in x0 if and only if the conditions

(Def. 15) are satisfied.

(Def. 15)(i) x0 ∈ dom f, and

(ii) for every sequence s1 of C2 such that rng s1 ⊆ dom f and s1 is conver-

gent and lim s1 = x0 holds f · s1 is convergent and fx0
= lim(f · s1).

Let us consider C1, R1, let f be a partial function from C1 to R1, and let x0

be a point of C1. We say that f is continuous in x0 if and only if the conditions

(Def. 16) are satisfied.

(Def. 16)(i) x0 ∈ dom f, and

(ii) for every sequence s1 of C1 such that rng s1 ⊆ dom f and s1 is conver-

gent and lim s1 = x0 holds f · s1 is convergent and fx0
= lim(f · s1).

Let us consider R1, let us consider C1, let f be a partial function from R1

to C1, and let x0 be a point of R1. We say that f is continuous in x0 if and only

if the conditions (Def. 17) are satisfied.

(Def. 17)(i) x0 ∈ dom f, and

(ii) for every sequence s1 of R1 such that rng s1 ⊆ dom f and s1 is conver-

gent and lim s1 = x0 holds f · s1 is convergent and fx0
= lim(f · s1).

Let us consider C1, let f be a partial function from the carrier of C1 to C,

and let x0 be a point of C1. We say that f is continuous in x0 if and only if the

conditions (Def. 18) are satisfied.

(Def. 18)(i) x0 ∈ dom f, and

(ii) for every sequence s1 of C1 such that rng s1 ⊆ dom f and s1 is conver-

gent and lim s1 = x0 holds f · s1 is convergent and fx0
= lim(f · s1).

Let us consider C1, let f be a partial function from the carrier of C1 to R,

and let x0 be a point of C1. We say that f is continuous in x0 if and only if the

conditions (Def. 19) are satisfied.

(Def. 19)(i) x0 ∈ dom f, and

(ii) for every sequence s1 of C1 such that rng s1 ⊆ dom f and s1 is conver-

gent and lim s1 = x0 holds f · s1 is convergent and fx0
= lim(f · s1).
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Let us consider R1, let f be a partial function from the carrier of R1 to C,

and let x0 be a point of R1. We say that f is continuous in x0 if and only if the

conditions (Def. 20) are satisfied.

(Def. 20)(i) x0 ∈ dom f, and

(ii) for every sequence s1 of R1 such that rng s1 ⊆ dom f and s1 is conver-

gent and lim s1 = x0 holds f · s1 is convergent and fx0
= lim(f · s1).

The following propositions are true:

(5) For every sequence s1 of C2 and for every partial function h from C2 to

C3 such that rng s1 ⊆ domh holds s1(n) ∈ domh.

(6) For every sequence s1 of C1 and for every partial function h from C1 to

R1 such that rng s1 ⊆ domh holds s1(n) ∈ domh.

(7) For every sequence s1 of R1 and for every partial function h from R1 to

C1 such that rng s1 ⊆ domh holds s1(n) ∈ domh.

(8) For every sequence s1 of C1 and for every set x holds x ∈ rng s1 iff there

exists n such that x = s1(n).

(9) For all sequences s1, s2 of C1 such that s2 is a subsequence of s1 holds

rng s2 ⊆ rng s1.

(10) Let f be a partial function from C2 to C3 and C5 be a sequence of C2.

If rngC5 ⊆ dom f, then for every n holds (f · C5)(n) = fC5(n).

(11) Let f be a partial function from C1 to R1 and C5 be a sequence of C1.

If rngC5 ⊆ dom f, then for every n holds (f · C5)(n) = fC5(n).

(12) Let f be a partial function from R1 to C1 and R2 be a sequence of R1.

If rngR2 ⊆ dom f, then for every n holds (f ·R2)(n) = fR2(n).

(13) Let f be a partial function from the carrier of C1 to C and C5 be a

sequence of C1. If rngC5 ⊆ dom f, then for every n holds (f · C5)(n) =

fC5(n).

(14) Let f be a partial function from the carrier of C1 to R and C5 be a

sequence of C1. If rngC5 ⊆ dom f, then for every n holds (f · C5)(n) =

fC5(n).

(15) Let f be a partial function from the carrier of R1 to C and R2 be a

sequence of R1. If rngR2 ⊆ dom f, then for every n holds (f · R2)(n) =

fR2(n).

(16) Let h be a partial function from C2 to C3, C5 be a sequence of C2,

and N1 be an increasing sequence of naturals. If rngC5 ⊆ domh, then

(h · C5) ·N1 = h · (C5 ·N1).

(17) Let h be a partial function from C1 to R1, C6 be a sequence of C1,

and N1 be an increasing sequence of naturals. If rngC6 ⊆ domh, then

(h · C6) ·N1 = h · (C6 ·N1).

(18) Let h be a partial function from R1 to C1, R3 be a sequence of R1,
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and N1 be an increasing sequence of naturals. If rngR3 ⊆ domh, then

(h ·R3) ·N1 = h · (R3 ·N1).

(19) Let h be a partial function from the carrier of C1 to C, C6 be a sequence

of C1, and N1 be an increasing sequence of naturals. If rngC6 ⊆ domh,

then (h · C6) ·N1 = h · (C6 ·N1).

(20) Let h be a partial function from the carrier of C1 to R, C6 be a sequence

of C1, and N1 be an increasing sequence of naturals. If rngC6 ⊆ domh,

then (h · C6) ·N1 = h · (C6 ·N1).

(21) Let h be a partial function from the carrier of R1 to C, R3 be a sequence

of R1, and N1 be an increasing sequence of naturals. If rngR3 ⊆ domh,

then (h ·R3) ·N1 = h · (R3 ·N1).

(22) Let h be a partial function from C2 to C3 and C7, C8 be sequences of

C2. If rngC7 ⊆ domh and C8 is a subsequence of C7, then h · C8 is a

subsequence of h · C7.

(23) Let h be a partial function from C1 to R1 and C7, C8 be sequences of

C1. If rngC7 ⊆ domh and C8 is a subsequence of C7, then h · C8 is a

subsequence of h · C7.

(24) Let h be a partial function from R1 to C1 and R4, R5 be sequences of

R1. If rngR4 ⊆ domh and R5 is a subsequence of R4, then h · R5 is a

subsequence of h ·R4.

(25) Let s1 be a complex sequence, n be a natural number, and N2 be an

increasing sequence of naturals. Then (s1 ·N2)(n) = s1(N2(n)).

(26) Let h be a partial function from the carrier of C1 to C and C7, C8 be

sequences of C1. If rngC7 ⊆ domh and C8 is a subsequence of C7, then

h · C8 is a subsequence of h · C7.

(27) Let h be a partial function from the carrier of C1 to R and C7, C8 be

sequences of C1. If rngC7 ⊆ domh and C8 is a subsequence of C7, then

h · C8 is a subsequence of h · C7.

(28) Let h be a partial function from the carrier of R1 to C and R4, R5 be

sequences of R1. If rngR4 ⊆ domh and R5 is a subsequence of R4, then

h ·R5 is a subsequence of h ·R4.

(29) Let f be a partial function from C2 to C3 and x0 be a point of C2. Then

f is continuous in x0 if and only if the following conditions are satisfied:

(i) x0 ∈ dom f, and

(ii) for every r such that 0 < r there exists s such that 0 < s and for

every point x1 of C2 such that x1 ∈ dom f and ‖x1 − x0‖ < s holds

‖fx1
− fx0

‖ < r.

(30) Let f be a partial function from C1 to R1 and x0 be a point of C1. Then

f is continuous in x0 if and only if the following conditions are satisfied:

(i) x0 ∈ dom f, and
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(ii) for every r such that 0 < r there exists s such that 0 < s and for

every point x1 of C1 such that x1 ∈ dom f and ‖x1 − x0‖ < s holds

‖fx1
− fx0

‖ < r.

(31) Let f be a partial function from R1 to C1 and x0 be a point of R1. Then

f is continuous in x0 if and only if the following conditions are satisfied:

(i) x0 ∈ dom f, and

(ii) for every r such that 0 < r there exists s such that 0 < s and for

every point x1 of R1 such that x1 ∈ dom f and ‖x1 − x0‖ < s holds

‖fx1
− fx0

‖ < r.

(32) Let f be a partial function from the carrier of C1 to R and x0 be a point

of C1. Then f is continuous in x0 if and only if the following conditions

are satisfied:

(i) x0 ∈ dom f, and

(ii) for every r such that 0 < r there exists s such that 0 < s and for every

point x1 of C1 such that x1 ∈ dom f and ‖x1−x0‖ < s holds |fx1
−fx0
| < r.

(33) Let f be a partial function from the carrier of C1 to C and x0 be a point

of C1. Then f is continuous in x0 if and only if the following conditions

are satisfied:

(i) x0 ∈ dom f, and

(ii) for every r such that 0 < r there exists s such that 0 < s and for every

point x1 of C1 such that x1 ∈ dom f and ‖x1−x0‖ < s holds |fx1
−fx0
| < r.

(34) Let f be a partial function from the carrier of R1 to C and x0 be a point

of R1. Then f is continuous in x0 if and only if the following conditions

are satisfied:

(i) x0 ∈ dom f, and

(ii) for every r such that 0 < r there exists s such that 0 < s and for every

point x1 of R1 such that x1 ∈ dom f and ‖x1−x0‖ < s holds |fx1
−fx0
| < r.

(35) Let f be a partial function from C2 to C3 and x0 be a point of C2. Then

f is continuous in x0 if and only if the following conditions are satisfied:

(i) x0 ∈ dom f, and

(ii) for every neighbourhood N3 of fx0
there exists a neighbourhood N of

x0 such that for every point x1 of C2 such that x1 ∈ dom f and x1 ∈ N

holds fx1
∈ N3.

(36) Let f be a partial function from C1 to R1 and x0 be a point of C1. Then

f is continuous in x0 if and only if the following conditions are satisfied:

(i) x0 ∈ dom f, and

(ii) for every neighbourhood N3 of fx0
there exists a neighbourhood N of

x0 such that for every point x1 of C1 such that x1 ∈ dom f and x1 ∈ N

holds fx1
∈ N3.

(37) Let f be a partial function from R1 to C1 and x0 be a point of R1. Then

f is continuous in x0 if and only if the following conditions are satisfied:
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(i) x0 ∈ dom f, and

(ii) for every neighbourhood N3 of fx0
there exists a neighbourhood N of

x0 such that for every point x1 of R1 such that x1 ∈ dom f and x1 ∈ N

holds fx1
∈ N3.

(38) Let f be a partial function from C2 to C3 and x0 be a point of C2. Then

f is continuous in x0 if and only if the following conditions are satisfied:

(i) x0 ∈ dom f, and

(ii) for every neighbourhood N3 of fx0
there exists a neighbourhood N of

x0 such that f◦N ⊆ N3.

(39) Let f be a partial function from C1 to R1 and x0 be a point of C1. Then

f is continuous in x0 if and only if the following conditions are satisfied:

(i) x0 ∈ dom f, and

(ii) for every neighbourhood N3 of fx0
there exists a neighbourhood N of

x0 such that f◦N ⊆ N3.

(40) Let f be a partial function from R1 to C1 and x0 be a point of R1. Then

f is continuous in x0 if and only if the following conditions are satisfied:

(i) x0 ∈ dom f, and

(ii) for every neighbourhood N3 of fx0
there exists a neighbourhood N of

x0 such that f◦N ⊆ N3.

(41) Let f be a partial function from C2 to C3 and x0 be a point of C2.

Suppose x0 ∈ dom f and there exists a neighbourhood N of x0 such that

dom f ∩N = {x0}. Then f is continuous in x0.

(42) Let f be a partial function from C1 to R1 and x0 be a point of C1.

Suppose x0 ∈ dom f and there exists a neighbourhood N of x0 such that

dom f ∩N = {x0}. Then f is continuous in x0.

(43) Let f be a partial function from R1 to C1 and x0 be a point of R1.

Suppose x0 ∈ dom f and there exists a neighbourhood N of x0 such that

dom f ∩N = {x0}. Then f is continuous in x0.

(44) Let h1, h2 be partial functions from C2 to C3 and s1 be a sequence of

C2. If rng s1 ⊆ domh1 ∩ domh2, then (h1 + h2) · s1 = h1 · s1 + h2 · s1 and

(h1 − h2) · s1 = h1 · s1 − h2 · s1.

(45) Let h1, h2 be partial functions from C1 to R1 and s1 be a sequence of

C1. If rng s1 ⊆ domh1 ∩ domh2, then (h1 + h2) · s1 = h1 · s1 + h2 · s1 and

(h1 − h2) · s1 = h1 · s1 − h2 · s1.

(46) Let h1, h2 be partial functions from R1 to C1 and s1 be a sequence of

R1. If rng s1 ⊆ domh1 ∩ domh2, then (h1 + h2) · s1 = h1 · s1 + h2 · s1 and

(h1 − h2) · s1 = h1 · s1 − h2 · s1.

(47) Let h be a partial function from C2 to C3, s1 be a sequence of C2, and

z be a complex number. If rng s1 ⊆ domh, then (z h) · s1 = z · (h · s1).
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(48) Let h be a partial function from C1 to R1, s1 be a sequence of C1, and

r be a real number. If rng s1 ⊆ domh, then (r h) · s1 = r · (h · s1).

(49) Let h be a partial function from R1 to C1, s1 be a sequence of R1, and

z be a complex number. If rng s1 ⊆ domh, then (z h) · s1 = z · (h · s1).

(50) Let h be a partial function from C2 to C3 and s1 be a sequence of C2. If

rng s1 ⊆ domh, then ‖h · s1‖ = ‖h‖ · s1 and −h · s1 = (−h) · s1.

(51) Let h be a partial function from C1 to R1 and s1 be a sequence of C1. If

rng s1 ⊆ domh, then ‖h · s1‖ = ‖h‖ · s1 and −h · s1 = (−h) · s1.

(52) Let h be a partial function from R1 to C1 and s1 be a sequence of R1.

If rng s1 ⊆ domh, then ‖h · s1‖ = ‖h‖ · s1 and −h · s1 = (−h) · s1.

(53) Let f1, f2 be partial functions from C2 to C3 and x0 be a point of C2.

Suppose f1 is continuous in x0 and f2 is continuous in x0. Then f1 + f2 is

continuous in x0 and f1 − f2 is continuous in x0.

(54) Let f1, f2 be partial functions from C1 to R1 and x0 be a point of C1.

Suppose f1 is continuous in x0 and f2 is continuous in x0. Then f1 + f2 is

continuous in x0 and f1 − f2 is continuous in x0.

(55) Let f1, f2 be partial functions from R1 to C1 and x0 be a point of R1.

Suppose f1 is continuous in x0 and f2 is continuous in x0. Then f1 + f2 is

continuous in x0 and f1 − f2 is continuous in x0.

(56) Let f be a partial function from C2 to C3, x0 be a point of C2, and z be

a complex number. If f is continuous in x0, then z f is continuous in x0.

(57) Let f be a partial function from C1 to R1, x0 be a point of C1, and r be

a real number. If f is continuous in x0, then r f is continuous in x0.

(58) Let f be a partial function from R1 to C1, x0 be a point of R1, and z be

a complex number. If f is continuous in x0, then z f is continuous in x0.

(59) Let f be a partial function from C2 to C3 and x0 be a point of C2. If f

is continuous in x0, then ‖f‖ is continuous in x0 and −f is continuous in

x0.

(60) Let f be a partial function from C1 to R1 and x0 be a point of C1. If f

is continuous in x0, then ‖f‖ is continuous in x0 and −f is continuous in

x0.

(61) Let f be a partial function from R1 to C1 and x0 be a point of R1. If f

is continuous in x0, then ‖f‖ is continuous in x0 and −f is continuous in

x0.

Let C2, C3 be complex normed spaces, let f be a partial function from C2

to C3, and let X be a set. We say that f is continuous on X if and only if:

(Def. 21) X ⊆ dom f and for every point x0 of C2 such that x0 ∈ X holds f↾X is

continuous in x0.

Let C1 be a complex normed space, let R1 be a real normed space, let f be a
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partial function from C1 to R1, and let X be a set. We say that f is continuous

on X if and only if:

(Def. 22) X ⊆ dom f and for every point x0 of C1 such that x0 ∈ X holds f↾X is

continuous in x0.

Let R1 be a real normed space, let C1 be a complex normed space, let g be a

partial function from R1 to C1, and let X be a set. We say that g is continuous

on X if and only if:

(Def. 23) X ⊆ dom g and for every point x0 of R1 such that x0 ∈ X holds g↾X is

continuous in x0.

Let C1 be a complex normed space, let f be a partial function from the

carrier of C1 to C, and let X be a set. We say that f is continuous on X if and

only if:

(Def. 24) X ⊆ dom f and for every point x0 of C1 such that x0 ∈ X holds f↾X is

continuous in x0.

Let C1 be a complex normed space, let f be a partial function from the

carrier of C1 to R, and let X be a set. We say that f is continuous on X if and

only if:

(Def. 25) X ⊆ dom f and for every point x0 of C1 such that x0 ∈ X holds f↾X is

continuous in x0.

Let R1 be a real normed space, let f be a partial function from the carrier

of R1 to C, and let X be a set. We say that f is continuous on X if and only if:

(Def. 26) X ⊆ dom f and for every point x0 of R1 such that x0 ∈ X holds f↾X is

continuous in x0.

In the sequel X, X1 denote sets.

The following propositions are true:

(62) Let f be a partial function from C2 to C3. Then f is continuous on X if

and only if the following conditions are satisfied:

(i) X ⊆ dom f, and

(ii) for every sequence s4 of C2 such that rng s4 ⊆ X and s4 is convergent

and lim s4 ∈ X holds f · s4 is convergent and flim s4
= lim(f · s4).

(63) Let f be a partial function from C1 to R1. Then f is continuous on X if

and only if the following conditions are satisfied:

(i) X ⊆ dom f, and

(ii) for every sequence s4 of C1 such that rng s4 ⊆ X and s4 is convergent

and lim s4 ∈ X holds f · s4 is convergent and flim s4
= lim(f · s4).

(64) Let f be a partial function from R1 to C1. Then f is continuous on X if

and only if the following conditions are satisfied:

(i) X ⊆ dom f, and

(ii) for every sequence s4 of R1 such that rng s4 ⊆ X and s4 is convergent

and lim s4 ∈ X holds f · s4 is convergent and flim s4
= lim(f · s4).
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(65) Let f be a partial function from C2 to C3. Then f is continuous on X if

and only if the following conditions are satisfied:

(i) X ⊆ dom f, and

(ii) for every point x0 of C2 and for every r such that x0 ∈ X and 0 < r

there exists s such that 0 < s and for every point x1 of C2 such that

x1 ∈ X and ‖x1 − x0‖ < s holds ‖fx1
− fx0

‖ < r.

(66) Let f be a partial function from C1 to R1. Then f is continuous on X if

and only if the following conditions are satisfied:

(i) X ⊆ dom f, and

(ii) for every point x0 of C1 and for every r such that x0 ∈ X and 0 < r

there exists s such that 0 < s and for every point x1 of C1 such that

x1 ∈ X and ‖x1 − x0‖ < s holds ‖fx1
− fx0

‖ < r.

(67) Let f be a partial function from R1 to C1. Then f is continuous on X if

and only if the following conditions are satisfied:

(i) X ⊆ dom f, and

(ii) for every point x0 of R1 and for every r such that x0 ∈ X and 0 < r

there exists s such that 0 < s and for every point x1 of R1 such that

x1 ∈ X and ‖x1 − x0‖ < s holds ‖fx1
− fx0

‖ < r.

(68) Let f be a partial function from the carrier of C1 to C. Then f is conti-

nuous on X if and only if the following conditions are satisfied:

(i) X ⊆ dom f, and

(ii) for every point x0 of C1 and for every r such that x0 ∈ X and 0 < r

there exists s such that 0 < s and for every point x1 of C1 such that

x1 ∈ X and ‖x1 − x0‖ < s holds |fx1
− fx0

| < r.

(69) Let f be a partial function from the carrier of C1 to R. Then f is conti-

nuous on X if and only if the following conditions are satisfied:

(i) X ⊆ dom f, and

(ii) for every point x0 of C1 and for every r such that x0 ∈ X and 0 < r

there exists s such that 0 < s and for every point x1 of C1 such that

x1 ∈ X and ‖x1 − x0‖ < s holds |fx1
− fx0

| < r.

(70) Let f be a partial function from the carrier of R1 to C. Then f is conti-

nuous on X if and only if the following conditions are satisfied:

(i) X ⊆ dom f, and

(ii) for every point x0 of R1 and for every r such that x0 ∈ X and 0 < r

there exists s such that 0 < s and for every point x1 of R1 such that

x1 ∈ X and ‖x1 − x0‖ < s holds |fx1
− fx0

| < r.

(71) For every partial function f from C2 to C3 holds f is continuous on X

iff f↾X is continuous on X.

(72) For every partial function f from C1 to R1 holds f is continuous on X

iff f↾X is continuous on X.
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(73) For every partial function f from R1 to C1 holds f is continuous on X

iff f↾X is continuous on X.

(74) Let f be a partial function from the carrier of C1 to C. Then f is conti-

nuous on X if and only if f↾X is continuous on X.

(75) Let f be a partial function from the carrier of C1 to R. Then f is conti-

nuous on X if and only if f↾X is continuous on X.

(76) Let f be a partial function from the carrier of R1 to C. Then f is conti-

nuous on X if and only if f↾X is continuous on X.

(77) For every partial function f from C2 to C3 such that f is continuous on

X and X1 ⊆ X holds f is continuous on X1.

(78) For every partial function f from C1 to R1 such that f is continuous on

X and X1 ⊆ X holds f is continuous on X1.

(79) For every partial function f from R1 to C1 such that f is continuous on

X and X1 ⊆ X holds f is continuous on X1.

(80) For every partial function f from C2 to C3 and for every point x0 of C2

such that x0 ∈ dom f holds f is continuous on {x0}.

(81) For every partial function f from C1 to R1 and for every point x0 of C1

such that x0 ∈ dom f holds f is continuous on {x0}.

(82) For every partial function f from R1 to C1 and for every point x0 of R1

such that x0 ∈ dom f holds f is continuous on {x0}.

(83) Let f1, f2 be partial functions from C2 to C3. Suppose f1 is continuous

on X and f2 is continuous on X. Then f1 + f2 is continuous on X and

f1 − f2 is continuous on X.

(84) Let f1, f2 be partial functions from C1 to R1. Suppose f1 is continuous

on X and f2 is continuous on X. Then f1 + f2 is continuous on X and

f1 − f2 is continuous on X.

(85) Let f1, f2 be partial functions from R1 to C1. Suppose f1 is continuous

on X and f2 is continuous on X. Then f1 + f2 is continuous on X and

f1 − f2 is continuous on X.

(86) Let f1, f2 be partial functions from C2 to C3. Suppose f1 is continuous

on X and f2 is continuous on X1. Then f1 + f2 is continuous on X ∩X1

and f1 − f2 is continuous on X ∩X1.

(87) Let f1, f2 be partial functions from C1 to R1. Suppose f1 is continuous

on X and f2 is continuous on X1. Then f1 + f2 is continuous on X ∩X1

and f1 − f2 is continuous on X ∩X1.

(88) Let f1, f2 be partial functions from R1 to C1. Suppose f1 is continuous

on X and f2 is continuous on X1. Then f1 + f2 is continuous on X ∩X1

and f1 − f2 is continuous on X ∩X1.

(89) For every partial function f from C2 to C3 such that f is continuous on
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X holds z f is continuous on X.

(90) For every partial function f from C1 to R1 such that f is continuous on

X holds r f is continuous on X.

(91) For every partial function f from R1 to C1 such that f is continuous on

X holds z f is continuous on X.

(92) Let f be a partial function from C2 to C3. If f is continuous on X, then

‖f‖ is continuous on X and −f is continuous on X.

(93) Let f be a partial function from C1 to R1. If f is continuous on X, then

‖f‖ is continuous on X and −f is continuous on X.

(94) Let f be a partial function from R1 to C1. If f is continuous on X, then

‖f‖ is continuous on X and −f is continuous on X.

(95) Let f be a partial function from C2 to C3. Suppose f is total and for all

points x1, x2 of C2 holds fx1+x2
= fx1

+ fx2
and there exists a point x0 of

C2 such that f is continuous in x0. Then f is continuous on the carrier of

C2.

(96) Let f be a partial function from C1 to R1. Suppose f is total and for all

points x1, x2 of C1 holds fx1+x2
= fx1

+ fx2
and there exists a point x0 of

C1 such that f is continuous in x0. Then f is continuous on the carrier of

C1.

(97) Let f be a partial function from R1 to C1. Suppose f is total and for all

points x1, x2 of R1 holds fx1+x2
= fx1

+ fx2
and there exists a point x0 of

R1 such that f is continuous in x0. Then f is continuous on the carrier of

R1.

(98) For every partial function f from C2 to C3 such that dom f is compact

and f is continuous on dom f holds rng f is compact.

(99) For every partial function f from C1 to R1 such that dom f is compact

and f is continuous on dom f holds rng f is compact.

(100) For every partial function f from R1 to C1 such that dom f is compact

and f is continuous on dom f holds rng f is compact.

(101) Let f be a partial function from the carrier of C1 to C. If dom f is

compact and f is continuous on dom f, then rng f is compact.

(102) Let f be a partial function from the carrier of C1 to R. If dom f is

compact and f is continuous on dom f, then rng f is compact.

(103) Let f be a partial function from the carrier of R1 to C. If dom f is

compact and f is continuous on dom f, then rng f is compact.

(104) Let Y be a subset of C2 and f be a partial function from C2 to C3.

If Y ⊆ dom f and Y is compact and f is continuous on Y , then f◦Y is

compact.

(105) Let Y be a subset of C1 and f be a partial function from C1 to R1.
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If Y ⊆ dom f and Y is compact and f is continuous on Y , then f◦Y is

compact.

(106) Let Y be a subset of R1 and f be a partial function from R1 to C1.

If Y ⊆ dom f and Y is compact and f is continuous on Y , then f◦Y is

compact.

(107) Let f be a partial function from the carrier of C1 to R. Suppose dom f 6=

∅ and dom f is compact and f is continuous on dom f. Then there exist

points x1, x2 of C1 such that x1 ∈ dom f and x2 ∈ dom f and fx1
=

sup rng f and fx2
= inf rng f.

(108) Let f be a partial function from C2 to C3. Suppose dom f 6= ∅ and dom f

is compact and f is continuous on dom f. Then there exist points x1, x2

of C2 such that x1 ∈ dom f and x2 ∈ dom f and ‖f‖x1
= sup rng‖f‖ and

‖f‖x2
= inf rng‖f‖.

(109) Let f be a partial function from C1 to R1. Suppose dom f 6= ∅ and dom f

is compact and f is continuous on dom f. Then there exist points x1, x2

of C1 such that x1 ∈ dom f and x2 ∈ dom f and ‖f‖x1
= sup rng‖f‖ and

‖f‖x2
= inf rng‖f‖.

(110) Let f be a partial function from R1 to C1. Suppose dom f 6= ∅ and dom f

is compact and f is continuous on dom f. Then there exist points x1, x2

of R1 such that x1 ∈ dom f and x2 ∈ dom f and ‖f‖x1
= sup rng‖f‖ and

‖f‖x2
= inf rng‖f‖.

(111) For every partial function f from C2 to C3 holds ‖f‖↾X = ‖f↾X‖.

(112) For every partial function f from C1 to R1 holds ‖f‖↾X = ‖f↾X‖.

(113) For every partial function f from R1 to C1 holds ‖f‖↾X = ‖f↾X‖.

(114) Let f be a partial function from C2 to C3 and Y be a subset of C2.

Suppose Y 6= ∅ and Y ⊆ dom f and Y is compact and f is continuous on

Y . Then there exist points x1, x2 of C2 such that x1 ∈ Y and x2 ∈ Y and

‖f‖x1
= sup(‖f‖◦Y ) and ‖f‖x2

= inf(‖f‖◦Y ).

(115) Let f be a partial function from C1 to R1 and Y be a subset of C1.

Suppose Y 6= ∅ and Y ⊆ dom f and Y is compact and f is continuous on

Y . Then there exist points x1, x2 of C1 such that x1 ∈ Y and x2 ∈ Y and

‖f‖x1
= sup(‖f‖◦Y ) and ‖f‖x2

= inf(‖f‖◦Y ).

(116) Let f be a partial function from R1 to C1 and Y be a subset of R1.

Suppose Y 6= ∅ and Y ⊆ dom f and Y is compact and f is continuous on

Y . Then there exist points x1, x2 of R1 such that x1 ∈ Y and x2 ∈ Y and

‖f‖x1
= sup(‖f‖◦Y ) and ‖f‖x2

= inf(‖f‖◦Y ).

(117) Let f be a partial function from the carrier of C1 to R and Y be a

subset of C1. Suppose Y 6= ∅ and Y ⊆ dom f and Y is compact and f is

continuous on Y . Then there exist points x1, x2 of C1 such that x1 ∈ Y

and x2 ∈ Y and fx1
= sup(f◦Y ) and fx2

= inf(f◦Y ).
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Let C2, C3 be complex normed spaces, let X be a set, and let f be a partial

function from C2 to C3. We say that f is Lipschitzian on X if and only if:

(Def. 27) X ⊆ dom f and there exists r such that 0 < r and for all points x1, x2

of C2 such that x1 ∈ X and x2 ∈ X holds ‖fx1
− fx2

‖ ¬ r · ‖x1 − x2‖.

Let C1 be a complex normed space, let R1 be a real normed space, let X be a

set, and let f be a partial function from C1 to R1. We say that f is Lipschitzian

on X if and only if:

(Def. 28) X ⊆ dom f and there exists r such that 0 < r and for all points x1, x2

of C1 such that x1 ∈ X and x2 ∈ X holds ‖fx1
− fx2

‖ ¬ r · ‖x1 − x2‖.

Let R1 be a real normed space, let C1 be a complex normed space, let X be a

set, and let f be a partial function from R1 to C1. We say that f is Lipschitzian

on X if and only if:

(Def. 29) X ⊆ dom f and there exists r such that 0 < r and for all points x1, x2

of R1 such that x1 ∈ X and x2 ∈ X holds ‖fx1
− fx2

‖ ¬ r · ‖x1 − x2‖.

Let C1 be a complex normed space, let X be a set, and let f be a partial

function from the carrier of C1 to C. We say that f is Lipschitzian on X if and

only if:

(Def. 30) X ⊆ dom f and there exists r such that 0 < r and for all points x1, x2

of C1 such that x1 ∈ X and x2 ∈ X holds |fx1
− fx2

| ¬ r · ‖x1 − x2‖.

Let C1 be a complex normed space, let X be a set, and let f be a partial

function from the carrier of C1 to R. We say that f is Lipschitzian on X if and

only if:

(Def. 31) X ⊆ dom f and there exists r such that 0 < r and for all points x1, x2

of C1 such that x1 ∈ X and x2 ∈ X holds |fx1
− fx2

| ¬ r · ‖x1 − x2‖.

Let R1 be a real normed space, let X be a set, and let f be a partial function

from the carrier of R1 to C. We say that f is Lipschitzian on X if and only if:

(Def. 32) X ⊆ dom f and there exists r such that 0 < r and for all points x1, x2

of R1 such that x1 ∈ X and x2 ∈ X holds |fx1
− fx2

| ¬ r · ‖x1 − x2‖.

Next we state a number of propositions:

(118) For every partial function f from C2 to C3 such that f is Lipschitzian

on X and X1 ⊆ X holds f is Lipschitzian on X1.

(119) For every partial function f from C1 to R1 such that f is Lipschitzian

on X and X1 ⊆ X holds f is Lipschitzian on X1.

(120) For every partial function f from R1 to C1 such that f is Lipschitzian

on X and X1 ⊆ X holds f is Lipschitzian on X1.

(121) Let f1, f2 be partial functions from C2 to C3. Suppose f1 is Lipschitzian

on X and f2 is Lipschitzian on X1. Then f1 +f2 is Lipschitzian on X∩X1.

(122) Let f1, f2 be partial functions from C1 to R1. Suppose f1 is Lipschitzian

on X and f2 is Lipschitzian on X1. Then f1 +f2 is Lipschitzian on X∩X1.
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(123) Let f1, f2 be partial functions from R1 to C1. Suppose f1 is Lipschitzian

on X and f2 is Lipschitzian on X1. Then f1 +f2 is Lipschitzian on X∩X1.

(124) Let f1, f2 be partial functions from C2 to C3. Suppose f1 is Lipschitzian

on X and f2 is Lipschitzian on X1. Then f1−f2 is Lipschitzian on X∩X1.

(125) Let f1, f2 be partial functions from C1 to R1. Suppose f1 is Lipschitzian

on X and f2 is Lipschitzian on X1. Then f1−f2 is Lipschitzian on X∩X1.

(126) Let f1, f2 be partial functions from R1 to C1. Suppose f1 is Lipschitzian

on X and f2 is Lipschitzian on X1. Then f1−f2 is Lipschitzian on X∩X1.

(127) For every partial function f from C2 to C3 such that f is Lipschitzian

on X holds z f is Lipschitzian on X.

(128) For every partial function f from C1 to R1 such that f is Lipschitzian

on X holds r f is Lipschitzian on X.

(129) For every partial function f from R1 to C1 such that f is Lipschitzian

on X holds z f is Lipschitzian on X.

(130) Let f be a partial function from C2 to C3. Suppose f is Lipschitzian on

X. Then −f is Lipschitzian on X and ‖f‖ is Lipschitzian on X.

(131) Let f be a partial function from C1 to R1. Suppose f is Lipschitzian on

X. Then −f is Lipschitzian on X and ‖f‖ is Lipschitzian on X.

(132) Let f be a partial function from R1 to C1. Suppose f is Lipschitzian on

X. Then −f is Lipschitzian on X and ‖f‖ is Lipschitzian on X.

(133) Let X be a set and f be a partial function from C2 to C3. If X ⊆ dom f

and f is a constant on X, then f is Lipschitzian on X.

(134) Let X be a set and f be a partial function from C1 to R1. If X ⊆ dom f

and f is a constant on X, then f is Lipschitzian on X.

(135) Let X be a set and f be a partial function from R1 to C1. If X ⊆ dom f

and f is a constant on X, then f is Lipschitzian on X.

(136) For every subset Y of C1 holds idY is Lipschitzian on Y .

(137) For every partial function f from C2 to C3 such that f is Lipschitzian

on X holds f is continuous on X.

(138) For every partial function f from C1 to R1 such that f is Lipschitzian

on X holds f is continuous on X.

(139) For every partial function f from R1 to C1 such that f is Lipschitzian

on X holds f is continuous on X.

(140) Let f be a partial function from the carrier of C1 to C. If f is Lipschitzian

on X, then f is continuous on X.

(141) Let f be a partial function from the carrier of C1 to R. If f is Lipschitzian

on X, then f is continuous on X.

(142) Let f be a partial function from the carrier of R1 to C. If f is Lipschitzian

on X, then f is continuous on X.
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(143) For every partial function f from C2 to C3 such that there exists a point

r of C3 such that rng f = {r} holds f is continuous on dom f.

(144) For every partial function f from C1 to R1 such that there exists a point

r of R1 such that rng f = {r} holds f is continuous on dom f.

(145) For every partial function f from R1 to C1 such that there exists a point

r of C1 such that rng f = {r} holds f is continuous on dom f.

(146) For every partial function f from C2 to C3 such that X ⊆ dom f and f

is a constant on X holds f is continuous on X.

(147) For every partial function f from C1 to R1 such that X ⊆ dom f and f

is a constant on X holds f is continuous on X.

(148) For every partial function f from R1 to C1 such that X ⊆ dom f and f

is a constant on X holds f is continuous on X.

(149) Let f be a partial function from C1 to C1. Suppose that for every point

x0 of C1 such that x0 ∈ dom f holds fx0
= x0. Then f is continuous on

dom f.

(150) For every partial function f from C1 to C1 such that f = iddom f holds

f is continuous on dom f.

(151) Let f be a partial function from C1 to C1 and Y be a subset of C1. If

Y ⊆ dom f and f↾Y = idY , then f is continuous on Y .

(152) Let f be a partial function from C1 to C1, z be a complex number, and

p be a point of C1. Suppose X ⊆ dom f and for every point x0 of C1 such

that x0 ∈ X holds fx0
= z · x0 + p. Then f is continuous on X.

(153) Let f be a partial function from the carrier of C1 to R. Suppose that for

every point x0 of C1 such that x0 ∈ dom f holds fx0
= ‖x0‖. Then f is

continuous on dom f.

(154) Let f be a partial function from the carrier of C1 to R. Suppose X ⊆

dom f and for every point x0 of C1 such that x0 ∈ X holds fx0
= ‖x0‖.

Then f is continuous on X.
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